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In this paper, we study the M-ideals .and quotients of subdiagonal algebras. Par-
ticular attention is given to the subdiagonal algebras A of groupoid C*-algebras,
where all groupoids are assumed to be amenable r-discrete principal with a cover
by clopen G-sets. One of the major results shows that given such 4 and an M-ideal
Jin A, both J and A/J are subdiagonal algebras of groupoid C*-algebras. © 1992

Academic Press, Inc.

1. INTRODUCTION

An operator algebra is a Banach algebra A with a matrix norm structure
[3] such that 4 is completely isometrically isomorphic to a (not
necessarily self-adjoint) norm closed subalgebra of a C*-algebra B. In par-
ticular, every norm closed subalgebra of a C*-algebra is an operator
algebra. Throughout our discussion, unless stated otherwise, all sub-
algebras of C*-algebras are assumed to be norm closed and all ideals of
operator algebras are norm closed two-sided ideals. An operator algebra 4
is unital if it contains a multiplicative identity 1, with ||1,]l=1. For non-
unital operator algebras, we are interested in the case’ when 4 has a
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(contractive) approximate identity, ie., a net of elements {a,}eA such
that ||a,|| <1 and '

la—aa,| -0 and  fa—a,al—0

for every ae A. We note that there are many operator algebras without any
approximate identity. For example, let M, denote the operator algebra of
nx n matrices and let {e;: 1</, j<n} denote the canonical matrix unit in
M .. Ttis easy to see that A =span{e,,} is a subalgebra in M, without any
approximate identity. »

The existence of approximate identity plays a key role in the study of
ideal structure of operator algebras. We recall that a norm closed subspace
E, in a Banach space E is an M-ideal if E I, the annihilator of E,, is an
L-summand in E*, i.e., if there is a norm closed subspace F in E* such that

E*=F®E}
and

If+ gl =1/1+1lel

for all feF and ge E{ (cf. [1]). It has been shown in [5] that a norm
closed subspace J in a unital operator algebra 4 is an M-ideal if and only
if Jis an ideal of 4 with an approximate identity. This result is also true
for non-unital operator algebras with an approximate identity. To see this,
suppose that A4 is an operator algebra with an approximate identity. We
may assume that A acts on a Hilbert space H; ie., we may identify 4 with
a subalgebra of B(H), the algebra of bounded linear operators on H. Let
A'=A® C1,, be the unital subalgebra of B(H) obtained by joining the
identity operator 1, to 4. Then A is an M-ideal in A'. Given any norm
closed subspace J in 4, it follows from [1] that J is an M-ideal in 4 if and
only if J is an M-ideal in A'. Thus J is an M-ideal in 4 if and only if J has
an approximate identity. This is a natural non-self-adjoint generalization of
the result that every C*-algebra has an approximate identity and its ideals
coincide with the M-ideals (see [1, 16]).

Given a subalgebra A of a C*-algebra B, we let A* = {x*: xe A}. Then
AN A*is a C*-subalgebra of B contained in both 4 and 4*. It is clear that
every self-adjoint element in A is contained in 4N A*.

If D is a C*-subalgebra of a C*-algebra B, a conditional expectation &

from B onto D is a continuous positive projection from B onto D such that
ES

g(ab) = ae(b) and e(ba)=¢(b)a

for all be B and ae D. It is well known that this is equivalent to ¢ being
a projection of norm one from B onto D (cf. [187]): For our convenience,
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we will simply call ¢ a conditional expectation on B. A conditional expecta-
tion ¢ is faithful if for any be B, ¢(b*b) =0 implies b=0. Given a faithful

conditional expectation ¢ on B, an e-subdiagonal algebra (or simply a sub-

diagonal algebra) of B is a subalgebra 4 of B such that A+ A* is norm
dense in B, ¢ is multiplicative on 4, and g(B)=4 N A* contains a positive
increasing approximate identity for B. ' ‘ :

In Section 2, we study e-subdiagonal algebras of general C*-algebras,
and their M-ideals and quotients. We begin by showing that a subalgebra
of a C*-algebra has a self-adjoint approximate identity if and only if it has
an increasing positive approximate identity. One of the major results
(Theorem 2.6) in this section is to show that if 4 is an s-subdiagonal
algebra of a C*-algebra B and J is an M-ideal in A such that D,=JnJ*
contains a self-adjoint approximate identity for J, then B, = (J+J*) is an
ideal of B and J is an ¢,-subdiagonal algebra of B, where ¢, is the restric-
tion of ¢ to B,. Furthermore, 4/J can be identified with the subalgebra
Ay =(A+ B,)/B, of the quotient C*-algebra B, = B/B,. If the conditional
expectation ¢, on By induced by & is faithful, then 4 is an g o-subdiagonal
of B,. In this case, we get a short exact sequence

0—D,»AnA*—>Dy—0,

where Dy=A,N A5, .

In [10], Muhly and Solel have obtained a coordinate representation
theorem for subalgebras and ideals of groupoid C*-algebras of amenable
r-discrete principal groupoids G that admit a cover by compact open
G-sets. This provides a very useful tool for studying e-subdiagonal algebras
of groupoid C*-algebras. Given a groupoid G, which we always assume to
be amenable r-discrete principal, it is known by Renault [14] that every
ideal J of the groupoid C*-algebra C*(G, o) is *_jsomorphic to a groupoid
C*-algebra C*(G,, 0,), where G, is an open subset of G and it is uniquely
determined by the ideal J. However, even when G has a cover of compact
open G-sets, G, does not necessarily have a cover of compact open G ;-sets
(see Example A.1 in the Appendix). This suggests us to consider a broader
class of groupoids, those that admit covers by clopen (closed and open)
G-sets.

Generalizing Muhly and Solel’s result [10, Theorem 3.107, we show -
in the Appendix that given an amenable r-discrete principal groupoid G
with a cover by clopen G-sets every norm closed C*(G°)-bimodule I of

C*(G, o) can be uniquely represented in the form of
s

I=A(P)),

where P, is an open subset of G and A(P)) is the (norm closed) subspace
of C*(G, o) consisting of all elements supported on P,. In particular, every
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subalgebra A (resp., C *_subalgebra D) of C*(G, o) containing C *(G0) can
be uniquely represented as A=A(P) (resp., D =A(H)) for some open
preorder P (resp., Open subgroupoid H) of G.

In Section 3, we study ¢-subdiagonal algebras of groupoid C*-algebras.
We show in Theorem 3.1 that given a C*-subalgebra D = A(H) of C*(G, o)
containing C*(G°), there is a conditional &xpectation ¢ from C*(G, o) onto
A(H) if and only if the corresponding subgroupoid H is clopen in G. In this
case, the conditional expectation & s faithful and is uniquely determined by
the restriction map to H, 1€, e(f)=f|y. We show in Theorem 3.2 that a
subalgebra 4 = A(P) of C*(G, o) containing C *(GY) is an g-subdiagonal
algebra if and only if Pis a clopen total preorder in G. Furthermore, A(P)
is a maximal e-subdiagonal algebra of C*(G, o). We show in Theorem 3.3
that if A=A(P) is an g-subdiagonal algebra of C*(G, ¢) containing

- C*(GY), then a norm closed subspace J of A is an M-ideal in A4 if and only
if it has an increasing positive approximate identity. Thus both J and 4/J
are subdiagonal algebras of groupoid C *_glgebras. We close this section
with a study of subdiagonal algebras of AF-algebras.

In Section 4, we consider the analogous results for the o-weakly closed
M-ideals and the quotients of s-weakly closed subdiagonal algebras of
groupoid von Neumann algebras.

7. SUBDIAGONAL ALGEBRAS OF C*-ALGEBRAS.

DeFiniTioN 2.1, Let A4 be a subalgebra of a C*-algebra B. An
approximate identity la,} of A1s called self-adjoint (resp., positive) if each
a, is self-adjoint (resp., positive). A positive approximate identity {a,} is
increasing if it satisfies

0<a, <ag

whenever « < f.

Obviously if 4 has an increasing positive approximate identity, it has a
self-adjoint approximate identity. The following proposition shows that the
converse is also true.

PrOPOSITION 2.2. If A is a subalgebra of a C*-algebra B with a self-
adjoint approximate identity, then A has an increasing positive approximate
identity.

Proof. Without loss of generality, we may assume that the C*-sub-
algebra D=A N A* contains a self-adjoint approximate identity {a,} for A4
such that |a,| <1 for all . Taking the second duals, we may regard D"
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(resp., A") as a von Neumann subalgebra {resp., o(B¥, B') ctosed sub-
algebra) of B”. Passing to a subnet, we may assume that {a,} converges to
a non-zero central projection ze D" in ¢(B”, B') topology. It is easy to
check that z is the multiplicative identity of both D” and A". We note that
2 is not necessarily the multiplicative identity of B".

We claim that the net of positive elements {42} in D converges to z in
o(B", B') topology. To see this, for any positive linear functional ¢e D’
with ||¢| = 1, which is a normal state on the von Neumann algebra D", we
have ¢(z)= 1. By the Cauchy-Schwartz inequality, we get

|p(a,)I* <d(ar) <1,
and thus

plaz) —» ¢(z)=1.

It follows that a2 converges to z in g(D", D’) topology. Since Y|, € D’ for
every Y € B, a> converges to z in o(B", B') topology. This proves the claim.

Since z is the multiplicative identity of A", it follows from the above
claim that for every a€ 4, the nets {a*a2a} and {aa_a*} in B converge to
a*a and aa*, respectively, in the o(B’, B') topology, and thus in the
(B, B') topology. Let Q be the set of all convex combinations of {a2}. It
is clear that Q is contained in D9 D™, the intersection of the open unit
ball of D and the positive part of D, and that DIND™" is a upward
directed set with respect to the natural positive order in the C *-algebra D
(cf. [18]). We claim that D% D* determines an increasing positive
approximate identity for A.

To see this, for any ae 4, it is clear that a*a is contained in the norm’
closure of the convex subset {a*xa:xeQ}. For any >0, there is an
element x,€ 2 < DN D™ such that

la*xqa — a*al <&

For any xe DN D™ with x,<x, we have x<z and z—x<z—x, in D",
and thus

la—xal =|l(z—x) af
I(z—x)"2] Iz —x)" al

Jla*(z —x) all

N

y/

< |la*(z —xo) al ' <e. ,

Similarly, by considering aa* in the norm closure of {axa*:xeQ}, we

can get yoeQ such that |a—ayl <e for all yeDYnD* with y > .
Hence, DY D" is an increasing positive approximate identity for 4. §
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Remark 2.3. Let A be a subalgebra of a C*-algebra B. In general,
A~ A* need not contain any self-adjoint approximate identity for 4. This
can happen even when A4 has an approximate identity (see Example 2.7).
On the other hand, if 4 is a C*-subalgebra of B, it always has an
increasing positive approximate identity.

DEFINITION 2.4. Let B be a C*-algebra and let ¢ be a faithful condi-
tional expectation on B. A subalgebra A4 is called an e-subdiagonal algebra
of B if it satisfies

(1) A+ A*is norm dense in B

2)' ¢ is multiplicative on 4

3) e(B)=AnA*

4) A A* has an increasing positive approximate identity for B.

(
(
(

We note that we may replace condition (4) in Definition 2.4 by
(4') AN A* contains a self-adjoint approximate identity for 4.

If B is unital, we will assume, instead of (4), that 4 N A* contains the
unit of B.

The definition of unital subdiagonal algebras of C*-algebras was first
introduced by Kawamura and Tomiyama in [9], which is motivated by an
analogous definition for subalgebras of von Neumann algebras given by
Arveson [2].

‘If B is non-unital, we may consider the unitalization B' of B, ie.,
B'=B@(C with the C*-algebra norm defined as follows. For any
(x,a)e B,

I(x, 2)| g=sup!l|lxy+arvll: ye B, |3l < 1.

Given A4 an e-subdiagonal algebra of a C*-algebra B, we let D=4 NA*
and we let D! be the unitalization of D with the norm

(x, )| p=supilxy+oyll: veD, | ¥l < 1}

for (x, cx)eD‘.'It is a simple matter to verify that the natural embedding
from (D', || || p) into (B, || | 5) is a unital *.isomorphic injection. Thus we
may identify D" with a unital C*-subalgebra of B'. If we define &' on B'
by -

v
£l

g ((x, %)) = (e(x), 2)

for all (x,«)e B!, then ¢' determines a conditional expectation from B'
onto D'. To see this, we only need to prove that ¢' is contractive on B'.

J
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Since &Y((x, )= (e(x), aye D orall »(x, o) €B,, we have
le((x, o))l p = sup{lle(x) y +ayll: ye D, [yl <1}

=sup{fle(xy +ey)|: yeD, Iyl <1}

< e 5

If, in addition, ¢ is faithful on B, it is routine to check that &' is faithful
on B!. Thus we have -

PROPOSITION 2.5. Let A be an e-subdiagonal algebra of B. If we assume
that A' is the unitalization of A with norm obtained from B', then A' is an
e'-subdiagonal algebra of B'. '

THEOREM 2.6. Let A be an e-subdiagonal algebra of a C*-algebra B and

J an M-ideal in A such that D,=JnJ* contains a self-adjoint approximate
identity for J. Then

(1) B,=(J+J*)” is an ideal of B and &, the restriction of ¢ to B,
defines a faithful conditional expectation from B onto D ;. Furthermore, J is -
an & ~subdiagonal algebra of B;.

(2) The quotient algebra A/J is completely isometrically isomorphic to
the subalgebra Ay = (A + B,)/B, in the quotient C*-algebra B, = B/B,, and
¢ induces a conditional expectation €, on By given by

eg(b+B;)=¢(b)+ B,

for all be B.
(3) If, in addition to (2), ey is faithful on By, then A, is an eg-sub-
diagonal algebra of Bgy. In this case, we get a short exact sequence

0-D,»AnA*—-Dy—0,

where DQ=AQmA*Q‘.

Proof. Without loss of generality, we may assume, by Proposition 2.5,
that B is a unital C*-algebra, and we may assume, by Proposition 2.2, that

D,=JnJ* contains an increasing positive approximate identity {u,}
for J.

(1) First we show that ux*e B, for all ueJ #aand xeA. Since
ux*e B=(A4+ A*) ", there are sequences {x,} and {y,} in 4 such that

ux* = lim (x,+ y;).

o
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Notice that for every «, u,x,€J and u, yreJ* for all ne N. So, we have

wux® = lim u,(x,+ ¥ eB,.

n-—» L

Since lim,, u,ux* = ux*, we have ux* e B,. Clearly, ux e B, for all ueJ and
xe A. Since A+ A* is dense in B, We have uxe B, for all ueJ and x€B.
Similarly, we have u*xe B, for all u*eJ* and xe B. Thus B, is an ideal
of B. .

Let ¢, be the restriction of ¢ to B,. For every ueJ, we get

g (u)=1lim ¢, (u,u) = lim u, &, (u) evD,.

rd

Similar argument shows that &,(u*)e D, for all u* e J* It follows that
¢,(B,)=D,, since J+ J* is norm dense in B,. Thus &, defines a faithful
conditional expectation on B,. It is easy to see that g, 1s multiplicative on
7 Thus J is an ¢,-subdiagonal algebra of B,. '

(2) We note that the subalgebras 4 and J (resp., 4 o) have natural
matrix norms inherited from the C *_algebra B (resp., By). Thus, by iden-
tifying M ,(A4/J) with M, (A)/M,(J) for each n= 1, the quotient algebra A/J
has a natural matrix norm. It is clear that the natural homomorphism

n: AJJ = (A+ B,)/B,= Bg

is contractive. Since B, is an M-ideal in the C*-algebra B, it is proximinal
(see [4]); ie., for every clement g & B, there is an element me B, such that

la+ B, =lla+mj.
Since {u,} is an increasing positive approximate identity for J and thus
for B,, we have
la+ B, =la-+m

> [|(a+m)(L—u,)ll

> |la— au,| — lnm —mu|

>lla+J|—lm— mu ||
Since |m — mu,| — 0, this shows that ||a+ B,|| = lla+Jll and thus the
homomorphism 7 is an isometry. By applying the above argument on
M ,(A}J), we can show that 7 is a complete isometry from 4/J onto Ao,

and thus we may identify A4/J with the subalgebra A, in Bgy. Let
A= (4% + B,)/B, be the involution of Ay in By. It is easy to verify that
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A+ A% is norm dense in B, because 4 + A™is norm dense in B. If we let
g be the map on B, defined by

SQ(b+B1):8(b)+Bj,

for every be B, it is clear that g, is a conditional expectation on By with
range

and e, 18 multiplicative on 4. Thus g determines 2 *.homomorphism
from the C*-algebra D, onto the C *_gubalgebra ey(Bg)- '

(3) At this time, we do not know if &, 18 automatically faithful or not.
If we assume that g, is faithful, then for any b+ B,€ Dy, gg(b+B,)=0
implies eo(b*b + B,) = go(b+By)* eglb+ B,)=0. By the faithfulness of eg
on B,, we get b¥b + B, =0 and thus b + B, = 0. This shows that &g
determines a *-isomorphism from D, onto eq(Bg) It follows that
Dy=¢0(Bp), and thus 4, is an SQ-subdiagonal algebra of By.
Finally, since

D,=JnJ¥*=A4AnA*nB,

is an ideal in 4 N A* and

Do=(AnA*+B,)B;=AnA%(A0 A" A B)),

we get the short exact sequence

We end this section with an example of a unital e-subdiagonal algebra of
a C*-algebra which has a lot of M-ideals containing no self-adjoint
approximate identities. Thus the assumption in Theorem 2.6 that the
M-ideals contain self-adjoint approximate identities is not redundant.

ExampLE 2.7. Let A(D) be the classical disc algebra and C(T') the com-
mutative C*-algebra of all continuous functions on the unit circle 7. Then
A(D) is an e-subdiagonal algebra of C(T') with respect to the faithful condi-
tional expectation & given by :

o) =] f0)dule)

where 4 is the normalized Haar measure on T (cf. [9]). Letting 1, be the
constant function 1 on D, we get A(D)nA(D)*=Clp.
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It is known by Fakhooury [6] that a subalgebra of A(D) is an M-ideal
if and only if it consists of all functions in 4(D) which are null on a closed
subset of T with zero measure. Thus there are a lot of M-ideals J in A(D)
with 7~ J* = {0}, since the only self-adjoint elements in A(D) are the real
multiples of the constant function 1, (cf. [17]). '

3. SUBDIAGONAL ALGEBRAS OF GROUPOID C*-ALGEBRAS

Let X be a second countable, locally compact Hausdorff space. An
r-discrete principal groupoid G on X is an equivalence relation on X. The
groupoid structure on G is defined as follows. For x=(x,, X,) and
y= (v, y,) in G, set x~' = (x5, x,). If x, =1, then the pair (x, y) is said
to be composable and we set xy=(x,, »,). Let G* be the set-of all com-
posable pairs. We assume that G is given a topology such that

(1) Gisa locaﬂy compact Hausdorff space;

(2) the maps x —x~' from G onto G, and (¥, y)— xy from G? into
G, are continuous, where G* is given the relative topology as a subset of
G x G;

(3) the map x— (x, x) is a homeomorphism from X onto the unit
space G°={(x, x): xe X};

(4) G°is open in G.

Following (3), we will identify X with G° We note that, from the above
conditions, G° is also closed and thus clopen in G. Given xe€G, we call
d(x)=x""x the domain of x and r(x)=xx"" the range of x. It is clear that
d and r are well-defined continuous maps from G onto its unit space G°.
A subset s of G is called a G-set if the restrictions of r and d to s are one-to-
one. If G is an r-discrete principal groupoid with a cover by clopen G-sets,
then there is a left Haar system {/.~} . » such that ¥ is given by the counting
measure on G¥=r"'(x) for each xe X.

Let T be the group of complex numbers with modulus 1. A continuous
2-cocycle ¢ is a continuous map from G- into T such that

o(xoxy, ¥3) 0(xXg, X)) = 0(xy, X5) 0(Xg, X1 X3)

for all (x,, x,) and (x,,x,)eG* Let C.(G) be the space of all continuous
functions on G with compact supports. Given a continuous 2-cocycle o, we
can define an involutive Banach algebra structure on C.(&) as follows. For
f. g€ C.(G), the multiplication is given by

S glx)= Jr flar) gy ol y7 1) di(y),

pR——
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‘and the-involution is given by

-

[Hx)=f(x"") alx, x7)
for xeG. _ ,
Let C,(G, o) denote the involutive algebra with the multiplication and
involution defined as above. Then the groupoid C*-algebra C*(G, o) and
the reduced groupoid C*-algebra CP, (G,o) are the completion of
C,(G, ) under suitable C*-norms. When the groupoid ¢ is amenable, as
defined in [14, 10], these two C*-algebras coincide.
A continuous 2-cocycle o is said to be normalized if for every pair
(x, y)e G* with x = (x,, x,) and y = (x,, x3), we have

o(x, y)=1

whenever at least two of the three elements x;, x,, and x; are equal. Using

" an argument similar to that in [7, Proposition 7.7], one can prove that

every continuous 2-cocycle is cohomologous to a normalized continuous
2-cocycle, and the corresponding groupoid C*-algebras are *.isomorphic.
If ¢ is normalized, then for all A, ke C.(G°), feC.(G, o), and xeG, we
have

hx f(x)= J h(xy) f(y ") o(xp, y~1) dA*(y) = h(r(x)) f(x)

and

[ k(x)= f Fep) k(y=1) a(xp, y= 1) d24(y) = f(x) k(d(x)).

Throughout this section and the Appendix, we let X be a second countable,
locally compact Hausdorff space and let G be an amenable r-discrete
principal groupoid on X with a cover by clopen G-sets. We also assume that
every continuous 2-cocycle o from G into T is normalized.

We note that under these hypotheses, every element in C*(G, o) can be
represented as a continuous function on G [14, 11.4.27 and we will use
C*(G°) to denote the subalgebra of elements in C*(G, o) supported on G°.
Given an open subset P of G, we let A(P) denote the set of all elements in
C*(G, o) supported on P. An open subset P of G is called a preoder [10]
in.G if it contains G° and satisfies

B

PoP< P.

A preorder P is said to be total in G if PUP™'=G. We call P a
subgroupoid of G if P is a preorder and P=P~ ! In the Appendix
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(Theorem A.7), we will generalize Theorem 3,10 of [107 which states that
every norm closed C*(G°)-bimodule 4 in C*(G, ¢) can be uniquely written
as A = A(P) for some open subset P in G. In particular, every subalgebra 4
(resp., C*-subalgebra D) of C*(G, o) containing C *(G°) can be uniquely
represented as A = A(P) (resp., D = A(H)) for some open preoder P (resp.,
open subgroupoid H) of G.

Let E be a subset of G° The reduction of G by E is

G|z={xeG:both d(x) and r(x)e E},

with the groupoid structure inherited from G. We note that (G|z)°=E. A
subset E of G° is said to be invariant if for all xe G, we have r(x)e E if and
only if d(x)e E. Let P be an open subset of G such that A(P) is an ideal
of C*(G, o). Then PGP is an invariant subset of G°. Conversely, given
an open invariant subset E of G° A(G|z) is an ideal of C*(G, o). By
restricting the functions in A(G| ) to G|z, we have A(G|g)= C*(G|g, alg)
This gives a one-to-one correspondence between ideals of C*(G, o) and
open invariant subsets of GO [ 14, Proposition 11.4.5].

Given G as above, let E, F be subsets of G such that F is open and £
is a compact subset of F. Then there exists 1€ C (G) with supp(k) & F such
that A(x)=1 for all xe E and 0</h(x) <1 for all xe G. We will denote
such a functicn by

E<h<F.

THEOREM 3.1. Let D be a C*-subalgebra of C*(G, o) containing C*(G°)
and H the corresponding open subgroupoid in G such that D= A(H). Then
there is a conditional expectation ¢ from C*(G, o) onto A(H) if and only if
H is clopen.

In this case, ¢ is faithful and uniquely determined by the restriction map to
H, ie., e(f)=f|y for ecery fe C*(G, o).

" Proof. If His a clopen subgroupoid of G, then the map ¢ defined by
en( /)= u

for all fe C.(G, o) is a projection from C.(G, ¢) onto C.(H,0oy). Since H
is open in G, the norm closure of C.(H, o) in C*(G, o) is just the C*-sub-
algebra A(H). Slightly modifying the proof given in [14, Proposition IT 2.9
(iii)], we can show that for every ge C.(G, g), the map [ — e (g** f* g)
satisfies

len(g* = f+ I <lgl* /]

for all fe C.(G, o). We note that all norms in the above inequality are
considered as the norm on C*(G, o). We claim that e, 1s contractive on
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C.(G, o), and thus can be extended to a conditional expectation; 1.e., a
projection of norm one, from C*(G, o) onto A(H). To see this, for any
feC.(G, o), we let K denote the support of f, which is a compact subset
of G. Thus r(K) U d(K) is a compact subset of G°, and there is a continuous
function g e C,.(G°) such that _ '

r(K)ud(K)< g=<G°
It follows that

f=g%+fxg

and

lea (NN =llen(g* = f* DI < IS

- ‘Conversely, let ¢ be any conditional expectation from C*(G, o) onto
A(H). For any feC,(G, o), it is clear that &(f)(x)=0 for x ¢ H since &(f)
is supported on H. To show &(f)(x) = f(x) for every x € H, we may assume
that the support of f is contained in a clopen G-set 5. Let so=sn H and
fix any point xe H. If xes,, then we can choose continuous functions
h, ke C.(G°) such that B

{r(x)} <h<r(so) and {d(x)} <k<d(sy)

Since A+ f*k has compaét support contained in s, H, we get
h# f* ke A(H). This implies
W=k S kR)
=g(h=* f*k)(x)
=hx*e(f)* k(x)
= h(r(x)) &(f)(x) k(d(x))
= e(f)(x)

If x¢s,, then there exist open subsets U and V of x(= G°) such that
r(x)e U, d(x)e Vand (UxV)ns= . Choose &, ke C.(G°) such that

{r()}<h<U and  {d(x)}<k<V.
We have
hsfrk=0=f(x)=0=hxfxk(x)=s(hf*h)(x)=e(f)(x)

Hence ¢(f)=f|y for feC.(G, o). For general fe C*(G, o), there is a
sequence of {f,}e€C.(G, o) such that f,— f in norm. It follows that
e(f,,) = &(f) in norm. Therefore we get

S(f)(x) = Tim &(f,)(x)=0

n— L
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for all x¢ H, and

-

8(f)(x) = lim &(f,)(x) = lim f,(x)=/(x)

N L n— xL

for all xe H. This shows that &(f) = f| for every f e C*(G, o).

Next we show that H must be closed. Suppose not, then there exists an
element x,e H\H. Thus there is a continuous function fe C*(G, o) such
that f=1 on an open neighborhood V¥, of x, and a sequence {x,} in
H NV, converging to x, in G. This implies

0=e(f)(xo)= lim e(f)(x,)= lim f(x,)=1,

- (2 B

a contradiction. Hence, the subgroupoid A must be closed in G.

Finally, we show that the conditional expectation ¢ is faithful and
uniquely determined. It follows from the above argument that any condi-
tional expectation from C*(G, ¢) onto A(H) is given by the restriction map
to H. Hence it is unique. The faithfulness of ¢ follows from

e(f*x )= *fly=0=f*%fleo=0=f=0.

THEOREM 3.2. Let A= A(P) be a subalgebra of a groupoid C*-algebra
C*(G, o) containing C*(G°). Then A is an e-subdiagonal algebra of
C*(G, o) if and only if P is a total clopen preorder in G.

Furthermore, A is a maximal e-subdiagonal algebra of C*(G, o).

Proof. Let A=A(P) be an e-subdiagonal algebra of C*(G, o)
containing C*(GP°). To verify that P is a total clopen preorder in G, we
~ only need to verify that PU P~'=G and P is closed in G.

By definition, f(x)=0 for all f€ A and x ¢ P. Since 4 + 4™ is norm dense
in C*(G, o), it follows that for every x¢ PU P~ we have h(x)=0 for all
he C*(G, o). Hence, we must have PUP ™' =G.

Let D=An A*=A(H), where H=P~ P~ Since there is a faithful
conditional expectation ¢ from C*(G, ¢) onto the C*-subalgebra 4(H), it
follows from Theorem 3.1 that H is clopen in G. This implies that P~'\H
is open in G, and thus P= G\(P~'\H) is closed in G.

Conversely, suppose P is a clopen total preorder in G. Then 4 = A(P)
is a norm closed subalgebra of C*(G, o) containing C*(G°). Since
H=Pn P~ !is a clopen subgroupoid in G, it follows from Theorem 3.1
that the map given by the restriction to H is a faithful conditional expecta-
tion from C*(G, o) onto D= A(H).

Given any f, g€ A(P), and any xe H, we have

iy

T
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vefs

Frg=] Sl gy oty dID)

Flxy) gy~ o(xy, y71) dA“0(y)

xve P, ye P!

I

[ s0o) g oton y ™) A0)

:J Gle(xy)ng(y”l)a(xy,y'l)dll"““’(y)

= Fly* glul®)

If x ¢ H, it is easy to see that
[ flal) gl ol y ) A0 =0

This shows that ¢ is multiplicative on 4, ie., for any f, g€ A we have

e(f * g)=e(f) * &(g).

The norm density of 4+ 4* in C*(G, o) follows from G=Pu P~'. Thus
A is an e-subdiagonal algebra of C*(G, o).

Finally, we need to show that A(P) is a maximal e-subdiagonal algebra.
Let

w=1{f€C*(G,0): e(g_*f*h):.g(‘h « fxg)=0
for all g, he A(P) such that e(g)=0}.

In [9, Theorem 3.1], Kawamura and Tomiyama prove that for any unital
e-subdiagonal algebra 4 of a C *.algebra B, 4,, is a maximal e-subdiagonal
algebra of B containing A. By using Proposition 2.5, we can generalize this
result to e-subdiagonal algebras which are not necessarily unital. Thus it
suffices to prove that 4, S A(P).

Following the idea of [10], for feA,, we only need to show that

flx)=0

for all x ¢ P. Given x ¢ P, we have y = x~te P\H. So, there exists a clopen
G-set s< P such that yes and sn H= . Choose continuous functions a
and b in C.(G) such that

{y}<a<s, and {r(y)}-<b<G°.
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It is clear that a, be A(P) and &(a) =0. This implies that

glax f+b)=0,
and thus

s

Fx)=aly) f(x) b(r(p)) = (a =[x b)(r(y)=elaxf+Db)r(y)=0. 1§

Next we turn our consideration to M-ideals and quotients of e-sub-
diagonal algebras. Given a groupoid G, we will assume that all faithful
conditional expectations ¢ on C*(G, o) contain C*(G°) in their ranges.
In particular, we let ¢, denote the faithful conditional expectation from
C*(G, o) onto C*(G°). If A = A(P)is an g-subdiagonal algebra of C*(G, o),
then every ideal J in 4 can be uniquely represented in the form of
J= A(P,) for some open subset P, contained in P such that P=P,s PSP,
(see Theorem A.8). Letting G5=G°n P,, we write

P, = {xe P:cither r(x) or d(x)eGJ}
and

"= {xe P: both r(x) and d(x)e GJ}.

THEOREM 3.3. The following are equivalent.

(1) J is an M-ideal in A, i.e. J admits an approximate identity.

(2) P,=P,=P)

(3) J has an increasing positive approximate identity contained in
C*(GY).

Proof. (1)=(2). It is clear that P4 P,c P,. For each x € P,, there
is an open G-set s such that xoes<S P, We can find a continuous function
ae C.(G) such that ’

{xg)<a<s.

Since s S P, a is an element in J = A(P,). Letting {a,} be an approximate
identity for J, we have

la,* a—al, <la,*a—a|]—0.
It follows that
| a, # a(xg) = a,(+(xo)) alxo) = alxo) = 1.

¢
Therefore, we get a,(r(xy)) #0 for some 2. Thus r(x,)e GY. Similarly, we
can show that d(x,) € GY. Hence we get P, < Pj.

(2)=(3). Since G is a second countable, locally compact
Hausdorff space and G is an open subset of G° GY is also a second

sd
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countable locally compact Hausdorff space. Thus GY is o-compact and
there exists a sequence {U,} of open sets such that Go U, U, and-that. I/,
is a compact subset of U,,, for all n. Let h,e C.(GO) such that
U,<h,<U,,,. It follows from the hypothesis (2) that {A,} e C*(GY) is
an increasing positive approximate identity for J.

(3)=>(1). This is trivial. § | |
The above theorem shows that an M-ideal J= A(P,) in an e-subdiagonal

algebra A = A(P) of C*(G, o) always has increasing positive approximate
identities. Writing

G,=P,uP;,
we have
G, = {x e G:either r(x) or d(x)e G}
= {x e G: both r(x) and d(x)e GI}.

This shows that G is an open invariant subset of G° and G, is the reduc-
tion of G by GY. It is clear that G, is an amenable r-discrete principal
groupoid with a cover by clopen G,-sets and G is the clopen unit space
of G,.

Let Go=G\G,, Po=P\P,, and G =G°\G). Then Gy, is a closed
invariant subset of G° and G, is the reductmn of G by G2 Wthh is closed
in G. It is also clear that G, is an amenable r-discrete pr1n01pal groupoid
with a cover by clopen GQ-sets and G, is the clopen unit space of G,. The
corresponding groupoid C*-algebra C*(G,, 0,) is *-isomorphic to the
quotient C*-algebra C*(G, 0)/C*(G,, o) [14, IL4.5]. Here, we use o, and
o, to denote the restrictions of ¢ to G, and G, respectively. '

THEOREM 3.4. Let A= A(P) be an e-subdiagonal algebra of C*(G, o)
and let J= A(P;) be an M-ideal in A. Then

(1) Jis an ¢,~subdiagonal algebra of C*(G,, o).

(2) The quotient algebra A/J is completely isometrically isomorphic to
the &y-subdiagonal algebra A(Py) of C*(Gg, 0p).

(3) We have the short exact sequence
0-=D,—»D—Dy—0,
where D,= AP, P;'), D=A(PnP™"), and Dy =A(PpnP").

Proof. (1) Let B,=(J+J*)" =A(P,uP;'). We note that B,=
C*(G,, o,) and the *-isomorphism is given [14, I1.4.5] by the restriction
of the functions in B, to G,. So the result follows from Theorem 2.6 (1).
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(2) Let Bp=C*(G, 0)/B,. The restriétion of functions in C*(G, ¢) to
G, induces [14, 11.4.5].a *-isomorphism between B, and C*{Gy, gp). Let
g be the conditional expectation on C*(Gg, 0p) induced by e. It follows
from Theorem 3.1 that g, is faithful Thus the result follows from
Theorem 2.6 (2) and (3). _

(3) This follows immediately from parts (1), (2), and Theorem 2.6 (3).
|

We conclude this section by looking at ‘a special class of groupoid
C*-algebras. A C*-algebra B is called an AF algebra if there exists .an

increasing sequence of finite dimensional C*-subalgebras {B,} such that
B=(uB,)”. If B is unital, we require that B; contains the unit 1 of B.
A maximal abelian self-adjoint subalgebra (masa) D of an AF algebra
B=(uB,)” is called standard if there exists an increasing sequence {D,},
such that each D, is a masa in B, and D= (uD,)”. It has been shown by
Stratila and Voiculescu in [15] that every AF algebra B has a standard
masa D and there exists a unique faithful conditional expectation g, from -
B onto D. Let B be an AF algebra with a standard masa D and X'= D, the
maximal ideal space of D. Then there is an AF-groupoid G on X such that
B=~ C*(G) [14]. Let P be an open subset of G such that Po P < P, then the
subalgebra A(P) is an go-subdiagonal algebra of B if and only if
PUP-'=Gand PnP~'=G° [10, Theorem 4.2]. Following the results of
[10, 19, 20], we have that go-subdiagonal subalgebras are the same as the
strongly maximal triangular subalgebras of B as defined in [12]. Let B be
an AF algebra with a standard masa D and 4 an g-subdiagonal algebra of
B containing D. Suppose J is an M-ideal in A4 and O = 4/J. It follows that -
both B, and B, are AF. Thus we have

COROLLARY 3.5. Let B be an AF algebra with a standard masa D and A
an e-subdiagonal algebra of B containing D. Suppose J is an M-ideal in A
and Q = A/J. Then J (resp., Q) is an eJ (resp., € )-subdiagonal algebra of the
AF algebra B, (resp., Bp). In particular, if A is a strongly maximal
triangular subalgebra of B, then both J and Q are strongly maximal
triangular.

Remark 3.6. In a forthcoming paper [13], we are going to study the
class .« of subdiagonal algebras of AF algebras in more details. In par-
ticular, we obtain a converse of Corollary 3.5, ie., if 4 1s a subdiagonal
algebra of a C*-algebra such that the sequence

i

0-»J—-A4A->0-0

is exact for some J, Q €&/, then A€ /.
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The following is an' example of an ideal (but notvan “M-ideal) of a
strongly maximal triangular subalgebra of AF-algebra such that neither the
ideal nor its quotient is an-e-subdiagonal algebra of any C *.algebra.

ExaMPLE 3.7. Let M, be the 3 x 3 matrix algebra and D, the diagonal
matrices of M. Then the algebra of upper triangular matrices T3 in M is
a finite dimensional strongly maximal triangular subalgebra of M,. Let
J=span {e;3}. It is easy to see that J is an ideal of T5. Since J has no
approximate identity, it is clear that J can not be isometrically isomorphic
to an e-subdiagonal algebra of any C *-algebra. We are going to show that
the quotient algebra Q= T,/J is also not isometrically isomorphic to an
g-subdiagonal algebra of any C *.algebra.

Let 7: T, — O be the natural surjection and f;=mn(e;) for 1<I<j< 3.
Then Q is a unital non-commutative operator algebra of dimension 5. Sup-
pose ¢: Q0 — A is an isometric isomorphism of Q onto an g-subdiagonal
algebra 4 of some C*-algebra B. Given x € (, then x is an idempotent of
norm 1 if and only if ¢(x) is a (self-adjoint) projection in 4 N A*. An easy
calculation shows that for every idempotent x € Q of norm 1, there exists
a self-adjoint projection a€D; such that m(a)=x. This shows that
AnA*=¢on(D;) and B=A+A4* is a non-commutative C*-algebra of
dimension 7. It follows that B Iis *isomorphic to the C*-algebra
M,®C®C®C. Then direct computation shows that é(f1») and ¢(/f23)
are linearly dependent, a contradiction.

4. #/-IDEALS AND QUOTIENTS FOR SUBDIAGONAL ALGEBRAS OF
vON NEUMANN ALGEBRAS

In this section, we study the von Neumann algebra version of the
previous results. First recall the definition of subdiagonal algebras of
von Neumann algebras (cf. [11]). Let By be a von Neumann subalgebra of
a von Neumann algebra B and ¢ a faithful normal conditional expectation
from B onto B,.

DeFINITION 4.1. A o-weakly closed unital subalgebra A of B is called an
e-subdiagonal algebra of B if it satisfies
(1) A+ A*is o-weakly dense in B
(2) e is multiplicative on A
(3) e(B)y=AnA*

THEOREM 4.2. Let A be an e-subdiagonal algebra of a von Neumann
algebra B and J a g-weakly closed subspace of A. Then J is an M-ideal in
A if and only if J= pA for a central projection p in B.
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- In this case, J= pA is a subdiagonal algebra of pB and A/J =~ (1 — p)Ais
- a subdiagonal algebra of (1— p) B.

Proof. If J is an M-ideal in A, then J= pA for a central projection
in A by [5, Theorem 2.2]. Since A4 + A* is o-weakly dense in the
von Neumann algebra B, then p must be a central projection in B. The
proof for the converse is trivial.

In this case, we have.

JnJ* =p('A‘mA*)
and
C(JHT*) T =p(A+A*)"°=pB.
Heﬁce, J is a subdiagonal algebra of the von Neumann algebra pB, since
epB)=pe(B)=p(AnA*)=JnJ*

A similar argument shows that 4/J= (1 — p) 4 is a subdiagonal algebra of
the von Neumann algebra (1—p)B. §

Now we study the properties of M-ideals and quotients of subdiagonal
algebras of groupoid von Neumann algebras. Let (X, #, u) be a standard
Borel measure space. An equivalence relation R< X x X is called standard
if R is a Borel subset in the product o-field. The standard equivalence
relation R is called countable if for every xe X

R(x)={reX:(x, r)eR)

is a countable set. Throughout this section, R will denote a standard and
countable equivalence relation on X.

Given R associated with X, define two maps 7, and =#, from R onto X
by

7'[/(_\" }') = _‘\' and 7[,.(.\’, _1') =1,

for all (x, v)eR.
Given a Borel subset C of X, we let

R(C)={reX:(x, ¥)eR for some xe C}.

The set C is called saturated if u(R(C)\C)=0. Given a standard groupoid

R and a Borel 2-cocycle s, one can define a groupoid von Neumann
algebra M(R, s) and a Cartan subalgebra A4(R, s) of M(R, s) as in [8].
Again we may assume that the 2-cocycle s is normalized. Given a subset C
of X, let Z. denote the characteristic function on C.
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TueoreM 4.3. A4 Borel SubSét Cof X is saturated if and onlFif &c is a
central projection of M(R, s) contained in A(R, s). ‘

Proof. Recall from [8] that elements in M(R, s) can be represented as
functions on R and A(R, s) consists of functions in M(XR, s) which are sup-
ported on the diagonal A(X)={(x, x):xe X} of XxX. Identifying 4(X)
with X, we have ¢ is an element in A(R, s) for every Borel subset C of X.
Let ¢ be a partial Borel isomorphism of X such that its graph I'(§)S R
Then it follows from [8,2.4] that the linear span of all f- %), where

feA(R,s) and I'(§)= R, is dense in M(R, s). Thus, for a Borel subset C

of X, %, is a central projection of M (R, s) if and only if Z commutes with
all %) Let ¢e L*(R,v), then we have

Ze(x) E(p(x), 2) s(x, $(x), 2) i xeD(P)

0 otherwise,

(Zc- %‘f(qﬁ))(é)(x’ z)= {
and

T (P(x)) EB(x), 2) s(x, (x), ) if xe D(9)
0 otherwise,

Ty - Z)(E) 0 2) = {

where D(¢) indicates the domain of ¢. Thus if C is saturated, Z- commutes
with every % and hence, is a central projection in M(R, s).

Conversely, suppose that Z¢ is a central projection of M(R, s), we may
choose [7] a sequence of partial Borel isomorphisms {¢,} such that
a7 (C)y=U2, I'(4). Let E=2Z. For each i, we have

Z.(x) ifxeD(4;)andz=g¢;(x)
0 otherwise,

(Zc- %r(qs,-))(f)(xa z)= {
and

1 ifxeD(d.)and z= ¢,
(%‘r(,ﬁi)-%‘c)(é)(x, Z):{O IOt);:rWi(s(iz) and z (15,()6)

Hence, ZcZrsn = Erunic implies that u(D(¢,)\C)=0 for all i. Since
R(C)=n,n](C)=uD(¢,), we have u(R(CN\C)=0.

Given a Borel subset Q of R, we write
T(Q)={ae M(R,s): ais suppofted on Q}.

It follows from [11] that every o-weakly closed A(R, s)-bimodule 4 of
M(R, s) containing A(R, s) can be written as 4 =97.(0Q). 4 is a subalgebra
of M(R,s) if and only if Q-0 <0 and A contains A(R, s) if and only if
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A(X)= 0N Q" If Bis a von Neumann subalgebra of M(R, s) céntaining
- A(R, s) associated with the Borel subset Q, then the restriction map
g(a)=al, defines a conditional expectation from M(R, s) onto B (cf. [11,
Theorem 3.4]). It follows that a o-weakly closed subalgebra 4 containing
A(R, s) is a subdiagonal algebra of M(R,s) if and only if A+A4* is
o-weakly dense in M(R, s). The following result is an immediate consequence
“of Theorems 4.2 and 4.3.

" COROLLARY 4.4. Let B=M(R, s) and A a subdiagonal algebra of B con-
taining A(R, s). Then a o-weakly closed ideal J=7 (Q) of A is an M-ideal
of A if and only if the Borel subset C=m,(Q) is saturated. In this case, J is
a subdiagonal algebra of the groupoid von Neumann algebra M(R|c, s) and
the quotient AfJ is a subdiagonal algebra of the groupoid von Neumann
algebra M(R| x.c).s)- :

APPENDIX

We begin with an example which has motivated us to consider the class
of amenable r-discrete principal groupoid G with a cover by clopen G-sets.

ExaMPLE A.l1. Let B=C([0, 1], M,) be the C*-algebra of all con-
tinuous maps from the unit interval [0, 1] into M,. Then B can be
represented as a groupoid C*-algebra C*(G, o) where

G={(es, x):xe[0, 1] for i, j=1,2}.

The groupoid structure on G is given by:

(1) (e;, x) and (e, v)€G are composable if and only if j=k and
x =y, where (e;, x)=(¢;, x)= (e, X).

(2) (e _\_’)—l:(eﬁ_’_\‘)_

(3) The topology on G is that induced by the usual topology on
[0, 11].

(4) o is the trivial 2-cocycle on G.

It is easy to see that G is an amenable r-discrete principal groupoid with
a cover by compact open G-sets.

Let I={feB: f(0)=0}. Then I is an ideal of B. Let H,be the reduction
of the groupoid G by the invariant open subset=(0,1]. Thus, [ is
*_jsomorphic to the groupoid C*-algebra of H. Since the only compact
open subset in H is the empty set J, H has no cover by compact open
H-sets.
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Let ¢4 be the class of amenable r-discrete principal groupoid G which has
a cover by clopen G-sets. Suppose Ge%.and S is an open invariant subset
of G° Let H (resp., K) be the reduction groupoid of G by S (resp., G°\S),
then it is easy to show that both H and K are in 4. Thus, if Ge¥ and [
is an ideal of C*(G, ), then both I and C*(G, ¢)/I are isomorphic to
C*-algebras of groupoids in 4.

In the rest of this section, we assume that every groupoid G is amenable
r-discrete principal with a cover by clopen G-sets, the unit space G° is a
second countable, locally compact Hausdorff space, and every continuous
2-cocycle from G into T is normalized. We show that the major results in
[10] can be generalized to this context. The main difference between our
argument and that in [10] is that for a clopen G-set K, the characteristic
function %, may not lie in C*(G, o). Except for some changes to accom-
modate this difference, our proofs are borrowed directly from those in
[107].

First, we recall that every element /€ C*(G, o) can be represented as a
function in Cy(G) with

1/l < IS

The following proposition is an easy consequence of [ 14, Proposition 11.4.2
(i1)], which will be very useful in our argument.

PROPOSITION A.2. If fe C*(G, o) with the support contained in a G-set,
then

1/ =151
Let A= C*(G, o) be a norm closed C*(G°)-bimodule. We write
O(A) = {xeG: a(x)=0 for all aeA}.

It is clear that Q(U) is a closed subéet of G. On the other hand, if Q is a
closed subset of G, we write

I(Q)={aeC*(G,0):a=00n Q}.
Since for every h, ke C.(G°) and fe C*(G, ¢) we have

hx f(x)= J h(xy) f(y™1) o(xpy, y~1) dA"(y) = h(r(x)) f(x)

[0

and

£ k(x) = [ fly) k(") o, =) di®9p) = flx) k(d(x))
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for all x, ye G, it is ciear that I(Q')' is a C*(G°)-bimodule in C*(G, o). The
space /(Q) is norm closed in C*(G, o). To see this, suppose that {f,} is a
sequence in /(Q) converging to some fe€ C*(G, ¢) in norm. Then we have

A=l <Ifa—f1 =0

This implies that {f,} is pointwise convergent to f on G. Hence, we must
- have feI(Q).

Given U a norm closed C*(G°)-bimodule in C*(G, o), it is clear that
A< I(Q(W)). Our first goal is to show that UW=I(Q(A)), which is a
generalization of [10, Theorem 3.107. First we need to generalize some
lemmas in [ 10, Sect. 37.

LEMMA A3, Let s be a clopen G-set in G. Then the map [ — f|,, the
restriction of f to s, is a contractive linear map on C*(G, o).

Proof. Let s be a clopen G-set. If fe C.(G, o), it is clear that /|, has a
compact support K contained in the G-set s. From Proposition A.2,

FANEA VAN PES VA PR FA R

~ Hence, the map f '—>f |, is a linear contraction on C.(G, o) and has a
natural extension to a linear contraction on C*(G, d). §

Next, we note that Lemma 3.2 through Proposition 3.6 in [10] are also
valid when we replace the condition “z is a compact open G-set” by “t is

a clopen G-set.” Thus, we simply state the generalized Proposition 3.6 in
[10] as follows.

PROPOSITION A.4. Let U be a norm closed C*(G°)-bimodule in C*(G, o).
For every ae W and any clopen G-set s, we have a|,e .

Let O be a closed subset of the groupoid G and Q¢= G\Q. We denote
C.(Q°) the space of all f'e I(Q) with compact support supp(/f)< Q¢ and we
denote I.(Q) the space of all fe I(Q) with compact support. It is clear that
C(09)<cI(Q)=(Q). In general C.(Q°) 1s a proper subspace of I.(Q)
since we might have fe.(Q) such that supp(f)n Q # . The following
lemma shows that these two spaces have the same norm closure when the
groupoid G admits a cover of clopen G-sets. Our discussion differs from
that given in [10, Proposition 3.8].

LEMMa AS. C.(Q°)™ =1.(0)". ;

Proof. We only need to show that every fel.(Q) is contained in
C.(0°)~. Given feI.(Q), the support of f can be covered by finitely many
clopen G-sets, say s;,..,s,. We may assume that sy, ..,s, are pairwise
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disjoint and thus we can write =3 f|,. Obviously each f|,e C*(G, o)
by Lemma A.3 and f|,, =0 on.Q. Hence, we may assume f e/ (Q) with
supp(f) contained in a clopen G-set s. Let O, = {x€ G: f(x)+#0}. Thus O
is an open subset of s Q¢ with the closure O; = supp(f). Since r(Oy) is
an open subset of G, it is s-compact. Hence, we can choose an increasing
sequence {U,} of open subsets of r(O,) such that r(Oy) =, U, and for
every n, U, is compact and contained in U,,,. Therefore there is a
sequence of functions &, € C.(r(O,)) such that '

U;;— </,ln"< Un+1'

We get h, * fe C.(Q°) with compact support contained in the open G-set
O,. Since f € Cy(O;), we have, by Proposition A.2, that

”hn *f__f” = ”h” *f——-f][oo - 0.
This shows fe C.(Q°)”. §

LEMMA A.6. For every norm closed C*(G°)-bimodule W in C*(G, o), we
have

C(QA))=U.

Proof. Given fe C.(Q(N)), we may assume, without loss of generality,
that the support K of f is contained in a clopen G-set s. Let sp=
sNO(W) 2K For any xeK, there is an element a,eU such that
a.(x)>0. It follows from Proposition A.4 that we can get a, with the sup-
port contained in the clopen G-set s. It is clear that there is an open subset
V. of s, containing {x} such that a,(x)>e,>0 on V,. Since K is com-
pact, there are finitely many such Vs covering K, say Vi,.. V,. Let
V=" ,V,and a=3Y"_, a;,eU. Then we have K& V<spanda>¢gon V
for some ¢>0.

We can find a function ue C*(G°) with +(K)<u<r(¥) and define a
function he C,.(G°) by

h(t, t)=u(t, t)-

a(t, s(t))

for all (¢, ) e r(v) and A(t, t) =0 otherwise. Since U is a C*(G°)-bimodule,
we get h+xaeW with hxa(x)=1 for all xeK and A *a(x)=0 for all
xeG\V. Define g(t,t)=f(t s(t)). Then geC*(G°). Thus, we have
f=gx(h+xa)eW. § .

THEOREM A.7. For every norm closed C*(G°)-bimodule W in C*(G, o)
we have

U =I(Q(N)).
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' For every closed subset Q, of G, we have

Q(I(Q0)) = Qo-

Proof. Given a norm closed C *(G°)-bimodule A in C*(G, o), it follows
from LemmaA.6 that C.(Q(U))"cU<S(Q(A)). By LemmaAlS,
- C(0(U))” =1.(Q(A)) ™. It remains to show that I (Q(A))~ = I(Q(A)).
But this has been proved by Muhly and Solel [10, 3.9 and 3.10].

The second statement is Lemma 3.11 in [10].

Theorem A.7 establisk&d a one-to-ome correspondence between the nerm
closed C*(G°)-bimodules A in C*(G, o) and the closed subsets Q(U)
in G. Given an open subset P in G, we write A(P)=I(G\P). Let
P(A)=G\Q(W). This gives a one-to-one correspondence between the
norm closed C*(G°)-bimodules U in C*(G, o) and open subsets P(A) in
G, and it is easy to show that the correspondence preserves inclusion, i.e.,
if A, and A, are norm closed C*(G°)-bimodules in C*(G, o), then
A, <A, if and only if P(A,)< P(A,). In particular, C*(G°) = U if and
only if G° < P().

THEOREM AS8. Let A=A(P) a norm closed C*(G°)-bimodules in -
C*(G, o). We have

(1) A is a subalgebra of C*(G, o) containing C*(G°) if and only if P
is an open preoder in G. In this case, A*= AP™Y) and AnA*=
AP P ,

(2) A is a C*-subalgebra of C*(G, o) containing C*(G°) if and only
if P is an open subgroupoid in G.

(3) There is a one-to-one correspondence between all ideals J= A(P,)
of A= A(P) and open subsets P, of P satisfying P=P,;=P< P,.

Proof. Owing to Theorem A.7, (1) can be proved by using a similar
argument as that in [10, Theorem 4.1]. Part (2) follows from (1). Part (3)
is an easy generalization of [10, Lemma 4.3].
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