The Convexity of a Generalized Matrix Range

Yiu Tung Poon
Department of Mathematics
Iowa State University
Ames, Iowa 50011

Submitted by F. Uhlig

ABSTRACT

The purpose of this paper is to generalize the Toeplitz-Hausdorff theorem on the convexity of the classical numerical range to the matrix range.

1. INTRODUCTION

Given positive integers m, n, let $M_{m,n}$ denote the $m \times n$ complex matrices. We write M_n for $M_{n,n}$, and identify $M_{1,n}$ with \mathbb{C}^n, the complex n-tuples. Given $A = (a_{ij})$ in $M_{m,n}$, the conjugate transpose of A is $A^* = (\bar{a}_{ji})$ in $M_{n,m}$. A matrix $A \in M_n$ is called hermitian if $A = A^*$. Let H_n denote the hermitian matrices in M_n. A matrix $A \in H_n$ is said to be positive semidefinite if all eigenvalues of A are nonnegative. Let H_n^+ denote the positive semidefinite matrices in H_n. Let $(H_m)^p = \{(B_1, \ldots, B_p) : \exists i \in H_m \text{ for } i = 1, \ldots, p\}$. We identify H_1 with the real numbers \mathbb{R}. Then $V = (H_m)^p (\equiv \mathbb{R}^{pm^2})$ is a topological vector space. A subset $S \subset V$ is said to be convex if for any two points s_1, s_2 in S the line segment joining s_1 and s_2, $[\alpha s_1 + (1 - \alpha)s_2 : 0 \leq \alpha \leq 1]$, is contained in S. For $S \subseteq V$, let $\text{conv}(S)$ be the smallest convex set containing S. Let S be a closed subset of V. If the boundary of $\text{conv}(S)$ is contained in S, then we say that S has a convex boundary.

Let $A \in M_n$. The (classical) numerical range of A is given by

$$W(A) = \{xAx^* : x \in \mathbb{C}^n, xx^* = 1\}.$$
Toeplitz [13] showed that $W(A)$ has a convex boundary, and Hausdorff [8] proved that $W(A)$ is convex. If we write $A = A_1 + iA_2$, $A_1, A_2 \in H_n$, the hermitian decomposition of A, then the above result can be restated as

Theorem 1 (Toeplitz-Hausdorff). For all $A_1, A_2 \in H_n$, the set

$$W(A_1, A_2) = \left\{ (xA_1x^*, xA_2x^*) : x \in \mathbb{C}^n, xx^* = 1 \right\}.$$

is convex.

Given $A_1, A_2, \ldots, A_p \in H_n$, a natural generalization of $W(A_1, A_2)$ is

$$W(A_1, \ldots, A_p) = \left\{ (xA_1x^*, \ldots, xA_p x^*) : x \in \mathbb{C}^n, xx^* = 1 \right\}.$$

Hausdorff [8] has pointed out that Toeplitz’s method [13] can be used to show that $W(A_1, A_2, A_3)$ has a convex boundary. He also remarks that, in general $W(A_1, A_2, A_3)$ is not convex. However, it is shown by Au-Yeung and Poon [3] that if $n \geq 3$, then $W(A_1, A_2, A_3)$ is convex for every $A_1, A_2, A_3 \in H_n$. This result is a special case of the following

Theorem 2 (Au-Yeung and Poon [3]). If $1 \leq r \leq n - 1$ and $p < (r + 1)^2 - \delta_{n,r+1}$, then, for all $A_1, \ldots, A_p \in H_n$, the set

$$W^r(A_1, \ldots, A_p) = \left\{ \left(\sum_{i=1}^r x_i A_1 x_i^*, \ldots, \sum_{i=1}^r x_i A_p x_i^* \right) : x_i \in \mathbb{C}^n, \sum_{i=1}^r x_i x_i^* = 1 \right\}$$

is convex. Here, $\delta_{i,j}$ is the Kronecker delta.

Remark 3. It is easy to see that $W^r(A_1, \ldots, A_p)$ is convex iff for every $y_j \in \mathbb{C}^n$, $j = 1, \ldots, N$, such that $\sum_{j=1}^N y_j y_j^* = 1$, there exist $x_i \in \mathbb{C}^n$, $i = 1, \ldots, r$, such that $\sum_{i=1}^r x_i x_i^* = 1$ and $\sum_{i=1}^r x_i A_k x_i^* = \sum_{j=1}^N y_j A_k y_j^*$ for all $1 \leq k \leq p$. Theorem 2 is shown [3] to be equivalent to a result of Bohnenblust on joint positiveness of matrices [4]. By the latter result, the bound for p is best possible in the sense that if $p \geq (r + 1)^2 - \delta_{n,r+1}$, then there exist $A_1, \ldots, A_p \in H_n$ such that $W^r(A_1, \ldots, A_p)$ is not convex.

In the next section, we will give a generalization of Theorem 2 for the matrix range. For an explanation of this term, the reader should refer to Remark 19. This has a close connection with completely positive maps between matrix algebras, from which we get our motivation and techniques.
GENERALIZED MATRIX RANGE

(see [6, 10]). In Section 3, we will discuss this connection and list some open questions.

2. CONVEXITY IN THE MATRIX RANGE

For each $B = (B_1, \ldots, B_p) \in (H_m)^p$ and $X \in M_m$, let $XBX^* = (XB_1X^*, \ldots, XB_pX^*)$. A subset S of $(H_m)^p$ is said to be matricially convex if for every S_1, \ldots, S_N in S, we have $\Sigma_{i=1}^N X_i S_i X_i^* \in S$ for every X_1, \ldots, X_N in M_m such that $\Sigma_{i=1}^N X_i X_i^* = I_m$, the $m \times m$ identity matrix. A matricial convex subset is convex. In fact, for subsets of $(H_1)^p (\equiv \mathbb{R}^p)$, matricial convexity is the same as the usual convexity. However, for $m > 1$, a convex subset of $(H_m)^p$ need not be matricially convex. For example, for $m > 1$ and $p = 1$ take $S = \{ I_{m-1} \oplus 0 \}$.

The main result in this paper is the following generalization of Theorem 2.

THEOREM 4. If $1 \leq r \leq mn - 1$ and $m^2(p + 1) - 1 < (r + 1)^2 - \delta_{mn, r+1}$, then for all $A_1, \ldots, A_p \in H_n$, the set

$$W_m^r(A_1, \ldots, A_p)$$

$$= \left\{ \left(\sum_{i=1}^r X_i A_1 X_i^*, \ldots, \sum_{i=1}^r X_i A_p X_i^* \right) : X_i \in M_{m,n} \text{ and } \sum_{i=1}^r X_i X_i^* = I_m \right\}$$

is matricially convex.

The proof of Theorem 4 is obtained by reducing to the case when $m = 1$ and applying Theorem 2. To simplify notation in subsequent arguments, we need some definitions.

DEFINITION 5. For each $m \geq 1$ and $1 \leq j, k \leq m$ let F_{jk}^m be the matrix in M_m with 1 as the (j, k)th entry and 0 elsewhere. Define for $1 \leq j, k \leq m$

$$E_{jk}^m = \begin{cases} (F_{jk}^m + F_{kj}^m) & \text{if } 1 \leq j < k \leq m, \\ F_{jj}^m & \text{if } 1 \leq j = k \leq m, \\ \sqrt{-1} (F_{jk}^m - F_{kj}^m) & \text{if } 1 \leq k < j \leq m. \end{cases}$$

Then each E_{jk}^m is in H_m, and $\{ E_{jk}^m : 1 \leq j, k \leq m \}$ is a basis of M_m over \mathbb{C}.

DEFINITION 6. Suppose \(X = (x_{ij}) \in M_{m,n} \). Define \(v(X) \in M_{1,mn} \) by

\[
v(X) = \frac{1}{\sqrt{n}} \left(x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, \ldots, x_{m1}, \ldots, x_{mn} \right).
\]

Conversely, if \(x = [x^1, \ldots, x^m] \in M_{1,mn} \) with \(x^i \in M_{1,n} \) for \(1 \leq i \leq m \), define \(V(x) \in M_{m,n} \) by

\[
V(x) = \sqrt{n} \begin{bmatrix}
 x^1 \\
 \vdots \\
 x^m
\end{bmatrix}.
\]

We note that for \(x \in M_{1,mn} \) and \(X \in M_{m,n} \), \(v(V(x)) = x \) and \(V(v(X)) = X \).

Let \(B = (b_{kl}) \in M_n \), \(A = (a_{ij}) \in M_m \); then \(B \otimes A \) will denote the Kronecker product of \(B \) and \(A \).

LEMMA 7. Suppose \(X_i, Y_j \in M_{m,n} \) for \(1 \leq i \leq N_1 \), \(1 \leq j \leq N_2 \), and \(A \in H_n \). Let \(x_i = v(X_i) \), \(y_j = v(Y_j) \) for \(1 \leq i \leq N_1 \), \(1 \leq j \leq N_2 \). Then the following two conditions are equivalent:

1. \[
\sum_{i=1}^{N_1} X_i A X_i^* = \sum_{j=1}^{N_2} Y_j A Y_j^*,
\]

2. \[
\sum_{i=1}^{N_1} x_i (E_{kl} \otimes A) x_i^* = \sum_{j=1}^{N_2} y_j (E_{kl} \otimes A) y_j \quad \text{for} \quad 1 \leq k, l \leq m.
\]

Proof. For \(1 \leq k \leq m \), let \(e_k \) be the \(k \)th unit vector. Then the \((k,l)\)th entry of \(\sum_{i=1}^{N_1} X_i A X_i^* \) is given by

\[
e_k \left(\sum_{i=1}^{N_1} X_i A X_i^* \right) e_l^* = n \sum_{i=1}^{N_1} x_i (F_{kl} \otimes A) x_i^*.
\]
thus we have

\[
\sum_{i=1}^{N_1} X_i AX_i^* = \sum_{j=1}^{N_2} Y_j AY_j^* \\
\Leftrightarrow \sum_{i=1}^{N_1} x_i (F_{kl}^m \otimes A) x_i^* = \sum_{j=1}^{N_2} y_j (F_{kl}^m \otimes A) y_j^* \quad \text{for} \quad 1 \leq k, l \leq m
\]

\[
\Leftrightarrow \sum_{i=1}^{N_1} x_i (E_{kl}^m \otimes A) x_i^* = \sum_{j=1}^{N_2} y_j (E_{kl}^m \otimes A) y_j^* \quad \text{for} \quad 1 \leq k, l \leq m. \quad \square
\]

Proof of Theorem 4. Suppose \(1 \leq r \leq mn - 1, \ m^2(p + 1) - 1 < (r + 1)^2 - \delta_{nm,r+1}, \) and \(A_1, \ldots, A_p \in H_n. \) It suffices to prove that for every \(Y_1, \ldots, Y_N \in M_{m,n} \) with \(\sum_{j=1}^N Y_j Y_j^* = I_m, \) there exist \(X_1, \ldots, X_r \in M_{m,n} \) such that

\[
\sum_{i=1}^r X_i X_i^* = I_m
\]

and

\[
\sum_{i=1}^r X_i A_k X_i^* = \sum_{j=1}^N Y_j A_k Y_j^* \quad \text{for} \quad 1 \leq k \leq p.
\]

Let \(y_j = v(Y_j) \) for \(1 \leq j \leq N. \) Then we have \(\sum_{j=1}^N y_j y_j^* = 1. \) Consider the \(m^2(p + 1) - 1 \) hermitian matrices

\[
E_{jk}^m \otimes I_n, \quad 1 \leq j, k \leq m, \quad (j, k) \neq (m, m),
\]

and

\[
E_{jk}^m \otimes A_l, \quad 1 \leq j, k \leq m, \quad 1 \leq l \leq p.
\]

Since \(m^2(p + 1) - 1 < (r + 1)^2 - \delta_{nm,r+1}, \) we can apply Theorem 2 to the above \(m^2(p + 1) - 1 \) matrices and get \(x_i \in M_{1,mn} \) for \(1 \leq i \leq r \) such that

\[
\sum_{i=1}^r X_i x_i^* = 1, \tag{3}
\]

\[
\sum_{i=1}^r x_i (E_{jk}^m \otimes I_n) x_i^* = \sum_{j=1}^N y_j (E_{jk}^m \otimes I_n) y_j^* \quad \text{for all} \quad 1 \leq j, k \leq m, \quad (j, k) \neq (m, m), \tag{4}
\]

\[
\sum_{i=1}^r x_i (E_{jk}^m \otimes A_l) x_i^* = \sum_{j=1}^N y_j (E_{jk}^m \otimes A_l) y_j^* \quad \text{for all} \quad 1 \leq j, k \leq m, \quad 1 \leq l \leq p. \tag{5}
\]
Since
\[1 = \sum_{i=1}^{r} x_i x_i^* = \sum_{k=1}^{m} \sum_{i=1}^{r} x_i (E_k^{m} \otimes I_n) x_i^* , \]
we have
\[\sum_{i=1}^{r} x_i (E_{mm}^{m} \otimes I_n) x_i^* = 1 - \sum_{k=1}^{m-1} \sum_{i=1}^{r} x_i (E_k^{m} \otimes I_n) x_i^* \]
\[= \sum_{j=1}^{N} y_j y_j^* - \sum_{k=1}^{m-1} \sum_{i=1}^{N} y_j (E_k^{m} \otimes I_n) y_j^* \]
\[= \sum_{j=1}^{N} y_j (E_{mm}^{m} \otimes I_n) y_j^* . \]

Thus, condition (4) also holds for \((j, k) = (m, m)\). Let \(X_i = V(x_i)\) for \(1 \leq i \leq r\). By Lemma 7, we have
\[\sum_{i=1}^{r} X_i X_i^* = I_m \]
and
\[\sum_{i=1}^{r} X_i A_i X_i^* = \sum_{j=1}^{N} Y_j A_j Y_j^* \quad \text{for} \quad 1 \leq l \leq p. \quad \square \]

In [3], Au-Yeung and Poon proved the following result which is closely related to Theorem 2.

Theorem 8. Let \(1 \leq r \leq n - 1\) and \(p < (r + 1)^2\). Then for all \(A_1, \ldots, A_p \in H_n\), the set
\[\hat{W}^r(A_1, \ldots, A_p) = \left\{ \left(\sum_{i=1}^{r} x_i A_i x_i^*, \ldots, \sum_{i=1}^{r} x_i A_p x_i^* \right) : x_i \in \mathbb{C}^n \right\} \]
is convex.

Remark 9. The bound \((r + 1)^2\) in Theorem 8 is also best possible. (See Remark 3.)
GENERALIZED MATRIX RANGE

Using arguments similar to the proof of Theorem 4, we have

THEOREM 10. If $1 \leq r \leq nm - 1$ and $m^2 p < (r + 1)^2$, then for every $A_1, \ldots, A_p \in H_n$, the set

$$\hat{W}_m^r(A_1, \ldots, A_p) = \left\{ \left(\sum_{i=1}^r X_i A_1 X_i^*, \ldots, \sum_{i=1}^r X_i A_p X_i^* \right) : X_i \in M_{m,n} \right\}$$

is matricially convex.

REMARK 11. Let $A_1, \ldots, A_p \in H_n$. Since the convexity of $W^r(A_1, \ldots, A_p)$ implies the convexity of $\hat{W}_m^r(A_1, \ldots, A_p)$, Theorem 8 follows immediately from Theorem 4 except when $r = n - 1$. However, for $m > 1$, the matricial convexity of $\hat{W}_m^r(A_1, \ldots, A_p)$ does not follow from that of $W_m^r(A_1, \ldots, A_p)$.

Let S_n be the real $n \times n$ matrices. Theorem 4 and 10 also hold (see [3]) for $A_1, \ldots, A_p \in S_n$ [with $x_i \in \mathbb{R}^n$ and $(r + 1)^2$ replaced by $r(r + 1)/2$]. Let $M_{n,m}(\mathbb{R})$ be the real $n \times m$ matrices. In the following two theorems, we use real matrices for the definition of matricial convexity.

THEOREM 12. If

$$1 \leq r \leq nm - 1 \quad \text{and} \quad \frac{m(m + 1)}{2} (p + 1) - 1 < \frac{r(r + 1)}{2} - \delta_{nm,r+1},$$

then for all $A_1, \ldots, A_p \in S_n$, the set

$$\left\{ \left(\sum_{i=1}^r X_i A_1 X_i^t, \ldots, \sum_{i=1}^r X_i A_p X_i^t \right) : X_i \in M_{m,n}(\mathbb{R}), \sum_{i=1}^r X_i X_i^t = I_m \right\}$$

is matricially convex.

THEOREM 13. If $1 \leq r \leq nm - 1$ and $m(m + 1)p < r(r + 1)$, then for all $A_1, \ldots, A_p \in S_n$, the set

$$\left\{ \left(\sum_{i=1}^r X_i A_1 X_i^t, \ldots, \sum_{i=1}^r X_i A_p X_i^t \right) : X_i \in M_{n,m}(\mathbb{R}) \right\}$$

is matricially convex.
3. CONNECTIONS WITH COMPLETELY POSITIVE MAPS

Given a complex linear map \(\Phi : M_n \to M_m \), we define, for each \(N \geq 1 \), \(\Phi_N : M_{nN} \to M_{mN} \) by

\[
\Phi_N(A_{ij}) = \begin{pmatrix} \Phi(A_{ij}) \end{pmatrix},
\]

where the matrix \(A \) in \(M_{nN} \) is partitioned into \(n \times n \) blocks \(A_{ij}, 1 \leq i, j \leq N \). The map \(\Phi \) is said to be \(N \)-positive if \(\Phi_N(H^+_{nN}) \subseteq H^+_{mN} \), and completely positive if \(\Phi \) is \(N \)-positive for every \(N \geq 1 \). Let \(\text{CP}(n, m) \) denote the set of all completely positive maps from \(M_n \) to \(M_m \). For \(m = 1 \), every 1-positive map is completely positive. For \(m > 1 \), there exist maps that are \(N = 1 \)-positive but not \(N \)-positive (see Choi [5]), and we have

Proposition 14 (Choi [6]). Let \(\Phi \) be a linear map from \(M_n \) to \(M_m \). Then \(\Phi \) is completely positive if and only if there exist \(X_1, \ldots, X_r \in M_{m,n} \) such that

\[
\Phi(A) = \sum_{i=1}^{r} X_i AX_i^* \quad \text{for all} \quad A \in M_n.
\]

For each \(r \geq 1 \), let \(\text{CP}^r(n, m) \) be the set of all \(\Phi \) in \(\text{CP}(m, n) \) such that there exist \(X_1, \ldots, X_r \in M_{m,n} \) satisfying \(\Phi(A) = \sum_{i=1}^{r} X_i AX_i^* \) for all \(A \in M_n \). Given \(A_1, \ldots, A_p \) in \(H_n \), it is easy to see that \(\tilde{\Phi}_m(A_1, \ldots, A_p) \) is matricially convex if and only if for every \(\Phi \in \text{CP}(n, m) \) there exists \(\Psi \in \text{CP}^r(n, m) \) such that \(\Psi(A_i) = \Phi(A_i) \) for all \(1 \leq i \leq p \). Following Remark 9, for fixed \(n, m, p \), we are interested in finding the smallest possible \(r = r(n, m, p) \) satisfying

\[(6) \text{ For every subspace } \mathcal{A} \text{ of } H_n \text{ with } \dim \mathcal{A} = p \text{ and } \Phi \in \text{CP}(n, m), \text{ there exists } \Psi \in \text{CP}^r(n, m) \text{ such that } \Psi(A) = \Phi(A) \text{ for all } A \in \mathcal{A}. \]

In [9], Narcowich and Ward showed that if \(r = \left\lfloor m \sqrt{p} \right\rfloor \), then (6) is satisfied. Here, \([x]\) denotes the smallest integer less than or equal to \(x \). The bound \(\left\lfloor m \sqrt{p} \right\rfloor \) can also be obtained from Theorem 10. When \(I_n \in \mathcal{A}, \) Theorem 4 gives a slightly lower bound:

Proposition 15. Suppose \(p < n^2 \) and \(r = \left\lceil \sqrt{m^2 p - 1} \right\rceil \). Let \(\mathcal{A} \) be a \(p \)-dimensional subspace of \(H_n \) containing \(I_n \). Then for every \(\Phi \in \text{CP}(n, m) \) there exists \(\Psi \in \text{CP}^r(n, m) \) such that \(\Psi(A) = \Phi(A) \) for all \(A \in \mathcal{A} \).

Proof. Let \(\{A_1, \ldots, A_{p-1}, I_n\} \) be a basis of \(\mathcal{A} \). When \(p < n^2 \) and \(r = \left\lceil \sqrt{m^2 p - 1} \right\rceil \), we have \(r < nm - 1 \) and \(m^2(p - 1) < (r + 1)^2 \). So we can apply Theorem 4 to \(A_1, \ldots, A_{p-1} \).
Remark 16. If \(p = n^2 \), it follows from a result of Choi [6, Remark 4] that
\[r(n, m, p) = nm. \]

Remark 17. From Remark 2.2 in [9], we have
\[m \left\lfloor \sqrt{p} \right\rfloor \leq r(n, m, p) \leq \left[m \sqrt{p} \right]. \]
Thus, when \(p \) is a perfect square,
\[r(n, m, p) = m \sqrt{p}. \]

Remark 18. Except for the above results and some special cases, the best bounds for \(r \) in Theorems 4 and 10 remain unknown.

Remark 19. The notion of completely positive maps on operator space is due to Stinespring [11]. Since then, it has been recognized that completely positive maps are the natural generalization of positive linear functionals. (See Stinespring [11], Størmer [12], and Arveson [1, 2]). Let \(\mathcal{H} \) be a (possibly infinite dimensional) Hilbert space, and \(A \in \mathcal{B}(\mathcal{H}) \) the set of all bounded linear operators on \(\mathcal{H} \). For each \(m \), let
\[W_m(A) = \{ \Phi(A) : \Phi \text{ is a completely positive map from } \mathcal{B}(\mathcal{H}) \text{ to } M_m, \Phi(I) = I_m \}. \]

The sequence \(\{W_m(A) : m = 1, 2, \ldots \} \) is called the matrix range of \(A \). This definition is due to Arveson in [2], where he proves that for irreducible compact \(A \), the matrix range is a completely invariant for unitary equivalence. This is part of the motivation for our study of \(W_m(A_1, \ldots, A_p) \). A very detailed list of references for completely positive maps and the matrix range can be found in Paulsen [10] and Farenick [7].

REFERENCES

4. F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.

Received 29 June 1990; final manuscript accepted 12 December 1990