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ABSTRACT

The purpose of this paper is to generalize the Toeplitz-Hausdorff theorem on the
convexity of the classical numerical range to the matrix range.

1. INTRODUCTION

Given positive integers m, n, let M,, , denote the m X n complex matri-

ces. We write M, for M, ,, and identify M, ,, with C", the complex n-tuples.
Given A = (a;;) in M,, ,, the conjugate transpose of A is A* = (@;)in M,
A matrix A€ M is called hermitian if A = A*. Let H,, denote the herm1t1an
matrices in M,. A matrix AeH, is said to be positive semidefinite if all
eigenvalues of A are nonnegative. Let H, denote the positive semidefinite
matrices in H,. Let (H,)? = {(By,...,B,): BjeH, for i=1,...,p}. We
identify H; w1th the real numbers R. Then V = (H,)? (= RP™ )is a topologl-
cal vector space. A subset S C V is said to be convex if for any two points
s;, 85 in S the line segment joining s; and sy, {as; + (1 — @)85:0 < @ < 1},
is contained in S. For S € V, let conv(S) be the smallest convex set containing
S. Let S be a closed subset of V. If the boundary of conv(S) is contained in S,
then we say that S has a convex boundary.

Let AeM,. The (classical) numerical range of A is given by

W(A) = {xAx*: x€C", xx™ = 1}.
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Toeplitz [13] showed that W(A) has a convex boundary, and Hausdorff [8]
proved that W(A) is convex. If we write A = A, +iA,, A;, AyeH,, the
hermitian decomposition of A, then the above result can be restated as

TueoreM 1 (Toeplitz-Hausdorff).  For all A, Azle H_, the set
W(A; A;) = {(xAlx*, xAzx*) cxeC", ot = 1}_

is convex.

Given A;, Ay, ..., ApeHn, a natural generalization of W(A;, A,) is
W(Al, U Ap) = {(xAlx*, e, xA,,x*) cxeCh, xu® = 1}..

Hausdorff [8] has pointed out that Toeplitz’s method [13] can be used to
show that W(A;, Ay, A;) has a convex boundary. He also remarks that, in
general W(A;, A,, A;) is not convex. However, it is shown by Au-Yeung and
Poon [3] that if n > 3, then W(A;, Ay, Aj)is convex for every A, Ay, Az€ H,.
This result is a special case of the following

TueoREM 2 (Au-Yeung and Poon [3]) Fl<r<n-—1landp<(r+1)>
— 8, ;41> then, forall Ay, ..., A eH,, the set

i=1 i=1

r T r
WA, A,) = {( > w A X wdpal | xeCh L ad =1
i=

is convex. Here, §; jis the Kronecker delta.

Remark 3. It is easy to see that W (Al, ...» Ap) is convex iff for every
y;€C”, j=1...,N, such that ZJ ly]yJ = 1, there ex1st x;€C", i=
1 , 7, such that Yioixxf=1and X x;Apx] = Z] 1Y;Apy; for all

< k < p. Theorem 2 is shown [3] to be equivalent to a result of Bohnenblust
on joint positiveness of matrices [4]. By the latter result, the bound for p is
best possible in the sense that if p > (r + 1)2 — §, .1, then there exist
Ay, ..., A, in H, such that W(A,,..., A is not convex.

" In the next section, we will give a generalization of Theorem 2 for the
matrix range. For an explanation of this term, the reader should refer to
Remark 19. This has a close connection with completely positive maps
between matrix algebras, from which we get our motivation and techniques
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(see [6, 10]). In Section 3, we will discuss this connection and list some open
questions.

2. CONVEXITY IN THE MATRIX RANGE

For each B = (By,...,By) € (H,)? and XeM,, let XBX* =
(XB,X*,..., XB,X™). A subset S of (H) is said to be matricially convex if
for every Si,...,Sy in S, we have Y1 X5, X eS8 for every X;,..., Xy in
M_, such that ¥ ¥ X, X} = I,,, the m X m identity matrix. A matricial convex
subset is convex. In fact, for subsets of (H;)? (= R”), matricial convexity is
the same as the usual convexity. However, for m > 1, a convex subset of
(H,,)” need not be matricially convex. For example, for m > 1 and p=1
take S = {I,,_; @ 0}.

The main result in this paper is the following generalization of Theorem 2.

TueoreM 4. If 1<r<mn—-1 and m2(p+1)——-l'<“(r+l)2v—~

) then for all A, ..., A,eH, the set

mn, r-+1°

Wi Ay oos Ap)

r T. r
= {( Y XA XE > XiApXi* : X;€M,, , and > Xz.Xi* = Im}

is matricially convex.

The proof of Theorem 4 is obtained by reducing to the case when m = 1
and applying Theorem 2. To simplify notation in subsequent arguments, we
need some definitions.

DerFiNiTION 5. For each m > 1 and 1 < j, k < m let E be the matrix in
M, with 1 as the (j, k)th entry and 0 elsewhere. Define for 1 <ji k <m

(F]’,?-I-Fi’;) if 1<j<k<m,
ER = F7 if 1<j=k<m,
V=I(Ep-Fp) ff 1<k<j<m

Then each EJ is in H,,, and {Ejt:1 <, k < m} is a basis of M,, over C.
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DEFINITION 6. Suppose X = (x;;) € M,, ,. Define v(X) &M, ,, by

U(X) - 7—71,—'(x11"'-:x1n:. Xops v os Tops v s Lpnls e s xmn)’

Conversely, if x = [_3_cl, o xMeM L, with ;ieMl,n for 1 i < m, define
V(x)eM,, , by
%!
V(x) =+vn|:
x77l

We note that for xe M, ., and X € M,, ,, v(V(x)) = x and V(v(X)) = X.
Let B = (by)eM,, A= (a;)eM,; then B®A will denote the Kro-
necker product of B and A. |

LemMa 7. Suppose X, Y, €M, , for L<i< N, 1 <j< Ny, and A€H,.
Let x; = v(X,), y; = v(Y;) for L i< Ny, 1 <j<Ny. Then the following two
conditions are equivalent:

N N
(1) Y. XAXF = ) YAYS,
i=1 =
N Ny
(2) X n(Ef®A)xf = > y(Efi®A)y;  for 1<k l<m
i=1 j=1

Proof. For 1 <k < m, let ¢; be the kth unit vector. Then the (k, [)th
entry of Y1, X, AX}* is given by

N N
e XiAX,-*)e;k =n > x,(F;®A)xf.
i=1 i=1
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thus we have

M Ny

i1 j=1
Ny Ny ;

& x(F ®A)xf = Y y(FE®A)yf for 1<k I<m

i=1 - =1 :
Nl Np_

& xi(Ei’f@A)x?: > yj(Ei’E@A)yf for 1 <k, I<m.

i=1 j=1"

Proof of Theorem 4. Suppose 1 <r<mn—1, m*(p+1)—1<(r+
)2~ 8,m r41 and Aj,..., A €H, Tt suffices to prove that for every
Y,...,YyeM,, , with ZszlYJYJ* = I, there exist X,,..., X,eM,, , such
that

-
Z Xlxl* = m
i=1
and
r N
lezAkXI*_ Z Y}ALYJ* fOI‘ 1 éksp
i= j=

Let y; = v(Y)) for 1 <j < N. Then we have ZJN:l y;y; = 1. Consider the
m?(p + 1) — 1 hermitian matrices

m®L, 1<jk<m, (j.k)=#(m,m),
and

EJT}C’®AZ, 1<, ksm, 1<I<p.

Since m*(p + 1) = 1 < (r +1)> = §,,, .11, we can apply Theorem 2 to the
above m?(p + 1) — 1 matrices and get x;€M, ,,, for 1 < i < r such that

z

(4) Zr: G(ER®L)xf = 3 y(ER® L)y}
forall 1<j,k<m, (j,;k) * (m,m),
r N ,
(5) Z xi(EJT}Z®Al> xf = Zl yj<EJTZ®AZ) Y
‘ j= :

forall 1<j,k<m, 1<I<p.

..
]
P
“.
i
—

[
joey
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Since
r m r
= Yot = 30 3 w(ER®L)
i=1 k=1 i=1
we haye
r 7.77,—1 r
> xy(En,®L)xf =1~ > % (Ef® L) x;
i=1 k=1 i=1
N m—1 N
= Z y]y]* - Z y](Ekk®1n) Y;
j=1 k=1 i=1

Thus, condition (4) also holds for (j, k) = (m, m). Let X;= V(x;) for
1 € i < r. By Lemma 7, we have

-
Z XiXi* =1,
i=1 _

and

T N
_Zl X, A X} = -21 Y;AY*  for 1<I<p.
i= j=

In [3], Au-Yeung and Poon proved the following result which is closely
related to Theorem 2.

TugoreM 8. Let 1 <r<n—1 and p < (r + 1)® Then for all
Ay,...,A,eH, the set :

. r r
Wr(Al,..., Ap) = {(axiAle,..., Zl xiApx?‘) : xiEC"}
j= i=

u
El

is convex.

Remark 9. The bound (r + 1)® in Theorem 8 is also best possible. (See
Remark 3.)
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Using arguments similar to the proof of Theorem 4, we have

Tueorem. 10. If 1< r<nm — 1 and m?p < (r + 1)%, then for every
Ay, ..., A eH, the set

r r
WAL s Ay) = {(Z X A XE, .., i};l Xi_ApXi*) : X,.eMm,n‘}

i=1

is matricially convex.

RemaRk 11. Let Aj,..., A eH,. Since the convexity of W (A, ..., A,)
implies the convexity of w (Al, ..., A,), Theorem 8 follows immediately from

Theorem 4 except when r=n- 1. However for m > 1, the matricial convex-
ity of WI(Ay,..., A,) does not follow from that of W (Ay,..., A,).

Let S, be the real n X n matrices. Theorem 4 and 10 also hold (see [3])
for Ay,..., A €8, [with x;eR" and (r + 1)* replaced by r(r + 1)/2]. Let

M, (R be the real n X m matrices. In the following two theorems, we use

real matrices for the definition of matricial convexity.

THEOREM 12. If

1 <1"<1mn~—]. and —”—E—ﬁ—“—ammr+b

then for all Ay, ..., A, €5, the set

T r .
{(Z X, A XE ., }_:1 XA, X{

i=1

is matricially convex.

Tueorem 13. If 1<r<nm — 1 and m(m + 1)p <r(r + 1), then for
al Ay,..., A €S, the set

|

is matricially convex.

T r
SOXAXE LD X,.A,,Xf) : X,.eMnj'm(R)}
i=1 i=1
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3. CONNECTIONS WITH COMPLETELY POSITIVE MAPS

Given a complex linear map ®: M, > M,,, we define, for each N > 1,
$y: M,y M,y by

y(Ay) = (‘I’(A%j))’
where the matrix A in M,y is partitioned into n X n blocks A;;, 1 <, j < N.
The map @ is said to be N-positive if ®y(H/y) S H}y, and completely
positive if ® is N-positive for every N > 1. Let CP(n, m) denote the set of all
completely positive maps from M, to M,,. For m = 1, every 1-positive map is -
completely positive. For m > 1, there exist maps that are N — 1-positive but
not N-positive (see Choi [5]), and we have

ProrosiTioN 14 (Choi [6]). Let ® be a linear map from M, to M,,. Then &
is completely positive if and only if there exist Xy, ..., X, e M,, , such that

®(A) = i X;AX*  fordl AeM,.
i=1

For each r > 1, let CP"(n, m) be the set of all & in CP(m, n) such that
there exist Xy,..., X, eM,, , satisfying ®(A) = ¥[_; X;AX* for all AeM,.
Given Aj,..., A, in H,, it is easy to see that W,,:(Al, ey Ay) s matricially
convex if and only if for every ® € CP(n, m) there exists ¥ € CP"(n, m) such
that ¥(A;) = ®(A)) for all 1 < i < p. Following Remark 9, for fixed n, m, p,
we are interested in finding the smallest possible r = r(n, m, p) satisfying

(6) For every subspace & of H, with dim & = p and ® € CP(n, m), there
exists ¥ € CP"(n, m) such that ¥(A) = ®(A) for all Ae .

In [9], Narcowich and Ward showed that if r = [m\/—p— ], then (6) is
satisfied. Here, [x] denotes the smallest integer less than or equal to x. The
bound [m\/;)— ] can also be obtained from Theorem 10. When I, e,
Theorem 4 gives a slightly lower bound:

ProposiTioN 15. Suppose p < n? and r = [\/ m?p — l]. Let o/ be a
p-dimensional subspace of H, containing I,,. Then for every ® € CP(n, m) there
exists ¥ € CP"(n, m) such that ¥(A) = ®(A) forall Ac .

§

Proof. Let {A;,..., A, ), I} be a basis of &. When p <n? and r
= [\/mzp-— 1],Wehaver<nm—1and m?(p — 1) < (r + 1)%. So we can

apply Theorem 4 to A;,..., A, ;.




GENERALIZED MATRIX RANGE | | 671

REMARK 16. If p = n?, it follows from a result of Choi [6, Remark 4] that
r(n, m, p) = nm. ’

RemaRk 17. From Remark 2.2 in [9], we have

n[ V3] < rlnm.p) < [mva].

Thus, when p is a perfect square, r(n, m, p) = m+/p.

RemARK 18. Except for the above results and some special .cases, the best
bounds for r in Theorems 4 and 10 remain unknown.

Remark 19. The notion of completely positive maps on operator space is
due to Stinespring [11]. Since then, it has been recognized that completely
positive maps are the natural generalization of positive linear functionals. (See
Stinespring [11], Stgrmer [12], and Arveson [1, 2]). Let # be a (possibly
infinite dlmensmnal) Hilbert space, and A€ #(#) the set of all bounded
linear operators on . For each m, let

®(1)=1,}.

The sequence { m( A):m =1,2,...} is called the matrix range of A.
This definition is due to Arveson in [2], where he proves that for irreducible
compact A, the matrix range is a completely invariant for unitary equivalence.
_This is part of the motivation for our study of W,(A;,..., A,). A very
detailed list of references for completely positive maps and the matrix range
can be found in Paulsen [10] and Farenick [7].

Wm< A) = {<I>( A) : ® is a completely positive map from %’(Jf ) to M
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