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AF SUBALGEBRAS OFY'CERTAIN CROSSED PRODUCTS
YIU TUNG POON

ABSTRACT. Let (X,T) be a dynamical system with X
zero dimensional, Each closed subset ¥ of X gives rise to a
subalgebra Ay of the crossed product C*-algebra C (X)xT%Z.
We give a necessary and sufficient condition on Y for Ay
to be an AF algebra. Suppose Y1 and Y3 are two clopen
subsets satisfying the condition. ‘We show that Y; and Ya
are homeomorphic as topological spaces if and only if the
AF algebras Ay, and Ay, are stably isomorphic. Finally,
we show that, if the non-periodic points are dense in X and
Y is a minimal subset satisfying the condition, then Ay is
a maximal AF subalgebra among the regular subalgebras of
C_(X ) X7 4.

1. Introduction. Given a compact space X, C(X) will denote
the C*-algebra of complex continuous functions on X. A compact
metrizable space X is said to be zero dimensional if the topology on X
has a basis consisting of sets which are both closed and open (clopen).
In this note we study systems (X,T) where X is a zero dimensional
space and T is a homeomorphism on X. Given such a system,we have.
an action of the integers Z on C(X). This gives a crossed product
algebra C(X) x7 Z (see Pedersen [5]) which is a C*-algebra generated
by C(X) and a unitary U satisfying UfU* = foT ! for f € C(X).
In [7], we show that the order structure on Ko(C(X) X7 Z) is useful
in the study of classification problems of such systems and the crossed
product algebras. (We will use Blackadar [1] and Effros [3] for our
reference on K-theory). A system (X,T) is said to be minimal if X .
contains no non-empty T-invariant proper closed subsets. In recent
works [9, 10], Putnam proved, among other results, that if X does not
have isolated points and the system (X,T') is minimal, then, for every
closed subset Y, the C*-subalgebra of C(X) X Z generated by C(X)
and {Uf: f € C(X), f(y) =0 for all y.€ Y} is an AF algebra (9, 10],
i.e., Ay is the closure of an increasing sequence of finite dimensional
subalgebras. This result is crucial in his study of AF-subalgebras of
C(X) xr Z [10] and the order structure of Ko(C(X)xrZ) [9]. In §2,
given any (X,T) (not necessarily minimal) and a closed subset Y, we

prove that Ay is an AF algebra if and only if, for every clopen subset
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W containing Y, Upez T"(W) = X. Let D(X,T) be the set of closed
‘subsets Y having the above property. In §3, we study the ordered group -
Ko(Ay) for Y in D(X,T). Suppose Y1,Y2 € D(X,T) are clopen. We
show that Y; and Y, are homeomorphic if and only if Ay, and Ay, are
stably isomorphic (see Pedersen [5] or definitions in §3). Let E(X,T)
be the set of minimal (in the sense of inclusion) elements in D(X, T).
Suppose the non-periodic points are dense in X andY € E(X,T). In
§4, we prove that if A is a regular subalgebra (see definition in section
4) of C(X) xr Z which contains Ay as a proper subalgebra, then A
is not AF. In particular, if (X,T) is minimal, then, for every y € X,
the only regular subalgebra which properly contains A,y is the whole
crossed product algebra C(X) X1 Z.

We list here some facts about AF algebras and K-theory of C*-
algebras which will be used later. The details can be found in the
references [1, 2, 3 and 4]. ‘ :

Recall that a C*-algebra A is said to be AF [2] (approximately finite
_dimensional) if there is an increasing sequence {A, : n 2> 1} of finite
dimensional subalgebra of A such that Un>14r is dense in A. Let A
be an AF algebra. Then Ko(A) is an ordered group with ordering
given by the semisubgroup Ko(A)t of classes of projections in the
matrix algebras over A (see Effros [3]). If X is a zero dimensional
space, then C(X) is a commutative AF algebra and Ko(C(X)) is -
order isomorphic to C(X,Z), the group of integer valued continuous
functions with the usual ordering [7]. A result of Elliot [4], says that
the ordered group Ko(A), together with a scale (see Effros [3]) is a
complete isomorphism invariant for AF algebras. On the other hand,
K(A) is always zero for an AF algebra A. This fact can be used
to show that certain C*-algebras are not AF. For example, given any .

system (X, T), it follows from Pimsner and Voiculescu’s exact sequence
[6] that K1(C(X) x7 Z) # 0. Hence, C(X) X1 Z is not AF.

We wish to thank the referee for some helpful comments and the “if”
part of Corollary 3.2.

2. AF subalgebras. We first establish some notation. Given
a system (X,T) and a non-empty T-invariant closed subset Y of
X, by restricting the functions of X and the action of T on Y, we
have a C*-homomorphism 7y : C(X) xr Z — C(Y) xr Z. Let
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7y (U) = Uy. Therefore, C(Y) xr Z is generated by C(Y) and Uy
with Uy gUp = go T~ " for g € C(Y). For any clopen subset W of X,
let X be the characteristic function on W. Then Xw € C(X) and
UxwU* = Xw o T-1 = XT(W)-

LEMMA 2.1. Let A be a C*-subalgebra of C(X) X1 Z containing
C(X). Suppose UXx\w € A for a clopen subset W of X such that
Unez T™(W) # X. Then A is not AF.

PROOF. Let Y = X\ Upez T™(W). Then Y is a non-empty 7T-
invariant closed subset of X. Since X\W D Y,my (U Xx\w) = Uy
and the map my : A — C(Y) xr Z is surjective. Thus, the quotient
A/kermy ~ C(Y) x7 Z is not AF. Hence, A is not AF [2]. O

Given a system (X,T) and a closed subset Y of X, let Co(X\Y') be
the set of functions in C'(X) which vanish on Y. Following Putnam’s
notation [9, 10], we use Ay to denote the subalgebra of C(X) X7 Z
generated by C(X) and UCo(X\Y) = {Uf : f € Co(X\Y)}. Given a-
C*-algebra A, let M,,(A) be the n x n matrix algebra over A. The next
result is essentially Putnam’s construction in [9, 10]. We give a slight
modification which allows us to compute the order structure of Ay in

§3.

LEMMA 2.2. IfY is a clopen subset of X such that Upez T"(Y) = X,
then Ay is isomorphic to &7 M; (C(Yx)) for a clopen partition
{Yi : 1 <k <m} of Y and some positive integers Jp,1 < k< m.

PROOF. Since X is compact and Y is open, there exists an integer
n > 1 such that UZ=OTk(Y) = X. Thus, for every y € Y, there exists
k > 1 such that T*(y) € Y. Hence, we can define A\ : Y — Z by

Ay) =min{k > 1:T*(y) e Y}.
Since Y is clopen, ) is continuous. Let A(Y) = {#1,...,Jm} with

J1 < Ja-+r < Jp. For k=1,...,mand j = 1,...,Ji, define the
clopen set Y (k, ) = T?(A\~*(J)). Then we have:
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(1) up, Y (k,1) = T(Y)

(2) T(Y (k) = ¥k, +1) for 1 <§ < Ji.

(3) Up, Y (k, Ji) = ¥ -
- It follows from definitions that thesets Y(k,7) 1 <k <m,1<j < J
are pairwise disjoint. Conditions (1), (2) and (3) imply that the union
of all Y(k,j) is a T-invariant subset containing Y and, hence, is equal
to X. Let Y, = Y (k, Ji) for k= 1,...,m. We are going to show that
Ay is isomorphic to the AF algebra @7, My, (C(Yk))- |

First we identify C(Y}) with the subalgebra {f € C(X) : f(y) =0
for all y & Y3} of C(X). For each k = 1,...,m,f € C(Y:) and
i,7=1,...,Ji, define

B @ f=UIf 0TI = fo U™ € Ay.
One checks directbly that
[P o P 1< k<m1<i,j< Jand fif) € C(Ya)}

generates a C*-subalgebra isomorphic to @7, My, (C(Yg)). For f €
C(X), let £ = (f o T %)Xy, . We have

m Jk ) m Jk - ’ . m Jk .‘ )
Q) 1=33 fyvun =S fF o =33 P 0 £
k=1 i=1 k=1 i=1 k=1 i=1
m Jp—1 m Jg—1
@) Uxxw=Ud. Y ef@xn=> 3 e ® X,
' k=1 i=1 k=1 i=1

Hence, Ay is isomorphic to @7, M(C(Y%)). O

THEOREM 2.3. Ay is an AF algebra if and only if Unez TH(W) = X
for every clopen subset W containing Y .

PROOF. For necessity, suppose the contrary that there exists a clopen
subset W O-Y such that Unpez T"(W) # X. Since Uxx\w € Ay, by
Lemma 2.1, Ay is not AF.
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To prove sufficiency, suppose Y is a closed subset of X such that
Unez T™(W) = X for every clopen subset W containing Y. We can
choose a decreasing sequence of clopen subsets Y1 2 Y, D ... such
that N2 ,Y, = Y. This gives an increasing sequence of AF algebras
Ay, C Ay, C ... such that the closure of U, Ay, is equal to Ay [10].
Since each Ay, is an AF algebra, Ay is also AF [2]. O

Let D(X,T) denote the set of closed subsets Y of X such that
Unez TM(W) = X for every clopen subset W containing Y. From
the proof of the above theorem, we have

COROLLARY 2.4. Let Y € D(X,T). Then, for every n > 1 and any
clopen subset W, U™Xw € Ay if and only if Y N (U;’,";(} T (W)) = 0.

PROOF. Suppose n > 1 and W is a clopen subset such that Y N
(UrlTm(W)) = 0. Then UXpr(w) € Ay forr =0,...,n—1. Hence
r=0 (W)

UtXw = UXTn—l(W)UXTn—z(W) ... UXw € Ay.

To prove the converse, we note that there is a conditional expectation
[5, 10], E : C(X) xp Z — C(X) such that |E(A)]| < la|| for
a€C(X)xrZ and E(3,, U™ fm) = fo, where fm € C(X).

Suppose UXw € Ay. Then there exists a clopen subset Y; contain-
ing Y and a € Ay, such that [[U"Xw — all < 1. Leta =3, U"fm
with f, € C(X). We have

IXw = fall = BQUT(U"Xw —a)) <1

Thus, f72({0}) N W = 0. Since every a in Ay, is a linear combination

of () @ f) = i~i fP o T4 =3 with 1 € C(¥a(k, Ji)), fn is a linear

combination of those fi(;“) oT7%—J with i — j = n for some i < Ji. Since.

B e ok, i), £ o TP vanishes off Y3 (k, 7). Hence,

m Jg—n
wc x\f;t{oh c |J U vak.g)
: k=1 j=1

n—1 J

v ({JTm)cvin( O JU Y;(k,j)) = 0.0
k=1 j=1
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3. The K-theory of AF subalgebras. In this section, we will use
the explicit construction in Lemma 2.2 to compute the ordered group
. K()(AY) .

Let K be the algebra of compact operators on an infinite dimensional
Hilbert space. Two C*-algebras A, B are said to be stably isomorphic
if the tensor products [5] AQ K and B®K are isomorphic. A result of
Elliot [4] says that two AF algebras A, B are stably isomorphic if and
only if Ky(A) and Ko(B) are order isomorphic. To get a complete
invariant for isomorphism of AF algebras, we need to consider the
order structure together with a scale [3, 4], I'(A), which is a subset -
of Ko(A)*. If A is a unital AF algebra, then the scale for Ko(A)™ is
given by

T(A) ={g € Ko(A)" : g < [14]},

where [14] is the class containing the identity 14 of A. [14] is known
as an order unit for Ko(A) [3]. Two AF algebras A, B are isomorphic
if and only if there exists an order isomorphism between Kj(A) and
Ko(B) which takes T'(4) onto I'(B) (Elliot [4], also see Effros [3] for
details on scales). If A, B are unital and ¢ is an order isomorphism
between Ko(A) and Ko(B), then ¢(I'(4)) = T'(B) if and only if
¢([14]) = [18]-

PROPOSITION 3.1. IfY € D(X,T) is clopen, then Ko(Ay) is order
isomorphic to C(Y,Z) with order unit vy = Y pe; JuXy,, where Ji
and YVy,1 <k <m are as given in Lemma 2.2.

PROOF. From Lemma 2.2, we have a clopen partition {Y; : 1 <k <

m} of Y and integers J;,1 < k < m such that Ay is isomorphic to
@, My, (C(Yr)). Therefore ‘

Ko(Ay) = @32, Ko[M, (C(Y))]
~ @7 C(Y,Z) (Since Ko(M,(A)) ~ Ko(A))
~ C(Y,Z).

If P=op, (p”)) is a projection in &7, M, (C (Yk)3 ~ Ay, then the
class [P] in C(Y,Z) ~ Ko(Ay) is given by > ,r; Zz—-l pu) Thus, if f
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is a projection in C(X), we have

Ji

1= (foT )Xy,
. k=1 i=1
In particular, [Lay] = 3 pe; JrXy;- Hence, the ordered group C (Y,Z)
has an order unit uy = Y peq JkXy, and scale

Ty ={geCY,Z):0<g< > JeXv,}. O
k=1

COROLLARY 3.2. Let Yi and Yo be two clopen subsets in D(X,T).
Y; and Ya are homeomorphic if and only if Ay, and Ay, are stably
isomorphic.

COROLLARY 3.3. Let Y be a closed subset in D(X,T) and Y(1) 2
Y(2) D ... adecreasing sequence of clopen subset such that NS>, Y (n) =
Y. Then Ko(Ay) is equal to the direct limit [3] limp oo C(Y(n),Z)
of the scaled ordered groups {C(Y(n),Z)}n>1 where the scale of
C(Y(n),Z) is given by the order unit Uy(n) = ZZ’;_ET) J(n)xXy ()
and the comnecting homomorphism ®, between C(Y(n —1),Z) and
C(Y (n),Z) is given by

m{n) J(n)r—1

&)=Y, >, (FoT ™)Xy

k=1 3=0

REMARK 3.4. For minimal systems (X,T), Putnam has given [10,
Theorem 4.1] an exact sequence which relates C(Y,Z), Ko(Ay) and
Ko(C(X)xrZ) for Y € D(X,T). This result can be easily generalized
to arbitrary systems [8]. However, as is pointed out in [10], the order
structure usually cannot be computed from this exact sequence.

4. Regular subalgebras. Suppose A is a C*-subalgebra of
C(X) x7 Z containing C(X). Let U(A) be the unitary group of A.
The normalizer of C(X) in U(A) is given by ’

N(C(X),A) = {V € U(4) : VC(X)V* = C(X)}.
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A is said to be regular if N(C(X), A) generates A. Let Y € D(X,T).
Then Ay is regular simply because every matrix algebra is generated
by the permutation and diagonal matrlces - :

Given a decreasing chain {Y; : 7 € I},Y; € D(X,T), let Y = NierYi.
If W is any clopen subset containing Y, then W contains some Y.
Hence, Y € D(X,T). Thus we can choose a minimal (in terms of
inclusion) element in D(X,T). Let E(X,T) be the set of minimal
elements of D(X,T). We are going to study regular subalgebras A
of C(X) xr Z such that A D Ay for some Y € E(X,T). First, we
need the following description of N(C(X),C(X) x7Z ) by Putnam [10,
Lemma 5.1]:

 LEMMA 4.1. Let (X,T) be a system where the set of non-periodic
points Xo = {z € X : T™(z) # = for n # 0} is dense in X. Then every
V € N(C(z),C(X) x1 Z) can be decomposed into the form -

V:fzannv

nez

where f € U(C(X)), each pn, is a projection in C(X) with finitely many
pn, different from 0, pppm = 0 for n # m, and

an::anoTn—_-:l

Moreover, this decomposition is unique.

REMARKS 4.2. Putnam proved the above result for minimal systems.

But with slight modification, the proof also works when X, is dense in
X. |

The main result in this section is

THEOREM 4.3. Let (X,T) be a system with Xy dense in X. If A
is a regular subalgebra of C(X) xr Z such that A D Ay for some
Y € E(X,T), then A is not AF.
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PROOF. Since A is regular, there exists V € N(C(X), A) such that
V¢ Ay. Let V = f3 .z pnU" be the decomposition as given

“in Lemma 4.1. Hence, p,U" ¢ Ay for some n. Without loss of -
generality, we may assume n > 1. Writing p, U™ = UtXw for a
__clopen set W, we have U"Xw = pnfV € A and,'ffom Corollary 2.4,
Y AUPELTR(W)) # 8. We are going to prove by induction on n that
if for a clopen subset W of X such that for some n > 1,Uy, € A and
Y N (URZATR(W)) # 0, then A is #i6t-AF. | |

(1) If n =1, then Y N W # 0. Thus, Y\W is a proper closed subset -
of Y. By the minimality of Y, there exists a clopen subset O of X
containing Y\W such that Unez T™(0) # X. Therefore, OUW DY
and UXx\o = UXwXx\o +UXx\(ouw) € A. Hence by Lemma 2.1, A
is not AF.

2) Ifn > 1, let k=min{i: 0 <4 < n—1YNT(W) # 0} We
divide the proof into three cases:

(a) k> 0. So, YNW =0 and Uxw € Ay C A. We have,

Un"IXT(W) = UnXW(UXw)* cA

and

YN (no T’(T(W))) S Y NTHW) 0.

1=0

Hence, by the induction hypothesis, A is not AF.

(b) k = 0 and T* Y (Y NW)\Y # 0. Choose y € Y N W and a
clopen subset O with y € O such that T*"*(0)NY = 0. Thus,
UXgn-1(0) € Ay C A. We have, U™ "Xonw = (UXrn-1(0))"U"Xw €
Aand Y N(UPZ2THONW)) 2 Y N(ONW) # 0. Hence, by the
induction hypotheses, A is not AF.

(c) k = 0and T (Y NW) C Y. We are going to find a T-
invariant closed subset Y; such that the image of A under the map
Ty, + A — C(Y1) xr Z is not AF. For every y € Y NW, let
Ay) = min{i > 1: T%y) € Y}. Thus 1 < AMy) < n—1 for all
y € YNW. Choose yo € Y N W such that 7 = A(yo) is 2 maximum.
We will show that T (yo) = %o-

Suppose the contrary that 77 (yo) # yo. Choose a,.clopen subset O
of X containing yo such that T77(0)N O = @ and T*(O)NY = { for
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1 < i < r. From the definition of r, we have T"(ONWNY) C Y.
Therefore Yo = Y\(O N W) is a proper closed subset of ¥ and
Y, D T (ONW NY). Hence, for every clopen subset W2 O Y3, we
have T~ (W) D (ONW NY). This gives Wo UT™"(W3) D Y which
implies | ' ' .

U T™(W2) = | T (W2 UT ™" (Wa)) = X.

meZ meZ

Thus Y; is also in D(X,T), contradicting the minimqlity of Y.

Let Y7 = {T%(y0) : 0 < i < r—1}. Then Y; is a T-invariant closed
subset of X. We choose a clopen subset ) containing yo such that.
THQ)NY = B for 1 < i < r—1. Therefore UXr(qyu..7~-1(Q) € Ay C A.
Hence,

V =U"XwXq + UXr(@)..T7-1(Q) € A

“Since T"!(yo) € Y, we have that r divides n — 1.. Let n = rs + 1 for
some integer s > 0. Since Y7 contains r points permuted cyclically by
T, we can describe C(Y7) x1 Z very explicitly:

Let S be the set of complex numbers of modulus 1. Then C(Y1) x7Z
is isomorphic to M,(C(S)). Under this isomorphism, f € C(Y7) is
given by a diagonal matrix with diagonal equal to [f(yo), f(T(%0)),-- -,
f(T™(yo))] and Uy, is equal to (u;;) with u;y = 1 for 2 < 7 <
T, U1 = 2, the identity function on S and u;; = 0 elsewhere. Therefore

1 0 ... 0 0 e 0
Ty, (V) = Ulﬁl 0 +Uy1 .
: 0 1
"0 O 0 =27
50 0
— 10 1
| 0 1 0]

Given a unitary matrix B € M,.(C(S)) ~ C(Y1) X7 Z, the correspond-
ing class [B] in K1(M,(C(S))) ~ Z is given by the winding number of
det B. Thus [ry, (V)] = (-=1)""!(s +1) # 0 in Z. Hence, my(A) and
consequently, A is not AF. O v
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If (X,T) is minimal, then {y} € E(X,T) for every y € X: Since
X does not have periodic points, Case 2(c) in the proof of the above
theorem does not occur. Thus, by induction, we can assume n = 1 and
(1) shows that U € A. Hence we have

COROLLARY 4.4. Let (X,T) be a minimal system andy € X. If A
is a reqular subalgebra such that A D Agyy, then A= C(X)xr M.

REMARK 4.5. T-invariant sets in D(X,T) and E(X,T) have shown
[8, 11], to be useful in determining when the invertible elements in
C(X) x7 Z are dense.
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