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A COMPLETE ISOMORPHISM INVARIANT -
FOR A CLASS OF TRIANGULAR UHF ALGEBRAS

YIU TUNG POQON .

1. INTRODUCTION

Let 2 be a unital AF algebra and {2,}%°, an increasing sequence of unital

finite dimensional subalgebras of 2 such that | J2, is dense in 2. Suppose for each

. -
n we have a maximal abelian self-adjoint subalgebras (masa) D, of 2, such that
D, C Dpyi. Then D = UD, is a masa in 2. A norm closed subalgebra 7 of 2

is said to be triangular with diagonal D if T N7T* = D. This class of triangular
subalgebras of AF algebra (TAF algebras [6]) has been the subject of many recent
studies, e.g. [1], [4-15]. A major question in this area is to classify such algebras up to
isometric isomorphism. Complete isomorphism invariants for TAF algebras have been
given by Power [11] and Ventura [14] and are also described implicitly in the diagonal
extension theorem in Peters and Wagner ([7], 1.10) and the subgroupoid of Muhly and
Solel [4]. These invariants have been used quite successfully in the study of certain
types of TAF algebras, e.g. Power [10], [11], Thelwall [12], [13]. However, for most
TAF algebras, it is quite- difficult to determine if two TAF algebras have the same
invariant. Thus, the problem of finding more explicit and computable isomorphism
invariants still remains open. '

Suppose 7 is a TAF algebra with diagonal D. Let P(D) be the projections in P
and Wr the set of partial isometries v in 7 such that vDv* C D and v*Dv C D. Given
e, f € P(D), we write e <7 f if there exists v € Wz such that vo* = e and v*v = f.
This diagonal ordering is defined by Peters, Poon and Wagner in [6]. Given two TAF
algebras (7,D) and (S, &), the orderings <7 and <s are said to be isomorphic if
there exists a C*-isomorphism © : D — & such that for each ¢, f € P(D), we have
e <7 f if and only if O(e) <s @(f). It is shown in [6] that if @ : T — S is an
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T,

isometric isomorphism, then the restriction of ® to D gives an isonfrphism of <7
- and <g. Although this ordering is not a complete invariant for iédzﬁorphism--cla,sses
of TAF algebras, it is more computable and has been proven quite,useful in the study
of TAF algebras in [6], [7]. We are going to prove that the ordering <7 is a coinplete
invariant. for isometric isomorphism within a class of TAF algebras. |

Let My denote the k X k complex matrices and T} (respectiifely, Dy) the upper
triangular (respectively, diagonal) matrices in M. I, will denote the identity matrix

in M. Suppose we are given a sequence of positive integets {k;}$2, with kp = 1 and

for each i 1 a unital embedding @; : My, , — Mp,. Then the C*-limit [2], % =

= im(Mp,, ;) is called 2 UHF algebra [3]. In [3], Glimm showed that the generalized
- k; ‘ _ .
natural number H n; ([3], [2]), where n; = . * for i > 1, is a complete isomorphism
v i-1
invariant for 2 z111 the class of UHF algebras. Suppose, in addition, that each ¢
satisfies ;(T,_,) C T}, and, consequently ©0i(Dy,_,) € Dy,. Then the algebras
T = Iim(Ty,, ), D :lig}.(l)k:.,(pi) can be regarded as subalgebras of 2 and 7 is
triangular in % with diagonal D. The class of 7 with ¢;(z) = 2 ® I, for every i has
been studied by Power in [9]. In [1], Baker studied the class where p;(z) = I,, ® =
(=0}

and showed that the generalized natural number Hni‘is also a complete invariant -

: ) 3=1 :
for isometric isomorphism, within this class of algebras. In this paper, we study the
class where each ¢;(z) = I,, ® z or 2 ® I,,. We will give a complete invariant for

isometric isomorphisms within this class of algebras.

(=}
Recall that (Glimm [3] or Effros [2], p. 28) a generalized natural number n ::H n;

i=1
is a mapping f : P — {0,1,..., 00}, where P = {p; : p; is the i*® prime number}, such
that
m
flp) =sup{j>0:p divideSHni for some m}.
i=1
If f(p:) = r;, we can write n= 271372575 .... An (ordinary) natural number n =

= pi'...ppr can be regarded as a generalized natural number with r; = 0 for ¢ > m.
Two generalized natural numbers can be multiplied as follows

(271372 .. )(2%18%2 ) = 2mteigratee wwhere we let co+ 1 =1+ 00 = .

To simplify notations for later discussion, let o, (2)=1,®=z anh vp(z)=2Q@1,.
orn and v, are called [6] the standard embedding and nest embedding respectively.
Let @ = {¢ : 9 = o, or v, for some n>1}. Suppose ¢ = {p;}32, is a sequence in &.
Define

o(e) = [ [{ni - s = on.},
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l/(go) = H{'ﬂz D = Uy} and: | o~
(p)= o(p)v(p). :

For¢1,...,0n € & and 7 a permutation on {1,...,n}, we note that pj0---0p, =

= Pr(1)0" -0 Pr(n) = Vr 00, Where r' = I-_[{nZ 1 =Vp,}and s = ]:I{nz L = Um}.“

The main result in this paper is the following

THEOREM 1.1. Let {k;}$2,, {l;}{2, be two sequences of positive mtegers with
)

ko =1y =1and n; = P m; = lil for i 1. Suppose o = {p;}2,, ¥ = {$}2,
are sequences in @ such that ¢; = o,, or vy, and ¥; = oy,, or v, for each i.
For each i20, let T; = T},,D; = Dk;;Sz'v = Ti; and & = Dy,. Since p;(T;-1) C

T, 0i(Di—1) € Di, vi(Si1) C S; and ¥;(&i—1) C &, we can form the direct limits
T = Um(T;, ¢;), D = Um(Di, ¢3), § = lim(S;, ;) and & = im(&;, ). Then D, € are
the diagonals of T, 8 respectively. Let <7 (and <s ) be the diagonal orderings on D
(and £ ) defined by T (and S ). Then the following conditions are equivalent.
| 1) 7T is isometrically isomorphic to 8.

2) The orderings <7 and <s are isomorphic.

3) There exist positive integers n and m such that no(p) = mo(¥) and my(p) =
= nv(;).

The proof of this theorem will be given in Section 2. We end this section with
some simple corollaries. »

Given a generalized natural number m, let P(m) = {p € P : pjm} and Py(m) =
= {p € P(m) : p™ fm}. Suppose S and T are constructed from sequences o= {p;}

and 9 = {;}, i, ¥; € @ such that 'r(go) = 7(1) =m. Then condition 3 in Theorem
1.1 holds if and only if there exists a finite subset Q C Pp(m) such that for every

prime p ¢ Q and every positive integer d, we have p? | o(y) if and only if p? | o(¢),
and p? | v(p) if and only if p? | ¥(3)). We note that since () =m, therefore, for
each prime number p such that p> |m, exactly one of the following three conditions
holds:
i) p° | o(p) and p® | v(p)
ii) p* | o(y) and p* Jv(p)
iii) p*° fo(p) and p™ | v(yp)
Thus, for a fixed generalized natural number m, if we let 7(m) be the collection

of isomorphism classes of 7 constructed from a sequence ¢ in @ with 7(¢) =m, we
" have |

COROLLARY 1.2. For each generalized natural number m, we have
1) if P(m) is infinite, then T (m) is uncountable, and
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2) if P(m) is finite, then T(m) has exactly 3" elements, where n is the number
of p € P(m) such that > |m. '

_In particular, if m= p™ for some prime number p, we have the following.

COROLLARY 1.3. Let p be a prime. Then 7 (p™) is equal to the set of isomor-
phism classes of the algebras constructed from the following sequences

D) {ei}s2y, i = vp for all i,

2) {pi}§21,pi = op for all 4,

3) {@i}21, pi = o, when i is even, @; = v, when i is odd.

For p = 2, the fact that all three algebras defined in Corollary 1.3 are non—
isomorphic has been proven by Peters, Poon and Wagner in [6] (Examples 1.1 and
3.27).

2. THE PROOF

Let {ef; : 4,5 = 1,...,n} be the usual matrix units for M,. Thus, T, and Dy
are spanned by {ef; : 1 <3< j<n} and {ef; : 1 <3< n} respectively. We will write el
for e%. Then, for non-zero projections e, f € P(D, ), we have e <7, f if and only if
e-—'}:e“,f Ze” for some 1<% < -+ < <, 1<j1 < < jp<nand i < Jr
for every 17 <

Let {k;}, {}, {<p”, {1;},D,&,8 and T be as given in Theorem 1.1. Ife, f € P(D)
such that e <7 f, then there exists some ¢ such that e, f € D;. By Corollary 3.7 in
[6], every v in Wy is of the form v = dw for some unitary d in D and w € Wr;
for some j. Thus, we may assume e <7; f. Hence, the discussion in the previous
paragraph gives an explicit description of <. Clearly, similar description holds
for <s.

Suppose : D — £ is an isomorphism between the orderings <7 and <s.

Then for each n, there exist i(n) and j(n) such that &(D,) C &j(ny and @71(&,) C

C Dj(n): Furthermore, we may assume that for each n and e, f in Dy, (respectively, £,)
e =7, f=> 0(e) <s,,, O(F) (respectively, e <s, f = 07} (e) <1, O7 ().

In the following three lemmas, @ ( and 6;) : D, — Dy, will always denote
a 1-1 unital C*-homomorphism such that e <1, [ = 6(e) <7, 6(f). To sim-

plify notations, we will write e[k, ] = Ze for 1<k<I<n. If r,s are positive

integers and JT o os : D, — Dy, then dlrect computation shows that for 1 i< n,

vroos(el)= Z [1+ (i = 1)r+ nri,ir 4+ nri].
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LemMA 2.1. Let @ : Dy — Dy,. For each 1<ign, 1<j<m, let p(i, J) be the
number of k such that 1<k < j and ©(ef') > e} (the usual ordering of projections in
Dy,). Then, we have |
1) 1, 7) 2 (7, 5) and p(3,5) < p(3, ') for 1<i< ¥ <n and 1< < j' <m.
3

2)-For each 1< j<m, Z p(i, 5) = 7.
i=1
3) Suppose ©(e"[1,i]) > e™[1, j] and O(e"]1, ])eH_l = 0. Then O(ely;) > ], .

Proof.
1) For 1<i<n and 1<j <) <m, it follows from definitions that p(t, ) <
< (7, j'). Suppose 1 <i<é' < n. Then e? <r, el = O(el) <1, 6(6 }). So

k

k
Oel) = Ee;-’f and O(e}}) Z ey
t=1

for some 1< jiy < -+ < jp < m,1<j] < -- - < jp<m and ;< g} for every 1<t <k.
Hence, for each 1 <j < < m we have p(i, §) > > p(7, 7)

2) follows from Z O(el) = e™[1,4].

g=1
i i '
3) From the given conditions, we have Zp(k,j) =j= Zu(le,j—{— 1) and
k=1 k=1
p{?, §) = 0 for 1<z'< i <n. From 1) and 2) we have p(i + 1,5 + 1) > p(s ,j+1) for

all / > ¢4 1 and Z #(k,j+ 1) = 1. Therefore, (i + 1,74+ 1) =1. So, it follows

k=i4-1
from p(z +1,5) = 0 that @(e?;) > ey

LEMMA 2.2. Let @1 : Dy — Dy, 6y 1 D, — Dy and @30 @y = v, 00, for
some positive integers r,s. Then there exists a positive mteger k such that k|r and
for1<ig<n

(+) Or(el) > ™1+ (i — 1)k, ik],

Go(e™[1+ (i — 1)k, ik]) > eP[1 + (i — D)7, ir].
Furthermore, if nk < m, then ©;(e}) > e™ +1-

Proof. We first note that for 1 <i<n,

¥

G2( 01 (e]))e?[1, nr] = vy 0 05 (e} )eP[1, nr] = €P[1 + (2 = 1)r,ir].

Hence, for every 1< j < m, if @3(e?)e?[1 + (i — 1)r,ér] # 0, then O (ef) > el
From 1) and 2) in Lemma 2.1 with j = 1, we have ©1(e?) > e and 92(6’1") > el
Let k; be the greatest integer k such that Oz(ef*)e?[1, 7] # 0. By putting j = 1,.
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successively in 3) of Lemma 2.1, we have O3(e™[1, k1]) 2 €?[1, 7] and Oa(el*)eP[1, r] #
# 0 for all 1 I ky. Hence, we have @;(e?) > e™[1, k;]. Farthermore, @30 ©4(e}) >
>em,. Therefore, @2(e™[1, ki])ef,; = 0. Hence, again by 3) of Lemma 2.1,
Oa(e 1) 2 €by . This gives O1(e3) 2 el ;- Applying Lemma 2.1 inductively on
i and j, we can get integers 0 = ko < ki < -+ < ky such that

Og(e™[1 + ki1, ks]) 2 P[1+ (i = Dr, ir]

and :
() z ™1+ ki1, k4]

for 1<K n.
Applying 1) in Lemma 2.1 for @, we have

by — ki1 > ki — kyr—q for 1<ig? <n.

For each 1< j<kn, let p; = p(j,nr) as defined in Lemma 2.1 for @;. We have
pi > pjfor 1< 5 <5’ < ks But, forevery 1 <ign we have

k1 N
r=S iz hupe 2 (= bi)pr, > ), =T

j=1 j=ki1+41

This gives k; — k;_1 = ky = k for some constant & and y; = T foralll Lj<k, = nk.
Hence, k | r and k; = ik for 1 <i < n. Furthermore, if nk < m, applying 1) and 2) of
Lemma 2.1 to @ with j = nk + 1, we have @1(e?) > enp11-

LEMMA 2.3. Suppose ny > 1. Let @; : Dy, — Dy, for i = 1,2,3 such that
@y0 01 =1y, 005, and B30 @y = vy, 00, for some positive integers r1,73, 51, 52.
Then there exist ki and ko dividing vy such that, with g1 = ng [(nik1), ©r = v, 00y,
and

Os(ei?) 2 e [1+ (j — 1)k, ko] for 1 <5< na.

If, in addition, there exists €4 : Dy, — Dn, such that @40 O3 = vy, 003, for some

positive integers rg, s3, then €3 = vg, 0 0y, where g2 :._sl/ql.

Proof. We apply Lemma 2.2 to @20 0, and @30 O, respectively, and from (%),

we have kq, and ks such that
O () 3 21 + (i — Dy, iki] 1<i<ns

and

Ou(ef?) > e[l + (j — Do, jka] 1< <.
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Since

31—'1
Oz 0 O1(ef?) = vy, 005, (ef*) = Y, €™ [1+ (i — Dy +mamt, iry + marif]
t=0 ’
and ny > 1, we have kiks .= r;. For each 1<i<n; and 1< j< ny such that
O1(e;*) > €7?, we have
@2 o) 91(6?1) } @2(6?2) =

= Oy 0 O1(e]*)e™?[1, kong] 2 ™3 [1 + (§ — 1)ka, jko] =

q1—1
= Z ™1+ (i — L)ry + nyrit,iry 4 narat] 2 €™ [1+ (§ — L)k, jko],
t=0 '
ngky  ny

where ¢; = =
niry nik;

= 14 (i — ry +nart <1+ (5 — Dby < jka <iry + nart
for some 0<t<qg—1

= 1+ (i — Dky + nikit <j <iky + nikst for some 0t < g — 1.

: -1
Hence, @(el*) = Z e™?[1 + (i — Dk1 + nikit, tky + nikit] = vg, o aq,(ej*) for
1=0

If, in-addition, there exists @4 : T,,, — Ty, such that @40 O3 = v, 00, for some -
positive integers rs, s3, then we can apply the results in the first part of this lemma
to @9, @3 and @4 and use ‘

ng _ mrisy 81 |
noky  nikigiks g1

q2 =

Proof of Theorem 1.1. Since the result is trivial if either 7 or S is finite dimen-
sional, we may assume that both 7(y) and 7(¢) are infinite.

1) = 2) is proved in Proposition 3.20 of [6].

For 2) = 3), suppose that @ : D — £ is an isomorphism of <7 and <s. Then for
every natural number n|7(p), there exist mutually orthogonal projections ey, ..., e,
in D such that

n b

e; <1 ei1 for 1<i < n and Z e; = 1p, the identity in D

i=1

= O(e;) <5 O(ej41) for 1< < n and Z O(e;) = lg, the identity in &.

=1
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Also, ©(e1),..., O(en) are mutually orthogonal projections in £. Therefore,
n | (). Applying the same argument for ©~1, we have 7(p) = 7(¢).

. In order to prove 3), we may assume, without ‘loss of generality, that n;,m; >
> 1. Choose j(1) and i(1) such that -

i) O(D1) C &y and for e, f € D1,e <7y [ = O(e) <550, @(f), and

i) @~1(&1) C Diqry and for e, f € &1, ¢ <s, = 0-1(e) <1,y O71(P).

Let Q be the set of all primes p such that p | ki(1ylj) and p® does not divide
anyone of a(¢), o(¥), v(p) and v(1h). Given a prime p ¢ Q and positive integer d such
that p? | v(s), we can choose | > j(1) such that p® | T]{m )y < i<l Y = Vm )
Then 1 0¢_1 0+ - 0%j(1)41 = V40 0y for some positive integers ¢, u with p?|t. Choose
k > 1such that @~1(&) C Dy andfore, f € &, e <5, f = O071(e) <, @~1(f). Then
the embedding D; — Dy is given by v, 0 o5 where v = [1{n; : s = 1, 1 < 2K k}.
Applying Lemma 2.2 for &) = p,00,0 8 on Dy and ©, = O~ on &, we have pilr
and consequently, p¢|v{p). '

By repeating the above argument with @1, we can show that for every prime
p ¢ Q and positive integer d, p?|v(p) if and only if p?|v(v). Similarly, by applying
Lemma 2.3, we can prove the same condition for o(p) and o(%).

For 3) = 1), suppose ¢ and ¢ satisfies

nv(p) = my(y) and mo(p) = no(yP)

for some positive integers n and m. Without loss of generality, we may assume n
and m are relatively prime and all n; and m; are prime numbers. For each prime p
dividing n (or m), we have plo(p) (or plv(p) respectively). Since switching a finite
number of o, t0 Uy, (OF vy, to op;) will not change the isomorphism class of 7, we
may assume that o(p) = o(¢) and v(p) = v(3). Hence, there exists a permutation
7 of the positive integers such that ¥; = @x().

So the result follows from the next lemma.

LemMa 2.4, Let {p;}2;, {¢:}2,, T and S be as given in Theorem 1.1. Suppose
there is a permutation m of the positive integers such that ¥; = @x(i)- Then T and &

are isomorphic.

Proof. Let E = {iy,...,ir} be a non-empty finite subset of positive integers.
Then from the discussion in the paragraph preceding Theorem 1.1, the map pr =
= p;, 0 -+~ 0 @;_is well defined on M, for every fixed n. If E{ and E> are disjoint
subsets, then we have pg, 0 pE, = YE,UE,- |

We note that the sequence {I;} of S is determined by {k;} and the permutation

p )

7. Specifically, we have m; = ng(;) and §; = H m;. We are going to construct two
. j=1 :
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sequences :
FEIY<I(D) <)<, D <)< -

and mappings O; such that the following diagram commutes

T = Ty = Ty — Te —--

I 01 N\ 1@ \\O; 16,
So — Siay —  Sj) — ...

~ For each i< j, let [3,5] = {k : i<k<j}. First choose i(0) = 1 and j(1) >
> 773(1). Let Ey = #([1,j()]\{1} and O, = ¢g,. Next, we choose i(1) >
> max{m(i) : 1<i< (1)} and set By = [1,i(1)]\7([1,5(1)]), @2 = pE,. We have
1) Byu{l} = W([l,j(l)]) = Bi0¢p; = Pr(i(1)) © - O Pa(1) and
2) EaUE; =[2,i(1)] = @200, = Pi(1) 0 - - - 0 (3.

Suppose we have chosen sequences

1=1400) <i(l) < - <i(r),
0=4(0)< (1) <...<j(r)

~ and subsets Eq = {1}, E1, E5,- -+, F9, such that

EsiNEgy_1=10
Eot_1NEy_2=10
By U Eag_y = [i(t — 1) + 1, i(2)]
Eyi1U By = w([j(t — 1) + 1,i(2)])

(s5)

for 1<t <r. Then, we can choose j(r + 1) > max{z~(t) : 1<¢<i(r)},i(r +1) >
> max{7(t) : 1<t<j(r + 1)} and put Eyry1 = w([i(r) + 1,5(r + DD\ For, Forga =
= [i(r) + 1,4(r + 1)]\E2r41. Then (#=) holds for 1 <t (r + 1). Thus {i()}, {5(?)}
and E; can be defined inductively and the diagram commutes with &; = ¢, .

- REMARK' 2.5. After this paper had been subinitted, we learned that the equiva-
lence of .1);and 3) in Theorem.1.1 has also been obtained by Hopenwesser and Power
in [16]. Their proof uses the invariant defined by Power in [11] and is quite different

from the one given here.
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