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1. Introduction

Denote by M, the set of n x n complex matrices. Let ¢ € R™ be a real vector with entries ¢ > --- > ¢,,.
The joint e-numerical range of A = (Ay,..., Ap) € M is defined by

n n
W.(A) = (chzx}‘Alxj, G E cjm’;Amazj) :{z1,...,2,} is an orthonormal set
i=1 i=1

If ¢4 = ¢y, then W.(A) = {c1(trAy,...,trA,,)}. We will always assume that ¢; > ¢, to avoid this trivial
case. When ¢1 = -~ = ¢, =1 and ¢g1 = -+ = ¢ = 0, W.(A) reduces to the joint k-numerical range of
A, denoted by Wi (A). In particular, if k£ = 1, we get the classical joint numerical range W(A). The joint
e-numerical range is useful in studying the behavior of the family of matrices {Aq,..., A, }. One may see
[2,3,9,13] for some background. Even for a single matrix A € M,,, there is interesting interplay between the
geometrical properties of W.(A) and the algebraic and analytic properties of A € My,; see [11,14,16,19,21].
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If a matrix A is given, it is not hard to determine the properties of W,(A). In applications and theoretical
study, it is useful to deduce the properties of the (hidden) matrix based on the geometrical properties of its
e-numerical range. Here, we list a few results, which are pertinent to our study.

(1.1)
(1.2)
(13)
(

([19,21]) We(A) is always convex.

([11, Corollary 4.4]) W.(A) is a singleton if and only if A = puf is a sealar matrix.

([11, Proposition 4.3]) W.(A) is a line segment if and only if A = af + SH for a Hermitian matrix

He M, and a, 5 € C.

) ([16, Theorem 1]) If A is normal, then W.(A) is polyhedral, i.e., the convex hull of a finite set in C.

5) ([11, Theorem 4.9], [14, Theorem 2.2], [16, Theorem 3|) The following conditions are equivalent.

(a) A is normal.

(b) There is a positive integer k with |n/2 — k| <1 such that Wi (A) is polyhedral.

(¢) There is ¢ = (¢1,...,¢n)" € R™ with ¢; > --- > ¢, satisfying ¢x > ey for some k with
[n/2 — k| <1 such that W,.(A) is polyhedral.

(d) For any ¢ € R", W,.(A) is polyhedral.

Moreover, we have the following characterization of A € M,, such that Wy (A4) or W,(A) is polyhedral for
general k and e. For ¢ € R™ with entries arranged in descending order ¢; > --- > ¢y, let

v(e) =max({j <n/2:¢; >ejptu{n—j<n/2:¢; > ¢j}). (1)

(1.6) ([11, Theorem 4.9], [14, Theorem 2.2 and 2.3]) Let k € {1,...,|n/2]}. The following conditions are
equivalent.
(a) Wi(A) is polyhedral.
(b) A is unitarily similar to D & @ such that D € M, is a diagonal matrix with £ > k, and Wj(4) =
Wi(D).
(c) There is ¢ € R™ with vy(c) = k such that W,(A) is polyhedral.
(d) For any c € R™ with y(¢) < k, W,.(A) is polyhedral.

It is known that (1.1) may fail, i.e., We(Ay,..., Ap) may not be convex, if m > 1; see [2,13]. In this
paper, we will extend Properties (1.2)—(1.6) to the joint c-numerical range. Some other results concerning the
geometrical properties of W,(A1,..., Ay,) and the algebraic properties of Ay,..., Ay, will also be obtained.
Again, if the matrices Ay,..., Ap, € M, are given, then one can deduce the properties of W,.(Aq,..., An).
Our study illustrates that useful information about the family of matrices {A1,...,A,,} may be obtained
from the geometrical properties of W.(A;, ..., Ap). In particular, we show that the joint c-numerical range
is useful for studying the commutativity of a (finite or infinite) family of matrices. For instance, we show
in Section 3 that a family F C M,, consists of mutually commuting normal matrices if and only if the joint
k-numerical range Wi (A1, ..., Ap) is polyhedral for some k satisfving |n/2 — k| < 1, where {Aq,..., A} is
a basis for span (F), the linear span of F; equivalently, Wi (X, V) is polyhedral for any two X,Y € F. The
same conclusion holds if we replace Wi.(-) by W, (-) for any ¢ with [n/2 —v(e)| < 1, where (¢) is defined as
in (1). Furthermore, we characterize A = (A1,..., Ap) such that W.(A) is a singleton, or a line segment
in C™, i.e., the convex hull of two points.

Our paper is organized as follows. In Section 2, we present some preliminary results. In Section 3,
we characterize a (finite or infinite) subset of (mutually) commuting normal matrices in terms of the
geometrical properties of the e-numerical ranges. Some implications of the result to representation the-
ory and quantum information science are discussed. Other results connecting the geometric properties of
We(Ay,..., Ap) and algebraic properties of Aq,..., A, are obtained in Section 4. In Section 5, we charac-
terize A = (Ay,..., Ap) € M such that W,.(A) is polyhedral for a general real vector ¢ = (¢1,...,¢p).
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2. Preliminaries

Suppose A = (Ay,...,4m) € M, and ¢ = (e1,...,¢,)" € R™ Let C be the diagonal matrix

diag (c1,...,cn). Then it is easy to check that
We(A) = We(A) = {(trCU* AU, ..., trCU* A, U) - U € M, is unitary}.

The set W (A) is referred to as the joint C-numerical range of A. We will use the formulation We(A)
in our discussion. The following result is easy to verify, and can be viewed as an extension of the results
corresponding to Wi (A) and We(A) in [11,12,16]. In particular, following the proof of [16, Theorem 1], we
can extend Property (1.4) to condition (c) below.

Proposition 2.1. Let C = diag (¢1,...,cn) be a real diagonal matriz, and A = (A4,...,Ay) € M.
(a) For any unitary U,V € M,,, if D =U*CU and B; = V*A;V forj=1,...,m, then
We(Aq, ..., Aw) = Wp(Bi, ..., Bn).
(b) For any real vector (aq,...,0y),
Wc(Al —ayl,..., Ay, — amI) = Wc(Al, ... ,Am) — (trC)(al, e ,(I,m),
and
W(a(;+b[)(A1, e ,Am) = GWC(Al, Cee ,Am) + b(tI‘Al, ce ,tI"Am),
(¢) If Ay,..., A are diagonal matrices, then
We(A) = conv {(tr(CP* Ay P), ..., tr(CP'A,,P)) : P is a permutation matriz}

is polyhedral.

(d) Suppose A; = Haj_1+iHs; for two Hermitian matrices Haj 1, Haj for j =1,...,m. Then Wo(A) can
be identified with W (Hy, ..., Hap) C R?™.

(e) Suppose {A1,..., Ay} is a basis for the linear span of {Aq,..., An}, and A; = E?=1 rijA; for some
rij € C with1 < j <k <i<m. Then (p1,...,pum) € We(Ax,..., Ap) if and only if (p1,..., k) €
We(Ay, ..., A) and p; = Zle rigpg fori=k+1,...,m.

(f) Suppose {A1,..., Apn} is linearly independent and R = (ry;) € My, is invertible such that B;

E;n:1 ri;Aj for i = 1,....m. Then (p1,..., ptm) € We(B1,...,By) if and only if (g1, .., pm)" =
R(vy, ... ,vp)t with (v1,...,vm) € We(Aq,..., Ap).

When C = Ij; @ 0,,_g, we see that Iy, @ 0y = I, — (0x @ I,—x). By condition (h), we have
Wk(A) = (tI’Al, . ,trAm) — Wn,k(A).

So, we can always focus on Wi (Aq,..., Ayp,) for k < n/2.

Also, by conditions (e)—(f) above, one can focus on the study of W (Ax,. .., Ay) such that {A1,..., Ay}
is a linear independent set of trace zero matrices by the following reduction. Note that (p1,...,m) €
Wel(Ay, ..., Ay) if and only if (tvC, p1,..., pum) € Weo(l,, A1,..., Ap). Then we may permute the com-
ponents of (Aq,...,Ay) and assume that {I,,, Ay,..., Ax} is a basis for span {I,,, A1,..., A, }. Then we
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can find a basis {I,,, By, ..., Bi} such that By,..., By € M,, are trace zero matrices. Then (1, ..., ux) €
We(By, ..., Byg) if and only if (trC,p1,...,pux) € We(ln, By, ..., Br). Equivalently, (trC,puy, ..., p,)" =
R(trCvn, ..., vg)" with (trC e, ...,v) € We(ln, At, ..., Ag), where R = (r;;) € My satisfies B; =
Z?:o rijAj for i =0,... k, with Ay = Bo = I,. Consequently, there is an injective affine map converting
We(By,...,Bg) to We(Aq, ..., Aw). So, the convexity and polyhedral properties of the two sets will be
preserved. Of course, if we apply (d) and assume that Aq,...,A,, are Hermitian, then By,..., By can be
chosen to be linearly independent Hermitian matrices with trace zero. Nevertheless, we will state most of our
results in terms of general complex matrices so that one does not need to impose the additional assumption
when the result is applied.

It is easy to check that if {Ay,..., 4,,} is a family of mutually commuting normal matrices, then for all
real diagonal matrix C, We(Ay, ..., Ay) is polyhedral and therefore is convex. In the next section, we will
show that the converse is also valid. In fact, one only needs to check that We (44, ..., Ap) is polyhedral for
some special C, it will follow that {A4,..., A} is a commuting family of normal matrices.

3. Commuting normal matrices

If F is a family of (mutunally) commuting normal matrices, then W(Ay,..., Ay,) is polyhedral for any
subset {Ay,..., A,y } of F. But the converse may not hold as shown in the following example; for example
see [16].

0 0.1
0 0

conv {1, w,w?} is a triangle, but Ay, Ay do not commute, equivalently, 4 is not normal.

Example 3.1. Let w = ¢™™/3 and A = A; + idy = diag (1, w,w?) ® ( ) Then W (A1, As) =W(A) =

Even if we assume that the family of matrices have nice property, say, it consists of unitary matrices, we
still cannot get nice conclusion.

Example 3.2, Let A = Ay +iAy =diag(l+4,1—4,—-1+4,-1—4) @ (_11 _11

and W(A) = conv {l +4,1 —i,—1+4,—1—i}. But Ay, Ay do not commute.

). Then Ay, A are unitary,

It turns out that one can detect the commutativity of a family of matrices using the C-numerical range
or k-numerical range for some special C and k. The following is an extension of property (1.5).

Theorem 3.3. Let Aq,..., Ay € My, The following conditions are equivalent.

(a) {A1,..., A} consists of mutually commuting normal matrices.
(b) There is a positive integer k with In/2 — k| <1 such that Wi(A4,..., Ay,) is polyhedral.
(¢) There is a Hermitian C € M, with eigenvalues ¢ > --- > ¢, satisfying cx > cxy1 for some k with

[n/2 — k| <1 such that W (Aq,. .., Ay) is polyhedral.
(d) For any Hermitian C, We(A1,. .., Am) is polyhedral.

Proof. Suppose (a) holds. Then there is a unitary U € M, such that U*A;U is a diagonal matrix for
j=1,...,m. By Proposition 2.1 (a) and (c), we see that Wg(A1,..., Ap,) is polyhedral for any Hermitian
C € M,,. Thus (d) holds.

If (d) holds, then clearly (¢) and (b) hold.

Suppose (c) holds. We can let A; = Hy; 1 + iHsj such that Hg; 1, Ha; are Hermitian for j =1,...,m.
Then We(Ay, ..., Ap) € C™ can be identified with We(Hy, ..., Hapy) € R?™, which is polyhedral. Thus,
We(H,y, Hy) is polyhedral for any r, s. Thus, by Property (1.5), H, +iH, is normal, i.e., H.H, = H H, for
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any 1 < r,s < 2m. Hence, {Hy, ..., Hop} is a commuting family of Hermitian matrices so that {A1,..., Ay}
is a commuting family of normal matrices. Hence (a) holds. If (b) holds, then (c) holds. Thus, (a) holds. O

Note that Theorem 3.3 can also be deduced from Theorem 5.1, whose proof is more involved. In the
proof of Theorem 3.3, we use the fact that one only needs to check any two matrices in {Hz,..., Hop}
commute to conclude that {A44,..., Ay} is a commuting family of normal matrices. In fact, it is difficult
to visualize We(Aq,..., Ap) € C™ or We(Hy,...,Ham) C R2™ if m > 1. It is more practical to check
We(Hr, Hg) C R? for all 1 < r < s < 2m. Of course, one may let {G1,...,G;} be a maximal linearly
independent subset of {Hj,..., Ha,}t and examine We(G,,G,) C R2 for 1 < u < v < r to deduce the
desired conclusion.

Even for an infinite family F C M,,, if we take the Hermitian and skew-Hermitian parts of the matrices in
F and show that any two of them commute, then F will be a family of commuting normal matrices. Also, if
we take a basis B = {Bj, ..., By} for the linear span of § and show that B is a family of commuting normal
matrices, then so is the family &. By these observations, we can extend Theorem 3.3 to the following.

Theorem 3.4. Suppose F C M, is a non-empty set of matrices, and F* = {A* : A € F}. Let B =
{Bi,...,B.} be a basis for span (F), span (F*), or span (F U F*). In the last case, we may assume that
By, ..., Br are Hermitian matrices. The following conditions are equivalent.

(a) One of / all the sets F,F U F* or B consists of mutually commuting normal matrices.

(b) For any Hermitian C' and {Ay,..., Ap} C span (FUF*), We(Ay, ..., Ap) is polyhedral.

(¢) There is a Hermitian C' € M,, with eigenvalues ¢; > --- > ¢, and ¢ > ¢y for some k satisfying
n/2—1<k<n/2+1 such that We(X,Y) is polyhedral for any X,Y € S, where S can be any one of
the sets F, F*, FUF* B.

(d) There is a positive integer k with n/2 — 1 < k < n/2+ 1 such that Wy(X,Y) is polyhedral for any
X,Y € 8, where 8§ can be any one of the sets F,F*, F U F*,B.

(e) There is a Hermitian C' € M,, with eigenvalues ¢1 > --- > ¢, and ¢, > cp1 for some k satisfying
n/2—1<k<n/2+4+1 such that We(By, ..., B,) is polyhedral.

We include many equivalent conditions in the statement of Theorem 3.4 so that it can be applied to
different situations. For instance, Theorem 3.4 can be used to check whether 7 = ®(G) consists of commu-
tative matrices if P is a finite dimensional unitary representation of a group G. Therefore, it can be used to
check whether a finite group G is Abelian if & is the left regular representation of G.

More generally, for every bounded group G of matrices in M,,, there is an invertible matrix S € M,, such
that S71GS = {S71AS: A € G} is a group of unitary matrices; see [1] and also [5]. Then the above results
can be used to check whether the group S~ 1GS consists of commutative unitary matrices. Of course, G is
Abelian if and only if S71GS is Abelian.

Theorem 3.4 also has connection with quantum information science; see [17] for the general background.
If Ay,...,A,, € M, are Hermitian matrices corresponding to m observables on a quantum system with
quantum states represented as density matrices in M,,, i.e., positive semidefinite matrices of trace one, then

convW(Ay, ..., Ap) = {(trA, P,... trA,, P) : P is a density matrix}

is the set of joint measurements of different quantum states P. As mentioned before, even if conv W (A4, ...,
Ap) is polyhedral, we may not be able to conclude that {Ay,..., 4,,} is a commuting family. By Theo-
rem 3.3, suppose we consider the subset S of states consisting of %A, where A is a convex combination of
rank k-orthogonal projections. Then [6, Lemma 1.4]

Se={AeM,:trA=1, 0< A<I/k},
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where X > Y means X — Y is positive semidefinite for X,Y € M,,, and
conv Wi (Ay, ..., Ay) = {k(trA1 P,. .. trA,,P) : P € S}

Hence, {A1,..., A} is a commutative family of Hermitian matrices if and only if the joint measurements
of the states in Sy form a polyhedral set for some k satisfying [n/2 — k| < 1.

Recall that an operator system & in M,, is a subspace containing I, and satisfies A* € § whenever A € S.
Operator systems are useful structure in the study of operator algebras and functional analysis; see [18].
Recently, it is shown that operator systems are useful in studying the properties of quantum channels; see
[10]. Every operator system & C M, has a basis {I, By, ..., By} consisting of Hermitian matrices. So, one
can use Theorem 3.3 to check whether an operator system is commutative. This turns out to be equivalent
to the condition that the associated quantum channel is a Schur channel; see [7].

A referee pointed out another connection of our result to quantum information science research, namely,
for a given density matrix p and Hermitian matrices Aq,..., Ay, one may define the Wigner distribution
function W, : R™ — R, and it was known that for a full rank density matrix p, W, is positive if and only
if {A1,..., An} is a commuting family; see [20, Property 2]. Evidently, our result is related to this study.

We can use the C-numerical range to see that a family of matrices are commuting normal matrices with
special structure. The following result extends Properties (1.2) and (1.3).

Theorem 3.5. Let C' € M, be a non-scalar Hermitian matriz. Let A = (Aq,..., Am) € M.

(a) We(A) is a singleton if and only if A; = a;1 is a scalar matriz for each j.
b) Wea(A) is a line segment in C™ if and only if there is a Hermitian matriz H such that A; € span{I, H
J
for each j.

Proof. (a) If W (A) is a singleton, then so is W¢(A;) for each j. By (1.2), A; is a scalar matrix. The
converse is clear.

(b) Let A; = Hy;—1+iHg; for j =1,...,m. Then We(H,+iH,) is a line segment for any 1 < u < v < 2m.
If all the line segments are degenerate (with length zero), then H, 4+ iH, is a scalar matrix by (1.2) for all
u,v. Else, we may assume that We(Hq + iHy) is a non-degenerate line segment and Hy = (trHq)[/n+ H
for a nonzero Hermitian matrix H with trace 0 by (1.3). Now, We(Hy + 4H,) is a line segment for each
v > 1. By (1.3) again, we see that for each v > 1, H, = (trH,)I/n + b,H for some b, € R.

The converse is clear. 0O

4. Other properties

We establish some other properties connecting the geometric properties of We(Ay,..., Ay,) and the
algebraic properties of Ay, ..., A;,. These results have their own interest, and will be useful in studying the
polyhedral property of W (Aq,..., Ay) in the next section. By the comments in Section 2, we will focus
on Hermitian matrices C, Ay, ..., A, € M,.

First we give a description of the convex hull of W (A4,..., 4p,). The result is an extension of [14,
Theorem 2.1]. Denote by A;(A) > --- > Ap(A) the eigenvalues of a Hermitian matrix A € M,,.

Theorem 4.1. Let C, Aq, ..., Ay € My, be Hermitian such that C' = diag(c1,...,cq) with ¢ > -+ > cn.
Then for A = (Ay,...,Apn),

conv We(A) = n{P,(A) : v e R™,v'v =1},

where for v = (vy,...,v,)" € R™,
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m n
Po(A) =< (a1,...,Qm) : Zvjaj < Z ciNj(viAr 4+ vmAm)
j=1 j=1
Proof. To prove “C”, let v = (v1,...,0m)" be a unit vector in R™, and let U € M,, be unitary such that

(a1,...,am) = (WCU* AU, ... trCU* Ay U) € We(A).

Then by [14, Theorem 2.1] and also [11],

> wja; =Y v (trCU*A;U) = e[CU* (D v, ANUT <D (01 A1+ - + v Ap).
i=1

J=1 Jj=1 Jj=1

Hence, W (A, ..., Ay,) is a subset of the convex set N{P, : v € R™, v'v = 1}, and so is conv W (Aq,. ..
Am).

For the reverse inclusion, suppose (b1,...,b,) ¢ conv We(Ayq, ..., Am). Then there is a linear functional
f:R™ — R of the form

7

(L1, ey T) = UL+ + U

for a unit vector (vi,...,vy,)" € R™ such that f(by,...,bn) > f(aq,...,an) for all (a1,...,an) €
conv We(Aq,..., Ay), and hence f(by,...,b,) > f(trCU* AU, ..., trCU* A, U) for any unitary U € M,,.
Hence, if V € M,, is unitary such that V*(v1 41 + -+ + vmAn)V = diag (A1,..., A) with Ay > --- = A,
then

m m m T
D wiby > wi(trCVIAV) = [CVE (Y v AV = eih;
j=1 Jj=1 j=1 j=1

Thus, (b1,...,bm) & Pu(A) with v = (v1,...,u,)". O

Let S € R™. A point p € S is a conical point if there is an invertible affine transform f : R™ — R™ such
that f(p) =0 and f(S) C {(z1,...,2m) 1 z; <0forall j=1,...,m}.

In the following, we also use R™ to denote the set of row vectors. It is known that if p = (p1,...,pm) is a
conical point of W(A;,..., Ap), where A;,..., A, € M,, are Hermitian, then there is a unit vector v € C"
such that A;v = p;v; see [3]. In other words, the matrices Ay,..., Ay, have a common eigenvector v. We
will extend this result to the C-numerical range.

Theorem 4.2. Let Ay,..., A, € M, be Hermitian matrices. Suppose C' = diag(e1,...,¢n) = &1, &
coo @ &pdy, such that & > - > & and ng + - + 0, = n. If U € M, is unitary such that
(trCU* AU, . .. ,.txCU* A, U) is a conical point of We(Aq,. .., Ap), then each U A;U = Ajy ®--- @ Aj, €
M,, @---® M, has the same direct sum structure as C.

Proof. Let A = (A44,...,An). We may assume that all A; are positive definite and U = I,,. By an affine
transform, we may assume that We(A) lies in the set {(a1,...,am) @ a1,...,amn € (00,0} and trCA; =0
for all 1 < j <m. Then for each 4, = (aﬁﬁ}), we see that We(A4;) C (—o0,0] and

0=tCA; = cuald) = cudu(4y).
u=1

u=1
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Note that sum of the first v diagonal entries of A; is always smaller than or equal to the sum of the v largest
eigenvalues of A;. So,

ni+ng

n ny
Z cuafl(ij‘g = (‘51 - 52) Z agﬂz + ( 53 Z auu ''''' + gr‘(trAj)
u=1

u=1
< (61— &) AulA)) + o+ E(trAy) Zcu ol
u=1

u=1

As a result, the equality holds implies that Zu 1 aq(fd = zu 1 Au(Af) for £ =mnq,ny4n9,... 01+ +n, 1.

It follows [15, Lemma 5.10] that A; = A;1 & --- @ A;r. O
By Theorem 4.2, we have the following result on general matrices Aq,..., Ay, € M,.

Corollary 4.3. Suppose C € M, is Hermilian with n distinct eigenvalues. Let Ay,..., A, € M,. If

We (Al ..., Ay) has a conical point, then {Ay,..., Ay} is a commuting family of normal matrices.
The next result shows that if Ay,...,A4,, € M,, @ --- & M,_has common direct sum structure, then
we can find containment regions for Wi(A4,,..., An) using the joint £-numerical ranges of the smaller

matrices in the component of the direct sum. The result will be useful in the study of polyhedral property
of Wc(Al, ceay Am).

Theorem 4.4. Suppose Ay,..., Ap, € M,, are Hermitian such that A; = A1 ®--- G Ajr € My, $--- P M,, .
Then

Wi(A1,...,An) CconvW = conv Wi(Aq,..., An),

where
T
W = U{Wi, (A11, -, Amt) + -+ We (Arry o Amr) Ty ke 20, ) k=
i=1

with the convention that Wo(B1,...,By) = {(0,...,0)} for any By,..., By, € M,.

Proof. First, we prove Wi(A4y,...,4,,) C convW. Suppose r = 2. Let (trd:P,...,trd,P) €
Py Pro

Wi(Aq, ..., Am), where P is a rank k orthogonal projection. Suppose P = (P* ng) with P11 € My,.
12

We claim that P;1 Pss is a convex combination of rank & orthogonal projections of the form Q14 Q2 with
Q? = Q1 and Q3 = Qs, i.e., Q1,Q2 are orthogonal projections. Then (trA; P) = (trd; (P11 @ ng));"zl
will be a convex comblnatlon of the form (trA;1@Q1 + tI‘AJQQQ)] 1- So, Wk(Al, ..,Am) is a subset of the
convex hull of

U{We, (A11, ..o Amt) + Wig (Ao, .oy Ama) Tk, ke 20, ki + ko = k)

To prove our claim, since P is a rank k orthogonal projection, there exist U € My, with orthonormal
rows such that P = U*U. Let U = [UjUs] with Uy € My, and Uy € My p,. Then Py = UfU; and
Poy = UsUs. Also, I, = UU* = UyUy + UgU;5. Suppose Pyy has eigenvalues dy > --- > d,,. Let d; = 1
for i < pand d; = 0 for ¢ < 4, where p = max(0,k — ns) and ¢ = min(k,nq). Note that U;U} and U}U;
have the same nonzero eigenvalues, including multiplicities, and UyUs = I — UU§. Therefore, Pas has
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eigenvalues 1 —dp > -+ > 1 — dgy1_p,. So we can choose unitary matrices V3 € My, and Vo € M,,
such that R]_l = V]_*PIIVI = diag (dl,. .. ,dnl) and R22 = V;A)*PQQI/Q = diag(l — dk,. cey 1— dk+lfn2)- For
p < £ < gq, define

Te= (T ®0n,—¢) ® (Ir—r ® Opy—iye)-

Since dy = 1 for £ < p and dg = 0 for £ > g, we have

q q

Riy ® Ryp = (de—dpy1)Ty  and > (dp — dpgy) = 1.

=p £=p

Hence, if Tg =VI,V*for p<{<gq, where V =V @ V;,

q
Py ® Py = Z(de —doy1)Ty.
t=p

The general case follows from induction on r.

It is clear that Wi, (A11,..., Am1)+-- -+ Wi, (A1py .oy Amy) C Wi(Aq, ..., Ap) whenever &y, ... k. >0
satisfy 2:7;:1 kj = k. Thus, convW C conv Wy (A, ..., Ap). By the result in the preceding paragraph, we
have the reverse inclusion. O

A referee pointed out that our claim is related to the study of the two projections; see [8] and also [4].
The results in that area might be useful in deducing our claim.

5. Polyhedral property

The following theorem characterizes (Aq,..., Ay) € M such that We(Aq, ..., Ay) is polyhedral. The
result extends Property (1.6). We will focus on Hermitian matrices Ay,..., A, € M, by the comment in
Section 2.

Suppose C' € M,, is Hermitian with eigenvalues ¢; > --- > ¢,. Let

NC) =max({j <n/2:¢; > ¢japU{n—j <n/2:¢ > ¢ja}). (2)

Theorem 5.1. Let Ay, ..., Ay, € My, be Hermitian matrices, and let k € {1,2,...,[n/2]|}. The following are
equivalent.

(a) There is a Hermitian matrix C € M, with v(C) = k such that convWeg(A,...,Ay) or
We(Ay,. .., Ay is polyhedral.

(b) There exist £ > 2k and a unitary U € M, such that for each j =1,...,m, U*A;U = D; @ (), where
Dj; € My is a diagonal matriz, and Wi(Aq, ..., An) = Wi(D1,...,Dn).

(c) There exist £ > 2k and a unitary matriz U € M, such that for each j =1,...,m, U*A;U = D; ® Q;,
where D; € M, is a diagonal matriz, and for any Hermitian C' € M,, with eigenvaluesc; > --- > ¢, and
Y(C) =k, we have Wi, 1)(A1,..., An) = Wa(Dn, ..., Dy,), where C = diag (¢ — Cpy1,. .. 00 —
Chi1s Chitn—t41 — Chitly--+>Cn — Cky1) € Mp.

(d) Wa(Aq,..., An) is polyhedral for any Hermition C with v(C) < k.

Proof. (a) = (b). Suppose C € M,, is Hermitian with v(C) = k, and conv W¢(Aq,..., A,,) is polyhedral.

Let p = (p1,...,pm) be a conical point of conv Wg(Aq, ..., Ay,). We may assume that C = diag (¢1,...,¢p)
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with ¢; > --- > ¢, and ¢ > cx41. We may further assume that C = &1, & --- @ &1, with & > --- > &,
and nq + --- + n, = n. Applying an affine transform, we may assume that (p1,...,pm) = (0,...,0) and

We(Aq,..o,Ap) C{(z1,. .., Zm) : 21,.. ., &y, € (—00, 0]}

By Theorem 4.2, there is a unitary U € M,, such that U*"A;U =A;, &--- ¢ A, e M, &--- D M,,.
Let g be such that ny + --- +ny, = k. From the proof of Theorem 4.2, if Bj = Aj1 @ -+ @ Ajq, then
b; = trB; = S2F_, \,(A;). Hence,

(b17' . -:bm) € Wk(AI: aAm) C {(I17' < JCETFL) KPR TS (700713_7']}-

So, (b1,...,bm) lies in the intersection of the m support planes: P;j = {(#1,...,2m) : 2; < b} for j =
1,...,m, and is a conical point of Wy (A1,..., 4,).

Now, for any 1 < u,v < m, We(Ay +id,) C {z + iy : 2,y € (—00,0]} is polyhedral with a vertex
0. By the results in [14], we see that Wj(A, + iA,) is polyhedral, and (b, + ib,) is a vertex and hence
BB, = B,B,,. Since this is true for all u,v, we see that { By, ..., By,} is a commuting family and hence we
may assume that By,..., B, are in diagonal form.

Now, let ¢ € {k,...,n} be the maximum integer for the existence of a unitary V € M, such that
V*A;V = Dy @ Q}, where D; € M, is a diagonal matrix and Q; € M, _, for j = 1,..., m. Without loss of
generality, we may assume that A; = D; ® Q.

If every conical point of Wi(Ay, ..., Ag) lies in Wi (Dy, ..., Dy,), then Wi(Dy,..., D) = Wi(A4y,...,

Am). Suppose there is a conical point (a1,...,am) of Wi(A1,..., Ap) not lying in Wi(Dn,...,Dy). We
may apply an affine transform to the matrices Ay,..., Ay, and assume that (a1,...,am) = (0,...,0) and
Wi(Ar,. ., Am) S{(z1,...,&m) : 21,...,&m € (—00,0]}. So, 0 = Zi’:l Au(Aj) for j=1,...,m.

By Theorem 4.4, (a1,...,an) = (trA1 P, ... trA,,P) for some rank k orthogonal projection P so that
(a1,...,am,) is a convex combination of elements of the form (trA1R,...,trA,R), where R = R1 @& Ry €
My @ M,,—y. Since (a1,...,an) is an extreme point, P must be equal to one of the R = Ry @ Ra. Clearly,
Ry # 0. Else, (trA1R, ..., t14,,R) € Wi(D4,...,D,,). Now, there is a unitary V=V, @ Vo € My ® M,,_¢
such that V*(R; & Re)V = 1, & 0,y @ Ix_q. Then

(VA VVS(Ry @ Ry)V) = tr(A;(By ® Ry)) = aj,  j=1,....m.

Hence, for each j, the first q diagonal entries and the last k — ¢ diagonal entries of V*A;V summing up to
0=a;= Zizl Au(A;); as a result,

VAV = VDV @ Vi QVa = (T; @ 55) & (Q; @ Dy),

where T; € M, and Dj € My_¢. If 1 <u<wv<m,then Wi(A, +i4,) € {z +iy: x,y <0} is polyhedral
and 0 = tr(7T, + iT,) + tr(f)u + if),,) is a conical point. By [14, Lemma 2.6], 1,, + i1, and D, +iD, are
normal matrices, i.e., T,,T, = T, T, and DUDU = f)z,]ju. Since this is true for all 1 < u < v < m, up to
unitarily similarity, we may assume that 17, ...,T}, are diagonal matrices, and so are Dl, e ,Dm. So, there
is V € M,_, such that V*QjV = .Dj @ Qj for each j. Consequently,

contradicting the choice of £.

Now, we show that £ > 2k, where £ € {k,...,n}. Suppose the contrary that £ < 2k < n. Note that for
every j, Wi(D;) = Wi(A4;). Then we have
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Ai(Dj) = Xi(A45) and Ap_ij41(A5) = Ae—iy1(Dy), forall 1 < ¢ < k.
It follows that

Ae—k41(Dj) L Ae(Q)) < M(Q5) £ Ak(Dy) < Ae—ie1(Dy)

because f —k+1 < k. So we have A¢_11(D;) = Ap(D;) and Qj = Ag(A;)I—¢. Hence, we have V*A;V = D
for each j and ¢ = n > 2k, a contradiction.

(b) = (c). Suppose (b) holds. Without loss of generality, assume that A; = D; @Q; for j =1,...,m and
Wi(A1, .oy Am) = Wi(D1,..., Dy).

If v =(v1,...,0m)" € R™ is a unit vector, A, = v1A; + -+ + Vm Ay and D, = v1 D1 + -+ - + vy, Dy, then

k
Z An— ]+1 A, ,Z /\j ”U)] — Wk(UIAl + -+ 'Um,A'm,)
j=1

= {Z via;(ar, ... ay) € Wi(A, ..., Ay} = {Zvjaj t(ag, ... am) € Wi(Dy,..., D)}

:Wk(U1D1+ v D n = ZAF J+1(D1) ZA(DU

So,
Ai(Dy) = Ni(Ay) and Ay_ir1(Ay) = Ae—ip1(Dy), forall 1 <i < k.

Now, if C' € M,, is Hermitian with eigenvalues ¢y > --- > ¢, and y(C) = k, then C' — ¢41/ has at most k
positive eigenvalues and at most k negative eigenvalues. Moreover, all the nonzero eigenvalues of C' —cp41f
will also be those of C. As a result, for any unit vector v = (vy,...,vm)" € R™ if Ay =01 A1+ +vm A
and Dy, = v1 Dy + -+ + v, Dy, then We_ o, 1(Ay) = We(Dy). So,

CDHVWCfckJrl](Al,. . .,Am) - COnVWé(Dh...,Dm) = WC.(Dl,...,Dm).

Clearly, if we assume that A; = D; @@ for j=1,...,m,and D = C @ 0,,_p which is unitarily similar to
C — ¢iq1 1, then for any unitary V € My, we can let V =V @ I,,_, so that

(trCV*DiV,...,eCV*D,,V) = (tDV* A, V... . ttDV* A, V) € Wor_p,,  1( A1, .., Ay).
Hence, we have
conv WC*CkHI(Al’ ey Am) g Wé(Dl, ey Dm) g WCfc,chI(Al; N ,Am).

Thus, condition (c¢) holds.

Suppose (c¢) holds. Then for any Hermitian C with v(C) <k, We_.,,1(A1, ..., Ap) is polyhedral and
so is We(Ay, ..., Ay). Thus, (d) holds.

The implication (d) = (a) is clear. O

A referee pointed out condition (b) is an improvement of [14, Theorem 2.3] that deals with two Hermitian
matrices Aq, Ag, and asserts that for & < n/2, Wi(Ay, Aa) is polyhedral if and only if there is a unitary
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matrix U such that U*A U = Dy @ By and U* AU = Dy @ Bs, where D); € M, is a diagonal matrix with
£ >k + 1. One cannot deduce from this result that there is k with |n/2 — k| < 1 such that Wi (Ay, As) is
polyhedral if and only if A;, A2 commute. Because of the improvement of the value £ in Theorem 5.1 (h),
one can now readily deduce Theorem 3.3 from Theorem 5.1.

By Theorem 5.1, we see that if conv We(Ay, ..., Ay ) is polyhedral, then W4 (Ay4,. .., Ap) is polyhedral
for any Hermitian C' € M,, with y(C) < 4(C). In particular, we can choose C' = € so that We(Ay, ..., Ap)
is polyhedral. Similarly, if conv Wj.(Ay,..., Ap,) is polyhedral for some k < n/2, then W,.(A44,...,Ap,) is
polyhedral for any r < k.

Note that checking F C M, is a set of commuting normal matrices can be reduced to checking whether
XY = YX for any two matrices X, Y € F. That is why we can focus on the polyhedral property of
We(X,Y) is normal for any two matrices in X,Y € F for a suitable €' in Theorem 3.3. We cannot use the
same strategy for Theorem 5.1 because We (X, Y) is polyhedral for all X,Y € B, where B is a basis of the
span of F.

Example 5.2. Let Ay = diag (1,1, ~1-1,1, 1), Ay = diag (1, ~1,1, ~L)o | ", 8),A3[1]®(_Oi 8)@

diag (1,—1,—1), then W(X,Y) = conv {(1,1),(1,-1),(—1,1),(—1,—-1)} for all X|¥ € {A;, As, A3}, but
W (A, Ao, A3) is not polyhedral as it has only two conical points (1,1,1) and (—1,—1, 1) associated with
the two common reducing eigenvectors e; and e4 of the matrices Ay, As, As.
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