1 Two problems

1.1 A colorful version of Gallai’s theorem

Let F be a family of sets in \mathbb{R}^d. A matching in F is a sub-family of pairwise disjoint sets. The matching number $\nu(F)$ is the largest size of a matching in F. A cover in F is a set of points in \mathbb{R}^d intersecting all the sets in F. The covering number $\tau(F)$ is the minimal size of a cover in F.

A well-known theorem of Gallai from the 1960’s is the following:

Theorem 1.1 (Gallai). Let F be a finite family of compact intervals in \mathbb{R}. Then $\tau(F) = \nu(F)$.

Exercise 1.2. Prove Gallai’s theorem (hint: construct an algorithm for finding a cover and a matching of the same size. Why is this enough?)

Another way to state the theorem: if $\tau(F) > k$ then there exists a matching in F of size $k + 1$. Now, suppose that we have $k + 1$ finite families F_1, \ldots, F_{k+1} of compact intervals in \mathbb{R}, with $\tau(F_i) > k$ for all i. Can we find a rainbow matching (that is a matching \mathcal{M} with $\mathcal{M} \cap F_i = 1$ for all i)?

1.2 Fair division of a cake

Suppose that we have k players with subjective preferences on a given cake (identified with the $[0, 1]$ interval). In any partition of the cake each player gives a list of pieces they prefer from the cake in that partition. Two conditions are satisfied:

1. Players are hungry (define)
2. Preference sets are closed (define).

Does there necessarily exist a partition of the cake and allocation of pieces such that every player receives one of his favorite pieces?
2 Sperner’s Lemma, Brouwer’s fixed-point theorem, and the KKM theorem

Sperner’s Lemma is an important result in combinatorial topology. It was originally proved by Sperner in 1928 to obtain a simple proof of Brouwer’s fixed-point theorem (1910).

Theorem 2.1 (Brouwer’s Fixed Point Theorem, 1911). Any continuous map f from a finite dimensional ball B to itself has a fixed point, namely a point $x \in B$ such that $f(x) = x$.

BFPT has numerous applications in mathematics and economics as does Sperner’s Lemma.

Definition 2.2.

- The n-dimensional simplex is the convex hull of $n + 1$ affinely independent points in \mathbb{R}^{n+1}.

- The standard n-dimensional simplex is

$$
\Delta^n = \text{conv}\{e_1, \ldots, e_{n+1}\} \subset \mathbb{R}^{n+1},
$$

where e_1, \ldots, e_{n+1} are the standard basis vector in \mathbb{R}^{n+1}.

- The convex hull of any nonempty subset of the $n + 1$ points that define an simplex is called a a face of the simplex (so a face of a simplex is also a simplex). If the subset defining a face is of size k, then the dimension of the face is $k - 1$.

- The 0-dimensional faces of a simplex are called vertices. The 1-dimensional faces of are called edges.

- A triangulation is a subdivision of a simplex (or more generally - a polytope) into simplices.

- If $x \in \Delta^{n+1}$, then $\text{supp}(x)$ is the minimal face of Δ^{n+1} containing x.

Definition 2.3 (Sperner coloring). Let T be a triangulation of a n-dimensional simplex Δ. Let $\lambda : v(T) \to [n + 1]$ be a coloring of the vertices of T with colors $[n + 1]$ such that:

- Every vertex of Δ gets a distinct color.

- For every $v \in T$ we have $\lambda(v) \in \lambda(V(\text{supp}(v)))$.

Then λ is called a Sperner coloring of T.

Let T be a triangulation of Δ^n and let λ be a Sperner coloring of $V(T)$. A rainbow simplex is a simplex in T whose vertices have all distinct colors.
Theorem 2.4 (Sperner’s lemma 1928). Let Δ be a n-dimensional simplex, let T be a triangulation of Δ, and let $\lambda : V(T) \to [n+1]$ be a Sperner coloring of Δ. Then the number of n-dimensional rainbow simplices in T is odd. In particular, there is at least one n-dimensional rainbow simplex.

Proof. By induction on n.

Base case: $n = 1$. Then Δ is a 1-dimensional simplex, namely a segment $[a, b]$. T is a triangulation of Δ, namely a subdivision of $[a, b]$ into smaller segments. We have two colors $\{1, 2\}$ and a, b receive different colors. Now, going from a to b, we must switch color an odd number of times so that we get a different color in b. Hence there is an odd number of subsegments (simplices in T) that receive two different colors.

Case 2: $n = 2$. Consider the face 12 of Δ. By induction, it has odd many rainbow 1-dimensional simplices of T, colored 12. Define a graph G as follows: the vertices of G are the 2-dimensional simplices of T, and one additional vertex v in the outer face. Two vertices are connected be an edge in G if they share an edge of T colored by 12. By the handshake lemma, G has even many vertices of odd degree, and since $\deg(v)$ is odd, it has odd many vertices corresponding to 2-dimensional simplices of T. Such simplices must have exactly one 12 edge, and hence they must be rainbow.

General n. Consider the face $12\cdots n$ of Δ. By induction, it has odd many rainbow $(n-1)$-dimensional simplices of T, colored $12\cdots n$. Define a graph G as follows: the vertices of G are the n-dimensional simplices of T, and one additional vertex v in the outer face. Two vertices are connected be an edge in G if they share an edge of T colored by $12\cdots n$. By the handshake lemma, G has even many vertices of odd degree, and since $\deg(v)$ is odd, it has odd many vertices corresponding to n-dimensional simplices of T. Such simplices must have exactly one $12\cdots n$ edge, and hence they must be rainbow.

Another proof by induction: Let Q be the number of simplices in T colored $(1, 1, 2)$ or $(1, 2, 2)$. Let R be the number of rainbow simplices in T. Let X be the number of $(1, 2)$ edges on the boundary of Δ. Let Y be the number of $(1, 2)$ edges in the interior of Δ.

- For each simplex on T colored $(1, 1, 2)$ of $(1, 2, 2)$ we get two $(1, 2)$ edges, while for each rainbow simplex we get one $(1, 2)$ edge.

- On the other hand, this way we count all of internal edges colored $(1, 2)$ twice, and all of the boundary edges colored $(1, 2)$ once. Thus, $2Q + R = 2Y + X$.

We know that X is odd because the $[1, 2]$ boundary of Δ is colored in a Sperner coloring. So R must be odd.

General Case: We have a Sperner coloring on T by $n + 1$ colors. Let R denote the number of rainbow simplices in T. Let Q denote the number of d-dimensional simplices in T that get all of the colors except $n + 1$, i.e. they are colored by all of the colors in $[n]$, so that exactly one of these colors is used twice and the others are used once.

Example: In the $d = 3$ case Q counts the number of simplices colored as follows: $(1, 1, 2, 3), (1, 2, 2, 3), (1, 2, 3, 3)$.

Also, consider the $(n-1)$-dimensional faces that are colored by exactly the colors in $[n]$ (namely $"[n]-rainbow$ simplices”). Let X be the number of such faces of the boundary of Δ, and let Y be the number of such faces in the interior of Δ.
Again we count in two different ways:

- Every simplex of type \(R \) ([\(n + 1 \)]-rainbow simplex) contributes exactly one \((n-1)\)-face colored by \(\{1, 2, \ldots, n\} \). Every simplex of the type \(Q \) (colored by \(\{1, 2, \ldots, n\} \)) contributes exactly 2 \((n-1)\)-faces colored by \(\{1, 2, \ldots, n\} \).

- \((n-1)\)-dimensional faces that are colored by \(\{1, 2, \ldots, n\} \) and lie on the boundary of \(\Delta \) appear in one \(d \)-dimensional simplex of \(T \), while if it does not lie on the boundary it appears in 2 simplices of \(T \). Hence we get \(2Q + R = X + 2Y \).

Now note that on the boundary of \(\Delta \), the only \((n-1)\)-dimensional faces colored by all colors \(\{1, 2, \ldots, n\} \) can be of the \((n-1)\)-face of \(\Delta \) whose vertices are colored by \(\{1, 2, \ldots, n\} \) (because this is a Sperner Coloring). By induction, the number of such faces \(X \) is odd. So \(R \) must be odd too.

The KKM Theorem is a continuous version of the Sperner lemma that was proved by Knaster-Kuratowski-Mazurkiewicz in 1929.

Theorem 2.5 (The KKM theorem, 1928). Let \(\Delta \) be an \(n \)-dimensional simplex on the vertex set \(\{v_1, v_2, \ldots, v_{n+1}\} \). Let \(A_1, A_2, \ldots, A_{n+1} \) be closed sets covering \(\Delta \) so that \(\sigma \subseteq \bigcup_{v_i \in \sigma} A_i \).

Then \(\bigcap_{i=1}^{n+1} A_i \neq \emptyset \).

Proof. Embed \(\Delta \) in \(\mathbb{R}^{n+1} \) in the standard way. For every \(i \in [n+1] \) define a function \(g_i : \Delta_n \to \mathbb{R} \) by

\[
g_i(x) = \text{dist}(x, A_i) = \inf \{|x - a| : a \in A_i\} = \min \{|x - a| : a \in A_i\}.
\]

Define \(f : \Delta \to \Delta \) by

\[
f(x) = f((x_1, x_2, \ldots, x_{n+1})) = \frac{(x_1 + g_1(x), \ldots, x_{n+1} + g_{n+1}(x))}{1 + \sum_{j=1}^{n+1} g_j(x)}.
\]

This is indeed a map to \(\Delta \), moreover, it is continuous. So by BFPT there exists a \(z \in \Delta \) such that \(f(z) = z \).

Let \(S(z) = \{i \in [n+1] : z_i > 0\} = V(\text{supp}(z)) \). By the conditions of the theorem,

\[
z \in \text{supp}(z) = \text{conv}\{e_i : i \in S(z)\} \subseteq \bigcup_{i \in S(z)} A_i.
\]

Thus there exists \(i_0 \in S(z) \) so that \(z \in A_{i_0} \), and therefore \(g_{i_0}(z) = \text{dist}(z, A_{i_0}) = 0 \).

Now, \(f(z) = z \) implies \((f(z))_{i_0} = z_{i_0} \), and therefore

\[
z_{i_0} = \frac{z_{i_0} + g_{i_0}(z)}{1 + \sum_{j=1}^{n+1} g_j(z)} = \frac{z_{i_0}}{1 + \sum_{j=1}^{n+1} g_j(z)}.
\]

Note that \(z_{i_0} \neq 0 \) since \(i_0 \in S(z) \), and therefore we can divide by \(z_{i_0} \) to get

\[
\frac{1}{1 + \sum_{j=1}^{n+1} g_j(z)} = 1,
\]

implying \(\sum_{j=1}^{n+1} g_j(z) = 0 \). This entails \(g_j(z) = 0 \) for all \(j \in [n+1] \). Since \(A_j \) are closed, this implies \(z \in A_j \) for all \(j \).
Proposition 2.6. KKM is true also if all of the sets A_i are open.

Proof. We can find closed sets B_i satisfying KKM such that $b_i \subseteq A_i$ and $\bigcap_{i \in K} B_i \neq \emptyset$ if and only if $\bigcap_{i \in K} A_i \neq \emptyset$ for every $K \subseteq [n + 1]$. Then we apply the theorem with the sets B_i.

Exercise 2.7. Sperner’s lemma, BFPT, and the KKM theorem are easily proved one from the other. Prove all six implications.

Exercise 2.8.
1. Prove the KKM theorem from the Borsuk-Ulam theorem.
2. Can you prove the opposite?

3 Warm-up: Proving Gallai’s theorem with KKM

Proof. Let F be a family of intervals with $\tau(F) = k + 1$. We show that $\nu(F) \geq k + 1$. (This will give $\nu \geq \tau$, and we already know that $\nu \leq \tau$). Since F is finite, by rescaling \mathbb{R} we may assume that all of the intervals in F are contained in the open segment $(0, 1)$.

Let Δ be the k-dimensional standard simplex in \mathbb{R}^{k+1}. Every point in Δ corresponds to a distribution of k (not necessarily distinct) points $u_1(x), \ldots, u_k(x)$ on $[0, 1]$, where $u_i(x) = \sum_{j=1}^{i} x_j$.

Since k or less points do not cover F (because $\tau(F) > k$), for every $x \in \Delta$ there exists an interval $f \in F$ that does not contain any of the points $u_1(x), \ldots, u_k(x)$ corresponding to x. Thus $f \subset (u_{i-1}(x), u_i)$ for some $1 \leq i \leq k + 1$.

Define sets $A_1, \ldots, A_{k+1} \subseteq \Delta$ as follows:

$$A_i = \{x \in \Delta \mid \text{there exists } f \in F \text{ such that } f \subset (u_{i-1}(x), u_i(x))\}$$

Note that by the above, $\Delta \subseteq \bigcup_{i=1}^{k+1} A_i$.

Claim 3.1. A_1, \ldots, A_{k+1} form a KKM cover.

Proof. First, since the intervals in F are closed, the sets A_i is open for all i. Indeed, if $f \in F$ witnesses the fact the $x \in A_i$ (that is $f \subset (u_{i-1}(x), u_i(x))$), then since f is closed, for some small enough ε, every point $x' \in B_{\varepsilon}(x)$ satisfies $f \subset (u_{i-1}(x'), u_i(x'))$, and therefore $B_{\varepsilon}(x) \subset A_i$.

Second, let σ be a face of Δ and let $x \in \sigma$. If $e_i \notin \sigma$ then $x_i = 0$, and thus $(u_{i-1}(x), u_i(x)) = \emptyset$, showing that no $f \in F$ satisfies $f \subset (u_{i-1}(x), u_i(x))$. Since $x \in \Delta \subseteq \bigcup_{i=1}^{k+1} A_i$, we must have $x \in A_i$ for some $i \in \sigma$, showing $\sigma \subset \bigcup_{i \in \sigma} A_i$.

So by the KKM theorem there exists an $x \in \bigcap_{j=1}^{k+1} A_j$. Consider the distribution of k points $u_1(x), \ldots, u_k(x)$ corresponding to x. We have $x \in A_i$, and thus there is an interval $f_i \in (u_{i-1}(x), u_i(x))$ for every $i \in [k + 1]$. The set of intervals f_1, \ldots, f_{k+1} is a matching of size $k + 1$, showing $\nu(F) \geq k + 1$ as promised.
4 Colorful KKM

Theorem 4.1 (Gale, 1982). Let \((A^i_j : i, j \in [n]) \) be \(n \) KKM covers of \(\Delta^{n-1} \). Then there exists a permutation \(\pi \in S_n \) so that \(\bigcap_{i \in \pi(j)} A^i_j \neq \emptyset \).

Proof. Let \(\{T_k\} \) be a sequence of barycentric subdivisions of \(\Delta_{n-1} \) (so the simplex diameters going to 0). For every vertex \(v \) the triangulation \(T_k \), assign a role \(r(v) \) to \(v \) according to the dimension of the face in \(T_{k-1} \) it subdivide: if \(v \) is the barycenter of a face of dimension \(m \) in \(T_{k-1} \), then let \(r(v) = m + 1 \). (For example if \(v \) subdivide an edge of \(T_{k-1} \) then \(r(v) = 2 \).

By the definition of the barycentric subdivision the roles of the vertex set of every simplex in \(T_k \) are distinct. So, every full dimensional simplex in \(T_k \) contains vertices of all \(n \) possible roles.

We construct a coloring function \(c : V(T_k) \to [n] \) as follows: For \(v \in V(T_k) \), choose \(j \) such that \(v \in A^r(v) \) and \(j \in \text{supp}(v) \). Such \(j \) exists because \((A^r(v) : j \in [n]) \) is a KKM cover, and thus

\[
v \in \text{supp}(v) \subseteq \bigcup_{j \in \text{supp}(v)} A^r_j(v).
\]

Let \(c(v) = j \). Note that for every \(v \in V(T_k) \) we have \(c(v) \in \text{supp}(v) \), and thus \(c : V(T_k) \to [n] \) is a Sperner coloring.

Now apply Sperner’s lemma. We obtain a rainbow simplex \(\sigma_k \) in \(T_k \). That is, \(\sigma_k \) has the following property: there exists \(\pi_k \in S_n \) so that in \(V(\sigma_k) = \{v_1, \ldots, v_n\} \) with \(r(v_i) = i \) and \(c(v_i) = \pi_k(i) \) for all \(i \in [n] \). Since \(\Delta \) is compact, and the diameter of \(\sigma_k \) tends to 0 when \(k \) tends to infinity, the sequence \(\{\sigma_k\}_{k \geq 1} \) has a subsequence converging to a point \(x \in \Delta \), and since \(S_n \) is finite, this subsequence has an infinite subsequence \(\{\sigma_{k_j}\}_{j \geq 1} \) in which all the permutations \(\pi_{k_j} \) are the same permutation \(\pi \). By construction, this means that \(\text{dist}(x, A^j_{\pi(i)}) \leq \varepsilon \) for all \(i \in [n] \) and for every \(\varepsilon > 0 \). Since the sets \(A^i_j \) are closed we have \(x \in \bigcap_{i \in [n]} A^i_{\pi(i)} \), as needed. \(\square \)

5 Solution to the two problems

5.1 Colorful Gallai’s theorem

Theorem 5.1. Let \(F_1, \ldots, F_{k+1} \) be finite families of compact intervals in \(\mathbb{R} \), with \(\tau(F_i) > k \) for all \(i \). Then there exists a full rainbow matching.

Proof. Since \(F_i \) are finite and all the intervals are bounded, by rescaling \(\mathbb{R} \) we may assume that all of the intervals in \(\bigcup F_i \) are contained in the open segment \((0, 1)\). Let \(\Delta \) be the \(k \)-dimensional standard simplex in \(\mathbb{R}^{k+1} \). Every point in \(\Delta \) corresponds to a distribution of \(k \) (not necessarily distinct) points \(u_1(x), \ldots, u_k(x) \) on \((0, 1)\), where \(u_i(x) = \sum_{j=1}^{i} x_j \).

For \(j \in [k+1] \) define sets \(A^1_j, \ldots, A^j_{k+1} \subset \Delta \) as follows:

\[
A^j_i = \{x \in \Delta \mid \text{there exists } f \in F_j \text{ such that } f \subset (u_{i-1}(x), u_i(x))\}.
\]
Like in the proof of Gallai’s theorem, for every \(j \in [k+1] \), the collection \((A^j_1, \ldots, A^j_{k+1}) \) forms a KKM cover of \(\Delta \). So by the colorful KKM theorem, there exists an \(x \in \bigcap_{i=1}^{k+1} A^i_{\pi(i)} \). Consider the distribution of \(k \) points \(u_1(x), \ldots, u_k(x) \) corresponding to \(x \). We have \(x \in A^i_{\pi(i)} \), and thus there is an interval \(f_i \in F_i \) with \(f_i \in (u_{\pi(i)-1}(x), u_{\pi(i)}(x)) \) for every \(i \in [k+1] \). Thus the set of intervals \(f_1, \ldots, f_{k+1} \) is a colorful matching of size \(k+1 \), as needed.

5.2 Fair division of a cake

Theorem 5.2 (Stromquist 1980, Woodall 1980). If \(n \) hungry players have closed preference sets on a cake then there exists a fair division.

Proof. Let \(A^j_i \) be the set of partitions in which player \(j \) prefers piece \(i \).

Claim 5.3. The “hungry player” assumption implies that the KKM covering conditions hold.

Proof. Let \(x \in \sigma \) be a partition of the cake. If \(i \notin \sigma \), then \(x_i = 0 \), and since player \(j \) is hungry, he does not prefer piece \(i \) in the partition \(x \). Therefore \(x \in A^j_i \) for some \(i \in \sigma \), showing \(\sigma \subset \bigcup_{i \in \sigma} A^j_i \).

Claim 5.4. The “closed preference set” assumption implies that the sets \(A^j_i \) are closed.

Proof. This is immediate by definition. If a converging sequence of partitions \(\{x_t\}_{t \geq 1} \subset A^j_i \) then by definition of the closed preference set” assumption, the limit partition is also in \(A^j_i \).

Thus by the colorful KKM theorem there exists a partition \(x \) with \(x \in \bigcap_{i=1}^{n} A^j_{\pi(i)} \) for some \(\pi \in S_n \). In this partition every player prefer a distinct piece, as needed.

6 Another application: Piercing sets in the plane with lines

Let \(\mathcal{F} \) be a family of convex sets in the plane. We say that \(\mathcal{F} \) has property \(T(r) \) if every \(r \) or fewer sets in \(\mathcal{F} \) admit a line transversal, that is, there exists a line intersecting these sets. We say that \(\mathcal{F} \) is pierced by \(k \) lines if there are \(k \) lines in the plane whose union intersects all the sets in \(\mathcal{F} \). The line-piercing number of the family is the minimum \(k \) so that \(\mathcal{F} \) is pierced by \(k \) lines. Some known bounds:

- Santalo (1940): For any \(k \), \(T(k) \) property does not imply \(\mathcal{F} \) is pierced by one line.
- Eckhoff (1969): \(T(4) \) property implies \(\mathcal{F} \) is pierced by two lines.
- This implies: for \(k \geq 4 \), \(T(k) \) property implies \(\mathcal{F} \) is pierced by two lines.
- \(T(2) \) property does not imply \(\mathcal{F} \) is pierced by constant many lines (e.g., \(n \) points in general position).
- Eckhoff (1975): \(T(3) \) property does not imply \(\mathcal{F} \) is pierced by 2 lines.
- Eckhoff (1993): $T(3)$ property implies \mathcal{F} is pierced by 4 lines.

Eckhoff conjectured in 1993 that the latter can be further improved, namely, that the $T(3)$ property implies that \mathcal{F} is pierced by 3 lines. The following theorem is a generalization of this statement: it specializes to Eckhoff’s conjecture when all the families are the same.

Theorem 6.1 (McGinnis-Zerbib 2021). Let $\mathcal{F}_1, \ldots, \mathcal{F}_6$ be families of compact connected sets in \mathbb{R}^2. If every three sets $A_1 \in \mathcal{F}_{i_1}, A_2 \in \mathcal{F}_{i_2}, A_3 \in \mathcal{F}_{i_3}$, $1 \leq i_1 < i_2 < i_3 \leq 6$, have a line transversal, then there exists $i \in [6]$ such that the line-piercing number of \mathcal{F}_i is at most 3.

Proof of Theorem 6.1 We may scale the plane so that every set in \mathcal{F}_j is contained in the unit disk D for each j. Denote by U the unit circle. Let $f(t)$ be a parameterization of U defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$.

A point $x = (x_1, \ldots, x_6) \in \Delta^5$ corresponds to 6 points on U given by $f_i(x) = f(\sum_{j=1}^{i-1} x_j)$ for $1 \leq i \leq 6$. Let $l_1(x) = l_4(x) = [f_1(x), f_4(x)], l_2(x) = l_5(x) = [f_2(x), f_5(x)]$, and $l_3(x) = l_6(x) = [f_3(x), f_6(x)]$.

For $i = 1, \ldots, 6$ let R^i_x be the interior of the region bounded by $l_{i-1}(x), l_i(x)$ and the arc on U connecting $f_{i-1}(x)$ and $f_i(x)$. Notice that $R^i_x = \emptyset$ when $x_i = 0$. Also, it is possible that some of the regions R^i_x intersect.

Set $1 \leq j \leq 6$ and let A^j_i be the set of points $x \in \Delta^5$ so that R^i_x contains a set $F \in \mathcal{F}_j$. Since the sets $F \in \mathcal{F}_j$ are closed, A^j_i is open. If there is some $x \in \Delta^5$ for which $x \notin \bigcup_{i=1}^{6} A^j_i$, then since the sets in \mathcal{F}_j are connected, every set in \mathcal{F}_j must intersect $\bigcup_{i=1}^{6} l_i(x)$, and we are done. So we assume for contradiction that $\Delta^5 = \bigcup_{i=1}^{6} A^j_i$ for all j. Observe that if $x \in \text{conv}\{e_i : i \in I\}$ for some $I \subset [6]$ then $R^k_x = \emptyset$ for $k \notin I$, and therefore, $x \in \bigcup_{i \in I} A^j_i$ for all j. This shows that the conditions of the colorful KKM theorem hold.

Thus, by the colorful KKM theorem, there exists some permutation $\pi \in S_6$ and a point $p = (p_1, \ldots, p_6) \in \bigcap_{i=1}^{6} A^{\pi(i)}$. Therefore, each of the open regions R^i_p contains a set $S_i \in \mathcal{F}_{\pi(i)}, i = 1, \ldots, 6$, and in particular $R^i_p \neq \emptyset$ and thus $p_i \neq 0$ for all i. We claim that at least one of the triples $\{S_1, S_3, S_5\}$ or $\{S_2, S_4, S_6\}$ is not a tight triple. To see this, note that the regions R^1_p, R^2_p, R^3_p are pairwise disjoint or the regions R^2_p, R^4_p, R^6_p are pairwise disjoint (depending on the orientation of the triangle bounded by the lines l_1, l_2, l_3). Without loss of generality, we assume R^1_p, R^3_p, R^5_p are pairwise disjoint, and in this case, the three sets S_1, S_3, S_5 is not a tight triple. This is a contradiction.

By a similar method, one can also prove:

Theorem 6.2 (McGinnis-Zerbib, 2021). Let $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4$ be finite families of compact, connected sets in the plane such that any collection of four sets, one from each \mathcal{F}_i, has a line transversal. Then for some $i \in [4]$, \mathcal{F}_i has line piercing number at most 2.

When all the families are the same this specializes to Eckhoff’s result the the $T(4)$ property implies that \mathcal{F} is pierced by 2 lines.

Exercise 6.3. Prove Theorem 6.2.
7 Generalizing Gallai’s theorem: Piercing d-intervals

7.1 Theorems on piercing d-interval families

A d-interval is a union of at most d intervals on \mathbb{R}.

Theorem 7.1 (Tardos-Kaiser 1995). If F a finite family of compact d-intervals, then $\tau(F) \leq (d^2 - d + 1)\nu(F)$.

For $d = 2$ this is tight. For larger d it is known to be tight up to $\log d$ factor: Matoušek showed that there are families of d-intervals with $\tau(F) = \Omega(d^2 \log d)\nu(F)$.

The following a colorful version of the Tardos-Kaiser theorem. It specializes to the Tardos-Kaiser theorem when all the families are the same:

Theorem 7.2 (Frick-Zerbib 2019). Let F_1, \ldots, F_{k+1} be $k+1$ finite families of compact d-intervals. If $\tau(F_i) > k$ for all i, then there exists a rainbow matching of size at least $\frac{d^2 - d + 1}{k+1}$.

All known proofs for Theorems 7.1 and 7.2 are topological. Alon showed via elementary methods a slightly worse bound: $\tau \leq 2d^2$.

7.2 Notions from hypergraph theory

A hypergraph H is a family $E(H)$ of subsets, called edges, of a ground set $V(H)$ of vertices. A hypergraph H is r-uniform if all its edges are of size r. It is r-partite if there exists a partition $V_1 \cup \cdots \cup V_r$ of $V(H)$ such that $|e \cap V_i| = 1$ for every edge $e \in H$ and every $1 \leq i \leq r$. The sets V_i are called the vertex sides of H. Note that an r-partite hypergraph in particular r-uniform.

A graph is a 2-uniform hypergraph and a 2-partite graph is also called bipartite.

Let $H = (V, E)$ be a hypergraph. A matching in H is a set of disjoint edges. The matching number $\nu(H)$ is the maximum size of a matching in H. A cover of H is a set of vertices intersecting all edges. The covering number $\tau(H)$ is the minimum size of a cover in H.

We can also regard a matching as a function $f : E(H) \to \{0, 1\}$ satisfying the condition that adjacent edges do not get both 1, namely, for all $v \in V$, $\sum_{e \in e} f(e) \leq 1$. Then the matching number is

$$\nu(H) = \max \{ \sum_{e \in E} f(e) \mid f \text{ is a matching} \}.$$

Now we can consider a fractional relaxation of this notion: A fractional matching in a hypergraph H is a function $f : E(H) \to [0, 1]$, satisfying the condition for all $v \in V$, $\sum_{e \in e} f(e) \leq 1$. The fractional matching number is defined as

$$\nu^*(H) = \max \{ \sum_{e \in E} f(e) \mid f \text{ is a functional matching} \}.$$
Similarly, a cover can be viewed as a function \(g : V(H) \to \{0, 1\} \), satisfying the condition that for all \(e \in E(H) \), \(\sum_{v \in e} g(v) \geq 1 \), and the covering number is

\[
\tau(H) = \min \{ \sum_{v \in V} g(v) \mid g \text{ is a cover} \}.
\]

Now, a fractional cover of \(H \) is a function \(g : V(H) \to [0, 1] \), satisfying the condition that for all \(e \in E(H) \), \(\sum_{v \in e} g(v) \geq 1 \). The fractional covering number \(\tau^*(H) \) is defined by

\[
\tau^*(H) = \min \{ \sum_{v \in V} g(v) \mid g \text{ is a fractional cover} \}.
\]

Exercise 7.3. Prove the following:

1. By linear programming duality, show that \(\nu^*(H) = \tau^*(H) \) for all \(H \).

2. If \(r \) is the maximum size of an edge in a hypergraph \(H \) then \(\nu(H) \leq \nu^*(H) = \tau^*(H) \leq \tau(H) \leq r \nu(H) \).

Example 7.4. In \(K_3 \), \(\nu = 1 \), \(\nu^* = \tau^* = 3/2 \), \(\tau^* = 2 \).

A perfect fractional matching (PFM) is a fractional matching \(f : E(H) \to [0, 1] \) such that for all \(v \in V \), \(\sum_{e \ni v} f(e) = 1 \). Not every hypergraph has a PFM. For example, \(K_3 \) has a PFM, but a path on 3 vertices does not. A hypergraph is called balanced if it has a PFM.

The following is a trivial consequence of Exercise 7.3.

Proposition 7.5. If \(|e| \leq r \) for all \(e \in E(H) \), then \(\nu(H) \geq \frac{\nu^*(H)}{r} \).

Proof. We have \(\frac{\nu^*(H)}{r} \leq \frac{\tau(H)}{r} \leq \frac{r \nu(H)}{r} = \nu(H) \).

A theorem of Füredi shows the bound in Proposition 7.5 can be slightly improved:

Theorem 7.6 (Füredi). If \(|e| \leq r \) for all \(e \in E(H) \), then \(\nu(H) \geq \frac{\nu^*(H)}{r-1+\frac{1}{r}} \). Moreover, if \(H \) is \(r \)-partite, then \(\nu(H) \geq \frac{\nu^*(H)}{r-1} \).

We will need also:

Proposition 7.7. If \(H \) is a balanced hypergraph with maximal edge size \(r \), then \(\nu^*(H) \geq \frac{|V(H)|}{r} \).

Proof. Let \(f : E(H) \to [0, 1] \) be a perfect fractional matching. Then \(\nu^*(H) \geq \sum_{e \in E} f(e) \). Now,

\[
|V| = \sum_{v \in V} 1 = \sum_{v \in V} \sum_{e \ni v} f(e) = \sum_{e \in E} \sum_{v \in e} f(e) \leq r \sum_{e \in E} f(e) \leq r \nu^*(H).
\]
7.3 The KKMS Theorem

For a face σ of the standard k-simplex Δ^k, let $s(k) = \{i \in [k+1] \mid e_i \text{ is a vertex in } \sigma\}$.

Definition 7.8. Let Δ be the standard k-dimensional simplex on vertex set e_1, \ldots, e_{k+1}. We say that faces $\sigma_1, \ldots, \sigma_m$ are balanced if the hypergraph with vertex set $V(H) = [k+1]$ and edge set $E(H) = \{s(\sigma_1), \ldots, s(\sigma_m)\}$ is balanced.

Example 7.9. In Δ^2 the faces 12, 23, 13 are balanced. Also, the faces 1, 23 are balanced.

Theorem 7.10 (The KKMS theorem, Shapley 1973). Let Δ be the n-dimensional standard simplex and let A_τ be a closed (open) set for every nonempty face of Δ, such that for every face σ, $\sigma \subseteq S_\tau \subseteq \sigma$ A_τ. Then there exists balanced faces $\sigma_1, \ldots, \sigma_{k+1}$, such that $\sum_{i=1}^{k+1} A_{\sigma_i} \neq \emptyset$.

Exercise 7.11. Prove that the KKMS theorem implies the KKM theorem.

7.4 Proof of the KKMS theorem

In this section we will prove the KKMS theorem. We first need a few preperations.

Proposition 7.12. Faces $\sigma_1, \ldots, \sigma_m$ of Δ are balanced if and only if $b_\Delta \in \text{conv}\{b_{\sigma_1}, \ldots, b_{\sigma_m}\}$.

Proof. Let $s_i = s(\sigma_i) = \{j : e_j \in \sigma_i\}$. Let χ^i be the characteristic vector of S_i, that is

$$\chi^i_j = \begin{cases} 1 & j \in s_i \\ 0 & \text{otherwise} \end{cases}.$$

Now, the faces $\sigma_1, \ldots, \sigma_m$ are balanced if and only if the hypergraph $([k+1], \{s_1, \ldots, s_m\})$ has a PFM, which means that there exist weights $\alpha_1, \ldots, \alpha_m \in [0,1]$ such that

$$\alpha_1 \chi_1 + \alpha_2 \chi_2 + \cdots + \alpha_m \chi_m = (1, \ldots, 1) = \chi_\Delta.$$

This is equivalent to

$$\frac{\alpha_1}{k+1} \chi_1 + \frac{\alpha_2}{k+1} \chi_2 + \cdots + \frac{\alpha_m}{k+1} \chi_m = \left(\frac{1}{k+1}, \ldots, \frac{1}{k+1}\right) = b_\Delta,$$

which we can write as

$$\frac{\alpha_1}{k+1} |s_1| b_{\sigma_1} + \frac{\alpha_2}{k+1} |s_2| b_{\sigma_2} + \cdots + \frac{\alpha_m}{k+1} |s_m| b_{\sigma_m} = b_\Delta.$$

To see that this is a convex combination note that

$$\sum_{i=1}^{m} \frac{\alpha_i |s_i|}{k+1} = \frac{1}{k+1} \sum_{i=1}^{m} \alpha_i |s_i| = \frac{1}{k+1} \sum_{i=1}^{m} \sum_{j \in s_i} \alpha_i = \frac{1}{k+1} \sum_{j=1}^{k+1} \sum_{i \in s_j} \alpha_i = \frac{1}{k+1} \sum_{j=1}^{k+1} 1 = 1,$$

because the function $s_i \mapsto \alpha_i$ is a PFM.

Exercise 7.13. Prove that if \(f : \Delta \to \Delta \) is continuous and homotopic to identity on the boundary of \(\Delta \), then \(f \) is surjective.

We first prove a “discrete version” of the KKMS theorem:

Theorem 7.14. Let \(T \) be a triangulation of the \(n \)-dimensional simplex \(\Delta \). Let

\[
\lambda : V(T) \to \{ \sigma : \sigma \neq \emptyset \text{ is a face of } \Delta \}
\]

be a labeling function such that \(\lambda(v) \subseteq \operatorname{supp}(v) \). Then there exists a simplex \(\tau \in T \) whose vertex labelings are balanced.

Proof. Define a map \(f : V(T) \to \Delta \) by \(v \mapsto b_{\lambda(v)} \). Extend \(f \) linearly to a map \(F : \Delta \to \Delta \). That is, if \(x \) is in a simplex \(\sigma = \text{conv}\{v_1, \ldots, v_{n+1}\} \) of \(T \), and \(x = \alpha_1 v_1 + \cdots + \alpha_{n+1} v_{n+1} \) (here \(\alpha_i \) are the coefficients in the convex combination that gives \(x \)) then \(F(x) = \alpha_1 f(v_1) + \cdots + \alpha_{n+1} f(v_{n+1}) \).

By definition, \(F \) is continuous. Moreover, if \(v \in V(T) \) lies in a face \(\sigma \) of \(\Delta \), then \(\lambda(v) \in \sigma \) and thus \(f(v) \in \sigma \) and thus \(F(\sigma) = \sigma \). So \(F \) is homotopic to the identity map on the boundary of \(\Delta \). By the exercise, \(F \) is surjective. Therefore there exists a point \(p \in \Delta \), such that \(F(p) = b_\Delta \).

Let \(\tau = \text{conv}\{v_1, \ldots, v_{n+1}\} \) be a simplex in \(T \) containing \(p \). Then by definition, there exist \(\alpha_1, \ldots, \alpha_{n+1} \) with \(\sum \alpha_i = 1 \), \(\alpha_i \geq 0 \) such that

\[
b_\Delta = F(p) = \alpha_1 f(v_1) + \cdots + \alpha_{n+1} f(v_{n+1}) = \alpha_1 b_{\lambda(v_1)} + \cdots + \alpha_{n+1} b_{\lambda(v_{n+1})}
\]

Thus \(b_\Delta \in \text{conv}\{b_{\lambda(v_1)}, \ldots, b_{\lambda(v_{n+1})}\} \). By the proposition, \(\lambda(v_1), \ldots, \lambda(v_{n+1}) \) are balanced. \(\square \)

Exercise 7.15. Prove the KKMS theorem from the previous theorem (similarly to the way KKM is proved from Sperner).

7.5 Proof of the Tardos-Kaiser theorem

Theorem 7.16 \((d = 2): \) Tardos 1995, \(d \geq 2 \): Kaiser 1997. If \(\mathcal{F} \) is a finite family of compact \(d \)-intervals then \(\tau(\mathcal{F}) \leq (d^2 - d + 1) \nu(\mathcal{F}) \).

Proof. Since \(\mathcal{F} \) is finite and the \(d \)-interval are compact, we can assume that all the sets in \(\mathcal{F} \) are contained in \((0, 1)\). Suppose \(\tau(\mathcal{F}) = k + 1 \). We will show that \(\nu(\mathcal{F}) \geq \frac{k+1}{d^2-d+1} \).

This will imply \(\frac{\tau(\mathcal{F})}{\nu(\mathcal{F})} \leq \frac{k+1}{d^2-d+1} = d^2 - d + 1 \). Let \(\Delta \) be the standard \(k \)-dimensional simplex.

Every point \(x = (x_1, \ldots, x_{k+1}) \) corresponds to a distribution of \(k \) points \(u_1(x), \ldots, u_k(x) \) on \((0, 1)\), where \(u_i(x) = \sum_{j=1}^{i} x_j \).

Define \(u_0(x) = 0 \), \(u_{k+1}(x) = 1 \). For every face \(\sigma \) of \(\Delta \) define a set \(A_\sigma \) as follows: \(x = (x_1, \ldots, x_{k+1}) \in A_\sigma \) if and only if there exists a \(d \)-interval \(f \in \mathcal{F} \) such that following two conditions hold:

(a) \(f \subseteq \bigcup_{i \in \sigma} (u_{i-1}(x), u_i(x)) \), and
(b) for every \(i \in \sigma \), \(f \cap (u_{i-1}(x), u_i(x)) \neq \emptyset \).

Note that since \(\tau(\mathcal{F}) = k + 1 \), the points \(u_1(x), \ldots, u_k(x) \) do not cover \(\mathcal{F} \). So there is a \(d \)-interval in \(\mathcal{F} \) that is not covered, showing that \(\Delta^k \subseteq \bigcup_{\sigma \subseteq \Delta^k} A_\sigma \).

Claim 7.17. \(\{A_\sigma\} \) is a KKMS cover.

Proof. The set \(A_\sigma \) are all open (since the \(d \)-intervals are closed). We want to show \(\tau \subseteq \bigcup_{\sigma \subseteq \tau} A_\sigma \), for every face \(\tau \). Let \(x \in \tau \). For \(i \notin \tau \) we have \(x_i = 0 \) and therefore \(u_i(x) = u_{i-1}(x) \). This implies that the segment \((u_{i-1}, u_i) = \emptyset \), and thus cannot contain satisfy condition (b). So \(x \notin A_\sigma \) when \(\sigma \) contains a vertex \(i \notin \tau \). Since \(x \in \Delta^k \subseteq \bigcup_{\sigma \subseteq \Delta^k} A_\sigma \), we conclude \(x \) must be in some \(A_\sigma \) with \(\sigma \subseteq \tau \), showing \(\tau \subseteq \bigcup_{\sigma \subseteq \tau} A_\sigma \). \(\square \)

By the KKMS theorem there exist balanced faces \(\sigma_1, \ldots, \sigma_m \) of \(\Delta \) such that \(\bigcap_{i=1}^m A_{\sigma_i} \neq \emptyset \). Let \(x \in \bigcap_{i=1}^m A_{\sigma_i} \), and let \(u_1, \ldots, u_k \) be the corresponding distribution on \((0,1)\). Let \(s_i = s(\sigma_i) \). The fact that \(\sigma_1, \ldots, \sigma_{k+1} \) are balanced implies that the hypergraph

\[
H = ([k+1], \{s_1, \ldots, s_{k+1}\})
\]

has a PFM. Note that \(|s_i| \leq d \) for all \(i \), since every \(f \in \mathcal{F} \) has at most \(d \) non-empty interval components. Thus by Proposition 7.7 \(\nu^*(H) \geq \frac{|V(H)|}{d} \geq \frac{k+1}{d} \). By Füredi’s theorem \(\nu(H) \geq \frac{\nu^*(H)}{d-1+\frac{1}{d}} \), and thus

\[
\nu(H) \geq \frac{\nu^*(H)}{d-1+\frac{1}{d}} \geq \frac{k+1}{d^2 - d + 1}.
\]

Therefore, there is a matching \(M = \{s_{i_1}, \ldots, s_{i_\nu(H)}\} \) in \(H \) of size at least \(\frac{k+1}{d^2 - d + 1} \). Note that the fact that this is a matching implies that the sets \(U_{i_t} = \bigcup_{j \in s_{i_t}} (u_{j-1}, u_j) \) are disjoint.

For every \(1 \leq t \leq \nu(H) \) let \(f_{i_t} \in \mathcal{F} \) be a \(d \)-interval witnessing the fact that \(x \in A_{\sigma_{i_t}} \). Then by definition \(f_{i_t} \subset U_{i_t} \), and therefore the set \(\{f_{i_1}, \ldots, f_{i_{\nu(H)}}\} \) is a matching in \(\mathcal{F} \) of size at least \(\nu(H) \), as needed. \(\square \)

7.6 The colorful KKMS theorem

Theorem 7.18 (Colorful KKMS, Shih-Lee 1993). Let \((A_\sigma^i), i \in [k+1] \) be \(k + 1 \) KKMS covers of \(\Delta^k \). Then there exists balanced faces \(\sigma_1, \ldots, \sigma_{k+1} \) such that \(\bigcap_{i=1}^{k+1} A_{\sigma_i} \neq \emptyset \).

We will prove a more general theorem later on.

Exercise 7.19. Prove Theorem 7.2 using the colorful KKMS theorem.
8 Separated d-intervals and fair-division of multiple cakes

8.1 Theorems on piercing separated d-intervals

A separated d-interval is a union of d intervals, one on each of d separated copies of \mathbb{R}.

Theorem 8.1 (Tardos-Kaiser). If \mathcal{F} is a finite set of compact separated d-intervals, then $\tau(\mathcal{F}) \leq (d^2 - d)\nu(\mathcal{F})$.

Theorem 8.2 (Frick-Zerbib). Let \mathcal{F}_i, $i \in [kd+1]$, be $kd+1$ hypergraphs of separated d-intervals. If $\tau(\mathcal{F}_i) > kd$ for all i, then there exists a rainbow matching of size at least $\frac{k+1}{d-1}$.

If all the families \mathcal{F}_i are the same family \mathcal{F}, with $\tau(\mathcal{F}) = [kd+1]$ then we get Theorem 8.1. Indeed, in that case $\frac{\tau(\mathcal{F})}{\nu(\mathcal{F})} \leq (kd+1)\frac{k+1}{k+1} \leq d(d-1)$.

8.2 A theorem on fair division of multiple cakes

Suppose that there are k cakes and $p = k(n-1)+1$ hungry players with closed preference sets. In every partition of the k cakes into n pieces each, each player chooses his favorite k-tuples of pieces (a k-tuple of pieces is a choice of one piece in each cake).

Theorem 8.3 (Nyman-Su-Zerbib). There exists a division of the k cakes where at least $\lceil \frac{p}{k(k-1)} \rceil$ players prefer pairwise disjoint k-tuple of pieces.

Remark 8.4. The theorem can be stated also for other values of p (with slightly different bound on the number of satisfied players), but for simplicity we will only give the proof only for the case $p = k(n-1)+1$.

8.3 Komiya’s theorem

Komiya’s theorem is a far-reaching polytopal generalization of the KKMS theorem. Before stating it, let are give a reformulation of the KKMS theorem:

Theorem 8.5. Let $P = \Delta$ be the k-dimensional simplex. For every non-empty face σ of P let $A_\sigma \subset P$ be a closed set and let y_σ be the barycenter of σ. If for every face τ of P we have $\tau \subset \bigcup_{\sigma \subset \tau} A_\sigma$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A_{\sigma_i} \neq \emptyset$ and $y_\Delta \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_{k+1}}\}$.

Now Komiya’s theorem states that we can replace Δ by any k-dimensional polytope P, and we can replace the barycenters by any points $y_\sigma \in \sigma$, and the theorem will still be correct.

Theorem 8.6 (Komiya, 1994). Let P be a k-dimensional polytope. For every non-empty face σ of P let $A_\sigma \subset P$ be a closed set and let y_σ be the point in σ. If for every face τ of P we have $\tau \subset \bigcup_{\sigma \subset \tau} A_\sigma$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A_{\sigma_i} \neq \emptyset$ and $y_P \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_{k+1}}\}$.
8.4 Proof of Komiya’s theorem

First, we prove a “discrete version” of Komiya’s theorem. Given a triangulation T of P, a Komiya labeling of T is a map $f: V(T) \to \{ \sigma \mid \sigma \text{ a non-empty face of } P \}$ such that $f(v) \subseteq \text{supp}(v)$.

Theorem 8.7. Let T be a triangulation of P, and let f be a Komiya labeling of T. For every nonempty face σ of P choose a point $y_\sigma \in \sigma$. Then there is a face τ of T such that $y_\tau \in \text{conv}\{y_{f(v)} \mid v \text{ vertex of } \tau\}$.

Proof. Let $g : V(T) \to P$ be the map $v \mapsto y_{f(v)}$, and let $G : P \to P$ be a linear extension of g. Then G is a continuous map. Note that for every face σ of P, we have that $G(\sigma) \subset \sigma$: indeed, if $x \in \sigma$ then $G(x) = \text{conv}\{g(v_1), \ldots, g(v_m)\}$ for some $v_1, \ldots, v_m \in \sigma$, and by the Komiya labeling condition, $g(v_i) \in \sigma$ for all i, and thus $G(x) \in \sigma$ as well. This implies that G is homotopic to the identity on ∂P, and thus G is surjective. Therefore, there exists a point $x \in P$ such that $G(x) = y_\tau$. Let τ be a full dimension face of T containing x. By definition

$$y_\tau = G(x) \in G(\tau) = \text{conv}\{g(v) \mid v \text{ is a vertex of } \tau\} = \text{conv}\{y_{f(v)} \mid v \text{ is a vertex of } \tau\}.$$

\Box

Proof of Komiya’s theorem. Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε. Given a Komiya cover (A_σ) we define a Komiya labeling on T in the following way: For a vertex v of T, label v by a face $\sigma \subset \text{supp}(v)$ such that $v \in A_\sigma$. Such a face σ exists since $v \in \text{supp}(v) \subset \bigcup_{\sigma \subset \text{supp}(v)} A_\sigma$. Thus by Theorem 8.7 there is a full dimensional face τ of T whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $y_\tau \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_{k+1}}\}$. In particular, the ε-neighborhoods of the sets A_{σ_i}, $i \in [k+1]$, intersect. Now let ε tend to zero. As there are only finitely many collections of faces of P, one collection $\sigma_1, \ldots, \sigma_{k+1}$ must appear infinitely many times. By compactness of P the sets A_{σ_i}, $i \in [k+1]$, then all intersect since they are closed. \Box

Note that Komiya’s theorem is true also if all the sets A_σ are open, by the same argument as before.

8.5 A colorful extension of Komiya’s theorem

For a face σ of P and a point $y_\sigma \in P$ we denote by C_σ the cone of σ, that is, the union of all rays emanating from y_σ that intersect σ.

Theorem 8.8 (The colorful Komiya theorem, Frick-Zerbib 2019). Let P be a k-dimensional polytope, and let y_σ be a point in P. Suppose for every nonempty proper face σ of P we are given $k+1$ points $y^{(1)}_\sigma, \ldots, y^{(k+1)}_\sigma \in C_\sigma$ and $k+1$ closed sets $A^{(1)}_\sigma, \ldots, A^{(k+1)}_\sigma \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A^{(j)}_\tau$ for every face σ of P and every $j \in [k+1]$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $y_\sigma \in \text{conv}\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$ and $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} \neq \emptyset$.

15
Proof. Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε. We will also assume that the chosen points $y_1^{(i)}, \ldots, y_{k+1}^{(i)}$ are contained in σ. This assumption does not restrict the generality of our proof since $y_P \in \text{conv}\{x_1, \ldots, x_{k+1}\}$ for vectors $x_1, \ldots, x_{k+1} \in \mathbb{R}^n$ if and only if $y_P \in \text{conv}\{\alpha_1 x_1, \ldots, \alpha_{k+1} x_{k+1}\}$ with arbitrary coefficients $\alpha_i > 0$.

Denote by T' the barycentric subdivision of T. For $v \in V(T')$ let $r(v)$ be the dimension of the face in T that v subdivide, plus 1. We now define a Komiya labeling of T': Let $v \in V(T')$. By the conditions of the theorem, v is contained in a set $A_v^{(r)}$ where $r \in \text{supp}(v)$. We label v by r. Thus by Theorem 8.7 there exists a full dimensional face τ of T' whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $y_P \in \text{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$. In particular, the ε-neighborhoods of the sets $A_{\sigma_i}^{(i)}$, $i \in [k+1]$, intersect. Now use a limiting argument as before.

By taking $P = \Delta$ and y_σ to be the barycenter of σ, we get a proof of Theorem 7.18.

8.6 Colorful d-intervals: Proof of Theorem 8.2

Let \mathcal{F}_i be a family of separated d-intervals for all $i \in [kd+1]$. For $f \in \mathcal{F}$ let f^t be the t-th interval component of f on ℓ_t. For a point $\vec{x} = (x_1, \ldots, x_{k+1}) \in \Delta_k$ let $p_\vec{x}(j) = \sum_{t=1}^{k+1} x_t \in [0,1]$. Since \mathcal{F} is finite, by rescaling the d copies \mathbb{R} we may assume that for every $f \in \bigcup_{i \in [kd+1]} \mathcal{F}_i$, f^t is a non-empty subset of $(0,1)$ on ℓ_t. Let $P = (\Delta_k)^d$, and note that $\dim P = kd$.

Every point $\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P$ corresponds to a distribution of kd points, k points on each of the lines ℓ_1, \ldots, ℓ_d as follows: on line ℓ_t the k points are $p_\vec{x}^t(1), \ldots, p_\vec{x}^t(k)$. Since $r(\mathcal{F}_i) \geq kd + 1$, these kd points do not cover \mathcal{F}_i. So there exists $f \in \mathcal{F}_i$ that is not covered. This means that $f^t \subset (p_\vec{x}^t(j_t - 1), p_\vec{x}^t(j_t))$ on ℓ_t for all $t \in [d]$, for some choice of j_1, \ldots, j_d.

We define a $kd + 1$ Komiya covers of P as follows. Every face of P corresponds to a tuple $T = (T_1, \ldots, T_d)$, with $T_i \subset [k+1]$ for all $i \in [d]$. In our setting A_{T_i} is non-empty only if $T = (j_1, \ldots, j_d) \subset [k+1]^d$ (that is, all the T_i’s are singletons). For a d-tuple $T = (j_1, \ldots, j_d) \subset [k+1]^d$ let A_T consist of all $\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P$ for which there exists $f \in \mathcal{F}_i$ satisfying $f^t \subset (p_\vec{x}^t(j_t - 1), p_\vec{x}^t(j_t))$ on ℓ_t for all $t \in [d]$.

By the same argument as before, the sets A_T are open and satisfy the covering condition of the colorful Komiya theorem. Thus, by the colorful Komiya theorem, there exists a set $\mathcal{T} = \{T_1, \ldots, T_{kd+1}\}$ of d-tuples in $[k+1]^d$, such that the barycenters of the corresponding faces contain the point $b_P = (\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \times \cdots \times (\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \in P$ in their convex hull, and such that $\bigcap_{i \in [kd+1]} A_{T_i} \neq \emptyset$. Then the d-partite hypergraph $H = (\bigcup_{i=1}^d V_i, \mathcal{T})$, where $V_i = \{k+1\}$ for all i, has a perfect fractional matching, and hence by Proposition 7.7 we have $\nu^*(H) \geq k + 1$. By Füredi’s Theorem, this implies $\nu(H) \geq \nu^*(H) \geq \frac{k+1}{d-1}$. Now, by the same argument as before, taking $\vec{X} \in \bigcap_{i \in [kd+1]} A_T$, we obtain a matching in \mathcal{F} of the same size as a maximal matching in H, concluding the proof of the theorem.
8.7 Multiple cakes: Proof of Theorem 8.3

Let $P = (Δ^{n-1})^k$ of dimension $k(n-1)$. Every point $\vec{x} = \vec{x}^1 \times \cdots \times \vec{x}^d$ in P corresponds to a partition of the k cakes into n pieces each as follows: piece j in cake t is the piece $(p_{\vec{x}^1}(j-1), p_{\vec{x}^t}(j))$.

We define a $(n-1)+1$ Komia covers of P as follows. As before, every face of P corresponds to a tuple $T = (T_1, \ldots, T_k)$, with $T_i \subseteq [n]$ for all $i \in [k]$. In our setting A_i^j is non-empty only if $T = (j_1, \ldots, j_k) \subseteq [n]^d$ (that is, all the T_i’s are singletons, so when the face is a vertex of P). For a k-tuple $T = (j_1, \ldots, j_k) \subseteq [n]^d$ let A_T^j consist of all partitions $\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P$ of the cakes in which player i prefer the k-tuple of pieces (j_1, \ldots, j_k).

Like before, the hungry player condition implies that the Komia covering conditions hold, and the closed preference assumption implies that the sets A_T^j are closed. Thus, by colorful Komia here exists a set $T = \{T_1, \ldots, T_k\}$ of k-tuples in $[n]^k$, such that the barycenters of the corresponding faces contain the point b_T in their convex hull, and such that there exists a partition $\vec{X} \in \bigcap_{i \in [k]} A_T^i$. Then the k-partite hypergraph $H = (\bigcup_{i=1}^k V_i, T_i)$, where $V_i = [n]$ for all i, has a perfect fractional matching, and hence by Proposition 7.7 we have $\nu^*(H) \geq \frac{|V(H)|}{k} = \frac{n}{k} = n$. Since H is k-partite, by Füredi’s Theorem, this implies $\nu(H) \geq \frac{\nu^*(H)}{k-1} \geq \frac{n}{k-1}$.

Thus in the partition \vec{X} there are $\frac{n}{k-1}$ pairwise disjoint k-tuple of pieces that are chosen by distinct players. Since $p = k(n-1) + 1$, we have $n = \frac{p+k-1}{k}$, and therefore the number of satisfied players is at least $\frac{n}{k-1} = \frac{p+k-1}{k(k-1)} > \frac{p}{k(k-1)}$.

Exercise 8.9. Use the colorful KKMS theorem to derive a fair division theorem on a single cake with multiple piece selection for every player.

8.8 Another application of colorful Komia: the colorful Carathéodory theorem

For a point $x \neq 0$ in \mathbb{R}^k let $H(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle = 0\}$ be the hyperplane perpendicular to x and let $H^+(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle \geq 0\}$ be the closed halfspace with boundary $H(x)$ containing x.

Theorem 8.10 (Colorful Carathéodory theorem, Bárány). Let X_1, \ldots, X_{k+1} be finite subsets of \mathbb{R}^k with $0 \in \text{conv } X_i$ for every $i \in [k+1]$. Then there are $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \text{conv } \{x_1, \ldots, x_{k+1}\}$.

Proof. We will assume that 0 is not contained in any of the sets X_1, \ldots, X_{k+1}, for otherwise we are done. Let $P \subseteq \mathbb{R}^k$ be a polytope containing 0 in its interior, such that if points x and y belong to the same face of P then $\langle x, y \rangle \geq 0$. For example, a sufficiently fine subdivision of any polytope that contains 0 in its interior (slightly perturbed to be a strictly convex polytope) satisfies this condition. We can assume that any ray emanating from the origin intersects each X_i in at most one point by arbitrarily deleting any additional points from X_i. This will not affect the property that 0 $\in \text{conv } X_i$. Furthermore, we can choose
Let $y_P = 0$. Let $i \in [k + 1]$. For each nonempty, proper face σ of P choose points $y^{(i)}_\sigma$ and sets $A^{(i)}_\sigma$ in the following way:

- If there exists $x \in C_\sigma \cap X_i$: let $y^{(i)}_\sigma = x$ and $A^{(i)}_\sigma = \{y \in P : \langle y, x \rangle \geq 0\} = P \cap H^+(x)$.
- Otherwise: let $y^{(i)}_\sigma$ be some point in σ and $A^{(i)}_\sigma = \sigma$.

Suppose the theorem is not true. Then in particular, we can slightly perturb the vertices of P and those points $y^{(i)}_\sigma$ that were chosen arbitrarily in σ, to make sure that for any collection of points $y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}$ and any subset S of this collection of size at most k, $0 \notin \text{conv } S$ (that is, 0 does not lie on any hyperplane defined by the points $y^{(i)}_\sigma$).

Let us now check that with these definitions the conditions of the colorful Komiya theorem hold. Clearly, all the sets $A^{(i)}_\sigma$ are closed. The fact that P is covered by the sets $A^{(i)}_\sigma$ for every fixed i follows from the condition $0 \notin \text{conv } X_i$. Indeed, this condition implies that for every $p \in P$ there exists a point $x \in X_i$ with $\langle p, x \rangle \geq 0$, and therefore, for the face σ of P for which $x \in C_\sigma$, we have $p \in A^{(i)}_\sigma$.

Now fix a proper face σ of P. We claim that $\sigma \subset A^{(i)}_\sigma$ for every i. Indeed, either $X_i \cap C_\sigma = \emptyset$ in which case $A^{(i)}_\sigma = \sigma$, or otherwise, pick $x \in X_i \cap C_\sigma$ and let $\lambda > 0$ such that $\lambda x \in \sigma$; then for every $p \in \sigma$ we have $\langle p, \lambda x \rangle \geq 0$ by our assumption on P, and thus $\langle p, x \rangle \geq 0$, or equivalently $p \in A^{(i)}_\sigma$.

Thus by colorful Komiya there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} \neq \emptyset$ and $0 \in \text{conv } \{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$.

We claim that $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} = \{0\}$. Indeed, suppose that $0 \neq x_0 \in \bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i}$. Fix $i \in [k + 1]$. If $y^{(i)}_{\sigma_i} \in C_{\sigma_i} \cap X_i$, then since $x_0 \in A^{(i)}_{\sigma_i} = \{y \in P : \langle y, y^{(i)}_{\sigma_i} \rangle \geq 0\}$, we have $\langle x_0, y^{(i)}_{\sigma_i} \rangle \geq 0$, and therefore $y^{(i)}_{\sigma_i} \in H^+(x_0)$ by definition. Otherwise $x_0 \in A^{(i)}_{\sigma_i} = \sigma_i$ and $y^{(i)}_{\sigma_i} \in \sigma_i$, so by our choice of P we have again that $\langle x_0, y^{(i)}_{\sigma_i} \rangle \geq 0$, and therefore $y^{(i)}_{\sigma_i} \in H^+(x_0)$. Thus all the points $y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}$ are in $H^+(x_0)$. But since $0 \in \text{conv } \{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$, this implies that the convex hull of the points in $\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\} \cap H(x_0)$ contains the origin. Now, the dimension of $H(x_0)$ is $k - 1$, and thus by Carathéodory’s theorem there exists a set S of at most k of the points in $y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}$ with $0 \in \text{conv } S$, in contradiction to our general position assumption.

We have shown that $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} = \{0\}$, and thus in particular, $A^{(i)}_{\sigma_i} \neq \sigma_i$ for all i. By our definitions, this implies $y^{(i)}_{\sigma_i} \in X_i$ for all i, concluding the proof of the theorem. \qed

Remark 8.11. Note that we could have avoided the usage of Carathéodory’s theorem in the proof of Theorem 8.10 by taking a more restrictive assumption on the polytope P, namely, that $\langle x, y \rangle > 0$ whenever the points x and y belong to the same face of P. Therefore, in particular, Theorem 8.10 specializes to Carathéodory’s theorem in the case where all the sets X_i are the same.