The Convexity of a Generalized Matrix Range

Yiu Tung Poon
Department of Mathematics
Iowa State University
Ames, Iowa 50011

Submitted by F. Uhlig

ABSTRACT

The purpose of this paper is to generalize the Toeplitz-Hausdorff theorem on the convexity of the classical numerical range to the matrix range.

1. INTRODUCTION

Given positive integers m, n, let $M_{m,n}$ denote the $m \times n$ complex matrices. We write M_n for $M_{n,n}$, and identify $M_{1,n}$ with \mathbb{C}^n , the complex n-tuples. Given $A = (a_{ij})$ in $M_{m,n}$, the conjugate transpose of A is $A^* = (\bar{a}_{ji})$ in $M_{n,m}$. A matrix $A \in M_n$ is called hermitian if $A = A^*$. Let H_n denote the hermitian matrices in M_n . A matrix $A \in H_n$ is said to be positive semidefinite if all eigenvalues of A are nonnegative. Let H_n^+ denote the positive semidefinite matrices in H_n . Let $(H_m)^p = \{(B_1, \ldots, B_p) : B_i \in H_m$ for $i = 1, \ldots, p\}$. We identify H_1 with the real numbers \mathbb{R} . Then $V = (H_m)^p \ (\cong \mathbb{R}^{pm^2})$ is a topological vector space. A subset $S \subset V$ is said to be convex if for any two points s_1 , s_2 in S the line segment joining s_1 and s_2 , $\{\alpha s_1 + (1 - \alpha)s_2 : 0 \leqslant \alpha \leqslant 1\}$, is contained in S. For $S \subseteq V$, let $\operatorname{conv}(S)$ be the smallest convex set containing S. Let S be a closed subset of V. If the boundary of $\operatorname{conv}(S)$ is contained in S, then we say that S has a convex boundary.

Let $A \in M_n$. The (classical) numerical range of A is given by

$$W(A) = \{ xAx^* : x \in \mathbb{C}^n, xx^* = 1 \}.$$

664 YIU TUNG POON

Toeplitz [13] showed that W(A) has a convex boundary, and Hausdorff [8] proved that W(A) is convex. If we write $A = A_1 + iA_2$, A_1 , $A_2 \in H_n$, the hermitian decomposition of A, then the above result can be restated as

Theorem 1 (Toeplitz-Hausdorff). For all A_1 , $A_2 \in H_n$, the set

$$W(A_1, A_2) = \{(xA_1x^*, xA_2x^*) : x \in \mathbb{C}^n, xx^* = 1\}.$$

is convex.

Given $A_1, A_2, \ldots, A_p \in H_n$, a natural generalization of $W(A_1, A_2)$ is

$$W(A_1, \ldots, A_p) = \{(xA_1x^*, \ldots, xA_px^*) : x \in \mathbb{C}^n, xx^* = 1\}.$$

Hausdorff [8] has pointed out that Toeplitz's method [13] can be used to show that $W(A_1, A_2, A_3)$ has a convex boundary. He also remarks that, in general $W(A_1, A_2, A_3)$ is not convex. However, it is shown by Au-Yeung and Poon [3] that if $n \ge 3$, then $W(A_1, A_2, A_3)$ is convex for every $A_1, A_2, A_3 \in H_n$. This result is a special case of the following

THEOREM 2 (Au-Yeung and Poon [3]). If $1 \le r \le n-1$ and $p < (r+1)^2 - \delta_{n, r+1}$, then, for all $A_1, \ldots, A_p \in H_n$, the set

$$W^{r}(A_{1},...,A_{p}) = \left\{ \left(\sum_{i=1}^{r} x_{i} A_{1} x_{i}^{*},..., \sum_{i=1}^{r} x_{i} A_{p} x_{i}^{*} \right) : x_{i} \in \mathbb{C}^{n}, \sum_{i=1}^{r} x_{i} x_{i}^{*} = 1 \right\}$$

is convex. Here, $\delta_{i,j}$ is the Kronecker delta.

REMARK 3. It is easy to see that $W^r(A_1,\ldots,A_p)$ is convex iff for every $y_j \in \mathbb{C}^n$, $j=1,\ldots,N$, such that $\sum_{j=1}^N y_j y_j^* = 1$, there exist $x_i \in \mathbb{C}^n$, $i=1,\ldots,r$, such that $\sum_{i=1}^r x_i x_i^* = 1$ and $\sum_{i=1}^r x_i A_k x_i^* = \sum_{j=1}^N y_j A_k y_j^*$ for all $1 \leq k \leq p$. Theorem 2 is shown [3] to be equivalent to a result of Bohnenblust on joint positiveness of matrices [4]. By the latter result, the bound for p is best possible in the sense that if $p \geq (r+1)^2 - \delta_{n,r+1}$, then there exist A_1,\ldots,A_p in H_n such that $W^r(A_1,\ldots,A_p)$ is not convex.

In the next section, we will give a generalization of Theorem 2 for the matrix range. For an explanation of this term, the reader should refer to Remark 19. This has a close connection with completely positive maps between matrix algebras, from which we get our motivation and techniques

(see [6, 10]). In Section 3, we will discuss this connection and list some open questions.

2. CONVEXITY IN THE MATRIX RANGE

For each $\underline{B}=(B_1,\ldots,B_p)\in (H_m)^p$ and $X\in M_m$, let $X\underline{B}X^*=(XB_1X^*,\ldots,XB_pX^*)$. A subset S of $(H_m)^p$ is said to be matricially convex if for every S_1,\ldots,S_N in S, we have $\sum_{i=1}^N X_i S_i X_i^* \in S$ for every X_1,\ldots,X_N in M_m such that $\sum_{i=1}^N X_i X_i^* = I_m$, the $m\times m$ identity matrix. A matricial convex subset is convex. In fact, for subsets of $(H_1)^p$ ($\cong \mathbb{R}^p$), matricial convexity is the same as the usual convexity. However, for m>1, a convex subset of $(H_m)^p$ need not be matricially convex. For example, for m>1 and p=1 take $S=\{I_{m-1}\oplus 0\}$.

The main result in this paper is the following generalization of Theorem 2.

THEOREM 4. If $1 \le r \le mn-1$ and $m^2(p+1)-1 < (r+1)^2-\delta_{mn,\,r+1}$, then for all $A_1,\ldots,A_p \in H_n$, the set

$$W_m^r(A_1,\ldots,A_p)$$

$$= \left\{ \left(\sum_{i=1}^{r} X_{i} A_{1} X_{i}^{*}, \dots, \sum_{i=1}^{r} X_{i} A_{p} X_{i}^{*} \right) : X_{i} \in M_{m, n} \text{ and } \sum_{i=1}^{r} X_{i} X_{i}^{*} = I_{m} \right\}$$

is matricially convex.

The proof of Theorem 4 is obtained by reducing to the case when m=1 and applying Theorem 2. To simplify notation in subsequent arguments, we need some definitions.

DEFINITION 5. For each $m \ge 1$ and $1 \le j, k \le m$ let F_{jk}^m be the matrix in M_m with 1 as the (j, k)th entry and 0 elsewhere. Define for $1 \le j, k \le m$

$$E_{jk}^{m} = \begin{cases} \left(F_{jk}^{m} + F_{kj}^{m}\right) & \text{if} \quad 1 \leq j < k \leq m, \\ F_{jj}^{m} & \text{if} \quad 1 \leq j = k \leq m, \\ \sqrt{-1}\left(F_{jk}^{m} - F_{kj}^{m}\right) & \text{if} \quad 1 \leq k < j \leq^{i} m. \end{cases}$$

Then each E_{jk}^m is in H_m , and $\{E_{jk}^m: 1 \leq j, k \leq m\}$ is a basis of M_m over \mathbb{C} .

Definition 6. Suppose $X = (x_{ij}) \in M_{m,n}$. Define $v(X) \in M_{1,mn}$ by

$$v(X) = \frac{1}{\sqrt{n}}(x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2n}, \ldots, x_{m1}, \ldots, x_{mn}).$$

Conversely, if $x = [\underline{x}^1, \dots, \underline{x}^m] \in M_{1, mn}$ with $\underline{x}^i \in M_{1, n}$ for $1 \le i \le m$, define $V(x) \in M_{m, n}$ by

$$V(x) = \sqrt{n} \begin{bmatrix} \frac{x}{1} \\ \vdots \\ \frac{x}{m} \end{bmatrix}.$$

We note that for $x \in M_{1, mn}$ and $X \in M_{m, n}$, v(V(x)) = x and V(v(X)) = X. Let $B = (b_{kl}) \in M_n$, $A = (a_{ij}) \in M_m$; then $B \otimes A$ will denote the Kronecker product of B and A.

Lemma 7. Suppose $X_i, Y_j \in M_{m,n}$ for $1 \le i \le N_1, 1 \le j \le N_2$, and $A \in H_n$. Let $x_i = v(X_i), \ y_j = v(Y_j)$ for $1 \le i \le N_1, \ 1 \le j \le N_2$. Then the following two conditions are equivalent:

(1)
$$\sum_{i=1}^{N_1} X_i A X_i^* = \sum_{j=1}^{N_2} Y_j A Y_j^*,$$

(2)
$$\sum_{i=1}^{N_1} x_i (E_{kl}^m \otimes A) x_i^* = \sum_{j=1}^{N_2} y_j (E_{kl}^m \otimes A) y_j \quad \text{for } 1 \leq k, l \leq m.$$

Proof. For $1 \le k \le m$, let e_k be the kth unit vector. Then the (k, l)th entry of $\sum_{i=1}^{N_1} X_i A X_i^*$ is given by

$$e_k \left(\sum_{i=1}^{N_1} X_i A X_i^* \right) e_l^* = n \sum_{i=1}^{N_1} x_i (F_{kl}^m \otimes A) x_i^*.$$

thus we have

$$\sum_{i=1}^{N_1} X_i A X_i^* = \sum_{j=1}^{N_2} Y_j A Y_j^*$$

$$\Leftrightarrow \sum_{i=1}^{N_1} x_i \left(F_{kl}^m \otimes A \right) x_i^* = \sum_{j=1}^{N_2} y_j \left(F_{kl}^m \otimes A \right) y_j^* \quad \text{for } 1 \leqslant k, l \leqslant m$$

$$\Leftrightarrow \sum_{i=1}^{N_1} x_i \left(E_{kl}^m \otimes A \right) x_i^* = \sum_{j=1}^{N_2} y_j \left(E_{kl}^m \otimes A \right) y_j^* \quad \text{for } 1 \leqslant k, l \leqslant m.$$

Proof of Theorem 4. Suppose $1 \leq r \leq mn-1$, $m^2(p+1)-1 < (r+1)^2-\delta_{nm,\,r+1}$, and $A_1,\ldots,A_p \in H_n$. It suffices to prove that for every $Y_1,\ldots,Y_N \in M_{m,\,n}$ with $\sum_{j=1}^N Y_j Y_j^* = I_m$, there exist $X_1,\ldots,X_r \in M_{m,\,n}$ such that

$$\sum_{i=1}^{r} X_i X_i^* = I_m$$

and

$$\sum_{i=1}^{r} X_{i} A_{k} X_{i}^{*} = \sum_{j=1}^{N} Y_{j} A_{k} Y_{j}^{*} \quad \text{for} \quad 1 \leq k \leq p.$$

Let $y_j = v(Y_j)$ for $1 \le j \le N$. Then we have $\sum_{j=1}^N y_j y_j^* = 1$. Consider the $m^2(p+1) - 1$ hermitian matrices

$$E_{jk}^m \otimes I_n, \qquad 1 \leq j, k \leq m, \quad (j, k) \neq (m, m),$$

and

$$E_{jk}^m \otimes A_l$$
, $1 \leq j, k \leq m$, $1 \leq l \leq p$.

Since $m^2(p+1)-1<(r+1)^2-\delta_{nm,\,r+1}$, we can apply Theorem 2 to the above $m^2(p+1)-1$ matrices and get $x_i\in M_{1,\,mn}$ for $1\leqslant i\leqslant r$ such that

$$(3) \quad \sum_{i=1}^r x_i x_i^* = 1,$$

$$(4) \quad \sum_{i=1}^{r} x_{i} \left(E_{jk}^{m} \otimes I_{n} \right) x_{i}^{*} = \sum_{j=1}^{N} y_{j} \left(E_{jk}^{m} \otimes I_{n} \right) y_{j}^{*}$$

for all
$$1 \le j, k \le m, (j, k) \ne (m, m),$$

$$(5) \quad \sum_{i=1}^{r} x_{i} \left(E_{jk}^{m} \otimes A_{l} \right) x_{i}^{*} = \sum_{j=1}^{N} y_{j} \left(E_{jk}^{m} \otimes A_{l} \right) y_{j}^{*}$$

for all $1 \le j, k \le m, 1 \le l \le p$.

Since

$$1 = \sum_{i=1}^{r} x_{i} x_{i}^{*} = \sum_{k=1}^{m} \sum_{i=1}^{r} x_{i} (E_{kk}^{m} \otimes I_{n}) x_{i}^{*},$$

we have

$$\sum_{i=1}^{r} x_{i} (E_{mm}^{m} \otimes I_{n}) x_{i}^{*} = 1 - \sum_{k=1}^{m-1} \sum_{i=1}^{r} x_{i} (E_{kk}^{n} \otimes I_{n}) x_{i}^{*}$$

$$= \sum_{j=1}^{N} y_{j} y_{j}^{*} - \sum_{k=1}^{m-1} \sum_{i=1}^{N} y_{j} (E_{kk}^{m} \otimes I_{n}) y_{j}^{*}$$

$$= \sum_{j=1}^{N} y_{j} (E_{mm}^{m} \otimes I_{n}) y_{j}^{*}.$$

Thus, condition (4) also holds for (j, k) = (m, m). Let $X_i = V(x_i)$ for $1 \le i \le r$. By Lemma 7, we have

$$\sum_{i=1}^{r} X_i X_i^* = I_m$$

and

$$\sum_{i=1}^{r} X_i A_l X_i^* = \sum_{j=1}^{N} Y_j A_l Y_j^* \quad \text{for} \quad 1 \leqslant l \leqslant p.$$

In [3], Au-Yeung and Poon proved the following result which is closely related to Theorem 2.

Theorem 8. Let $1\leqslant r\leqslant n-1$ and $p<(r+1)^2.$ Then for all $A_1,\ldots,\,A_p\in H_n,$ the set

$$\hat{W}^{r}(A_{1},\ldots,A_{p}) = \left\{ \left(\sum_{i=1}^{r} x_{i} A_{1} x_{i}^{*}, \ldots, \sum_{i=1}^{r} x_{i} A_{p} x_{i}^{*} \right) : x_{i} \in \mathbb{C}^{n} \right\}$$

is convex.

Remark 9. The bound $(r+1)^2$ in Theorem 8 is also best possible. (See Remark 3.)

Using arguments similar to the proof of Theorem 4, we have

THEOREM 10. If $1 \le r \le nm - 1$ and $m^2p < (r+1)^2$, then for every $A_1, \ldots, A_p \in H_n$, the set

$$\hat{W}_{m}^{r}(A_{1},\ldots,A_{p}) = \left\{ \left(\sum_{i=1}^{r} X_{i}A_{1}X_{i}^{*},\ldots,\sum_{i=1}^{r} X_{i}A_{p}X_{i}^{*} \right) : X_{i} \in M_{m,n} \right\}$$

is matricially convex.

Remark 11. Let $A_1, \ldots, A_p \in H_n$. Since the convexity of $W^r(A_1, \ldots, A_p)$ implies the convexity of $\hat{W}^r(A_1, \ldots, A_p)$, Theorem 8 follows immediately from Theorem 4 except when r = n - 1. However, for m > 1, the matricial convexity of $\hat{W}_m^r(A_1, \ldots, A_p)$ does not follow from that of $W_m^r(A_1, \ldots, A_p)$.

Let S_n be the real $n \times n$ matrices. Theorem 4 and 10 also hold (see [3]) for $A_1, \ldots, A_p \in S_n$ [with $x_i \in \mathbb{R}^n$ and $(r+1)^2$ replaced by r(r+1)/2]. Let $M_{n,m}(\mathbb{R})$ be the real $n \times m$ matrices. In the following two theorems, we use real matrices for the definition of matricial convexity.

THEOREM 12. If

$$1 \leqslant r \leqslant nm-1$$
 and $\frac{m(m+1)}{2}(p+1)-1 < \frac{r(r+1)}{2}-\delta_{nm,r+1}$,

then for all $A_1, \ldots, A_p \in S_n$, the set

$$\left\{ \left(\sum_{i=1}^{r} X_{i} A_{1} X_{i}^{t}, \ldots, \sum_{i=1}^{r} X_{i} A_{p} X_{i}^{t} \right) : X_{i} \in M_{m, n}(\mathbb{R}), \sum_{i=1}^{r} X_{i} X_{i}^{t} = I_{m} \right\}$$

is matricially convex.

THEOREM 13. If $1 \le r \le nm-1$ and m(m+1)p < r(r+1), then for all $A_1, \ldots, A_p \in S_n$, the set

$$\left\{ \left(\sum_{i=1}^{r} X_{i} A_{1} X_{i}^{t}, \dots, \sum_{i=1}^{r} X_{i} A_{p} X_{i}^{t} \right) : X_{i} \in M_{n, m}(\mathbb{R}) \right\}$$

is matricially convex.

3. CONNECTIONS WITH COMPLETELY POSITIVE MAPS

Given a complex linear map $\Phi: M_n \to M_m$, we define, for each $N \ge 1$, $\Phi_N: M_{nN} \to M_{mN}$ by

$$\Phi_N(A_{ij}) = (\Phi(A_{ij})),$$

where the matrix A in M_{nN} is partitioned into $n \times n$ blocks A_{ij} , $1 \leqslant i, j \leqslant N$. The map Φ is said to be N-positive if $\Phi_N(H_{nN}^+) \subseteq H_{mN}^+$, and completely positive if Φ is N-positive for every $N \geqslant 1$. Let $\mathrm{CP}(n,m)$ denote the set of all completely positive maps from M_n to M_m . For m=1, every 1-positive map is completely positive. For m>1, there exist maps that are N-1-positive but not N-positive (see Choi [5]), and we have

PROPOSITION 14 (Choi [6]). Let Φ be a linear map from M_n to M_m . Then Φ is completely positive if and only if there exist $X_1, \ldots, X_r \in M_{m,n}$ such that

$$\Phi(A) = \sum_{i=1}^{r} X_i A X_i^*$$
 for all $A \in M_n$.

For each $r \ge 1$, let $\operatorname{CP}^r(n, m)$ be the set of all Φ in $\operatorname{CP}(m, n)$ such that there exist $X_1, \ldots, X_r \in M_{m,n}$ satisfying $\Phi(A) = \sum_{i=1}^r X_i A X_i^*$ for all $A \in M_n$. Given A_1, \ldots, A_p in H_n , it is easy to see that $\hat{W}_m^r(A_1, \ldots, A_p)$ is matricially convex if and only if for every $\Phi \in \operatorname{CP}(n, m)$ there exists $\Psi \in \operatorname{CP}^r(n, m)$ such that $\Psi(A_i) = \Phi(A_i)$ for all $1 \le i \le p$. Following Remark 9, for fixed n, m, p, we are interested in finding the smallest possible r = r(n, m, p) satisfying

(6) For every subspace \mathscr{A} of H_n with dim $\mathscr{A} = p$ and $\Phi \in \mathrm{CP}(n, m)$, there exists $\Psi \in \mathrm{CP}^r(n, m)$ such that $\Psi(A) = \Phi(A)$ for all $A \in \mathscr{A}$.

In [9], Narcowich and Ward showed that if $r = \lfloor m \sqrt{p} \rfloor$, then (6) is satisfied. Here, $\lfloor x \rfloor$ denotes the smallest integer less than or equal to x. The bound $\lfloor m \sqrt{p} \rfloor$ can also be obtained from Theorem 10. When $I_n \in \mathscr{A}$, Theorem 4 gives a slightly lower bound:

PROPOSITION 15. Suppose $p < n^2$ and $r = \left[\sqrt{m^2p - 1}\right]$. Let $\mathscr A$ be a p-dimensional subspace of H_n containing I_n . Then for every $\Phi \in \mathrm{CP}(n,m)$ there exists $\Psi \in \mathrm{CP}^r(n,m)$ such that $\Psi(A) = \Phi(A)$ for all $A \in \mathscr A$.

Proof. Let $\{A_1,\ldots,A_{p-1},I_n\}$ be a basis of \mathscr{A} . When $p< n^2$ and $r=\left[\sqrt{m^2p-1}\right]$, we have r< nm-1 and $m^2(p-1)<(r+1)^2$. So we can apply Theorem 4 to A_1,\ldots,A_{p-1} .

REMARK 16. If $p = n^2$, it follows from a result of Choi [6, Remark 4] that r(n, m, p) = nm.

REMARK 17. From Remark 2.2 in [9], we have

$$m\left[\sqrt{p}\right] \leqslant r(n, m, p) \leqslant \left[m\sqrt{p}\right].$$

Thus, when p is a perfect square, $r(n, m, p) = m\sqrt{p}$.

Remark 18. Except for the above results and some special cases, the best bounds for r in Theorems 4 and 10 remain unknown.

REMARK 19. The notion of completely positive maps on operator space is due to Stinespring [11]. Since then, it has been recognized that completely positive maps are the natural generalization of positive linear functionals. (See Stinespring [11], Størmer [12], and Arveson [1, 2]). Let \mathscr{H} be a (possibly infinite dimensional) Hilbert space, and $A \in \mathscr{B}(\mathscr{H})$ the set of all bounded linear operators on \mathscr{H} . For each m, let

 $W_m(A) = \{\Phi(A) : \Phi \text{ is a completely positive map from } \mathscr{B}(\mathscr{H}) \text{ to } M_m,$

$$\Phi(I) = I_m \}.$$

The sequence $\{W_m(A): m=1,2,\ldots\}$ is called the matrix range of A. This definition is due to Arveson in [2], where he proves that for irreducible compact A, the matrix range is a completely invariant for unitary equivalence. This is part of the motivation for our study of $W_m^r(A_1,\ldots,A_p)$. A very detailed list of references for completely positive maps and the matrix range can be found in Paulsen [10] and Farenick [7].

REFERENCES

- 1 W. B. Arveson, Subalgebras of C^* -algebra, Acta Math. 123:141–224 (1969).
- 2 —, Subalgebras of C^* -algebra II, Acta Math. 128:721–308 (1972).
- 3 Y. H. Au-Yeung and Y. T. Poon, A remark on the convexity and positive definiteness concerning Hermitian matrices, *Southeast Asian Bull. Math.* 3:85-92 (1979).
- 4 F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
- 5 M. D. Choi, Positive linear maps on C^* -algebras, Canad. J. Math. 24:520-529~(1972).

672 YIU TUNG POON

6 Completely positive linear maps on complex matrices, *Linear Algebra Appl.* 10:285–290 (1975).

- 7 D. R. Farenick, The Matricial Spectrum and Range and C*-Convex Sets, Ph.D. Thesis, Univ. of Toronto, 1990.
- 8 F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3:314-316 (1919).
- 9 F. J. Narcowich and J. D. Ward, A Toeplitz-Hausdorff theorem for matrix ranges, J. Operator Theory 6:87-101 (1981).
- 10 V. I. Paulsen, *Completely Bounded Maps and Dilations*, Pitman Res. Notes Math. Ser. 146, Longman Scientific and Technical, 1986.
- 11 W. F. Stinespring, Positive functions on C^* -algebras, *Proc. Amer. Math. Soc.* 6:211-216 (1955).
- 12 E. Størmer, Positive linear maps of operator algebras, Acta Math. 110:233-278 (1963).
- O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Z. 2:187–197 (1918).

Received 29 June 1990; final manuscript accepted 12 December 1990