A REMARK ON THE CONVEXITY AND POSITIVE DEFINITENESS CONCERNING HERMITIAN MATRICES

* YIK-HOI AU-YEUNG and YIU-TUNG POON

INTRODUCTION

We denote by F the field R of real numbers or the field C of complex numbers, and by $\texttt{M}_n(\texttt{F})$ the set of all n × n matrices with elements in F . A matrix A & $\texttt{M}_n(\texttt{F})$ is called hermitian if A = A*, where * denotes the conjugate transpose. We denote by $\texttt{H}_n(\texttt{F})$ the real linear space of all n × n hermitian matrices with elements in F . A matrix A & $\texttt{H}_n(\texttt{F})$ is said to be positive definite, written A > 0 , (respectively positive semidefinite, written A \geq 0) if xAx* > 0 (respectively xAx* \geq 0) for all x & $\texttt{F}^n \setminus \{0\}$. The purpose of this note is to consider the relationship between the convexity and definiteness concerning hermitian matrices and some related topics. In the following content, we usually assume n \geq 2 and for the convexity argument we identify the complex plane with R².

CONVEXITY AND DEFINITENESS

Let $A \in \mbox{\it M}_n(\mbox{\it C})$, Hausdorff [11] proved that the numerical range of A defined by

$$W(A) = \{xAx^* : x \in C^n, ||x|| = 1\}$$

is convex. If we write $A = A_1 + iA_2$, the unique hermitian decomposition of A , then

$$W(A) = W(A_1, A_2) = \{(xA_1x^*, xA_2x^*) : x \in C^n \text{ and } xx^* = 1\}.$$

Therefore, Hausdorff's result may be stated as:

For any
$$A_1$$
, $A_2 \in H_n(C)$, $V(A_1, A_2)$ is convex.

There were many other proofs of this result, for example see Donoghue [6], Goldman and Marcus [10], Stone [16]. Brickman [4] considered the real analog of the above result. He proved that if $n \ge 3$, then for any S_1 , $S_2 \in H_n(\mathbb{R})$, the set $\{(xS_1x^*, xS_2x^*): x \in \mathbb{R}^n \text{ and } xx^* = 1\}$ is convex. (Here * merely means transpose.) Combining these two results, we have

THEOREM 1. If F = C and $n \ge 2$ or F = R and n > 2, then, for any A_1 , $A_2 \in H_n(F)$, the set

$$W(A_1, A_2) = \{(xA_1x^*, xA_2x^*): x \in F^n \text{ and } xx^* = 1\}$$

is convex.

A unified proof of Theorem 1 was given by Au-Yeung [1].

Let A_1 , $A_2 \in M_n(F)$. Then another problem aries: under what condition we can conclude that there exist real numbers α_1 and α_2 such that $\alpha_1A_1+\alpha_2A_2$ is positive definite. To this problem, we have the following theorem.

THEOREM 1'. If F = C and n \geq 2 or F = R and n > 2, then, for any A_1 , A_2 \in H_n (F) such that

$$(xA_1x^*, xA_2x^*) \neq (0, 0)$$
 for all $x \in F^n\setminus\{0\}$

there exist α_1 , α_2 ϵ R such that

$$\alpha_{1}^{A}_{1} + \alpha_{2}^{A}_{2} > 0$$
.

Theorem 1' was first proved by Finsler [7] for F = R and there are many other proofs, for example, Calabi [5], Hestenes [12], Taussky [17]. Au-Yeung [2] has given a unified proof of Theorem 1' for both cases of F. For a more detailed survey of this problem, see Uhlig [19].

In [17], Taussky proved that Theorem 1 implies Theorem 1'. But, it seems to the authors that nothing has been mentioned about the converse, which, as we shall see, is also true in a more general form.

A natural generalization of Theorem 1 is to consider, for three $\,^{\rm A}_1$, $\,^{\rm A}_2$ and $\,^{\rm A}_3$ $\,^{\rm E}$ H $_n$ (F) , the convexity of the set

$$W(A_1, A_2, A_3) = \{(xA_1x^*, xA_2x^*, xA_3x^*) : x \in F^n \text{ and } xx^* = 1\}$$
.

For F=C, Hausdorff [11] mentioned that we can use Toeplitz's method [18] to show that $W(A_1,\ A_2,\ A_3)$ has a convex boundary. He also remarked that, in general, $W(A_1,\ A_2,\ A_3)$ is not convex. In [4], Brickman gives an example of $A_1,\ A_2$, and $A_3\in H_n(R)$ such that $W(A_1,\ A_2,\ A_3)$ is not convex. However, we shall see that for F=C and n>2, $W(A_1,\ A_2,\ A_3)$ is always convex.

Let $\,f_{\,F}^{}(n)\,$ be the dimension of the real linear space $\,H_{\,n}^{}(F)$. Then obviously,

$$f_{F}(n) = \begin{cases} \frac{n(n+1)}{2} & \text{if } F = R \\ n^{2} & \text{if } F = C \end{cases}$$

Now, we can give a generalization of Theorem 1.

THEOREM 2. If $1 \le r \le n-1$ and $p < f_F(r+1) - \delta_{n,r+1}$, then, for any $A_1, \ldots, A_p \in H_n(F)$, the set

$$\mathbf{W}^{(r)}(\mathbf{A}_{1},\ldots,\mathbf{A}_{p}) = \{(\sum_{i=1}^{r} \mathbf{x}_{i} \mathbf{A}_{1} \mathbf{x}_{i}^{*}, \ldots, \sum_{i=1}^{r} \mathbf{x}_{i} \mathbf{A}_{p} \mathbf{x}_{i}^{*}) : \mathbf{x}_{i} \in \mathbf{F}^{n} \text{ and } \sum_{i=1}^{r} \mathbf{x}_{i} \mathbf{x}_{i}^{*} = 1\}$$

is convex, where $\delta_{i,j}$ is the Kronecker delta.

We shall proved that Theorem 2 is equivalent to Bohnenblust's result [3], (see Friedland and Loewy [9] for another proof), which is a generalization of Theorem 1'.

THEOREM 2'. (Bohnenblust) If $1 \le r \le n-1$ and $p < f_F(r+1) - \delta_{n,r+1}$, then, for any $A_1, \ldots, A_p \in H_n(F)$ such that

(*)
$$(\sum_{i=1}^{r} x_i A_i x_i^*, \dots, \sum_{i=1}^{r} x_i A_p x_i^*) \neq (0, \dots, 0)$$

$$for all (x_1, \dots, x_r) \in F^{\underbrace{n} \times \dots \times F}(0, \dots, 0)$$

then there exist $\alpha_1^{},\;\ldots,\;\alpha_p^{}\;\epsilon\;R$ such that

$$\sum_{j=1}^{p} \alpha_{j} A_{j} > 0$$

PROOF.

"Theorem 2 ⇒ Theorem 2'"

Since $W^{(r)}(A_1, \ldots, A_p)$ is convex and from condition (*), $W^{(r)}(A_1, \ldots, A_p)$ does not contain the origin in \mathbb{R}^p . The result follows from using the Separation Theorem for convex set (for example see [14]).

"Theorem 2' ⇒ Theorem 2"

Let $D = \{(x_1, \ldots, x_r): x_i \in F^n \text{ for } i = i, \ldots, r \text{ and } \sum_{i=1}^r x_i x_i^* = 1\}$. Define $g: D \to R^p$ by $g(x_1, \ldots, x_r) = (\sum_{i=1}^r x_i A_1 x_i^*, \ldots, \sum_{i=1}^r x_i A_p x_i^*)$. Then $g(D) = W^{(r)}(A_1, \ldots, A_p)$ and we are going to prove that g(D) is convex.

Assume the contrary that g(D) is not convex. Let $\underline{x}=(x_1,\ldots,x_r)$, $\underline{y}=(y_1,\ldots,y_r)$ \in D and 0 < δ < 1 such that

$$g(\underline{x}) = (a_1, \dots, a_p)$$

$$g(\underline{y}) = (b_1, \dots, b_p)$$

and

$$\delta g(\underline{x}) + (1 - \delta)g(\underline{y}) \notin g(D)$$

Let I_n be the $n \times n$ identity matrix. Putting

$$B_{j} = A_{j} - [\delta a_{j} + (1-\delta)b_{j}]I_{n} \qquad \text{for } j = 1, \dots, p$$

then $(\sum_{i=1}^{r} z_i B_1 z_i^*, \ldots, \sum_{i=1}^{r} z_i B_p z_i^*) \neq (0, 0, \ldots, 0)$ for all $(z_1, \ldots, z_r) \neq (0, \ldots, 0)$. Therefore by Theorem 2', there exist $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ such that

$$B = \sum_{j=1}^{p} \alpha_{j} B_{j} > 0 .$$

But

$$(\sum_{i=1}^{r} x_i B_1 x_i^*, \dots, \sum_{i=1}^{r} x_i B_p x_i^*) = (1 - \delta)(a_1 - b_1, \dots, a_p - b_p)$$

and

$$(\sum_{i=1}^{r} y_i B_1 y_i^*, \dots, \sum_{i=1}^{r} y_i B_p y_i^*) = -\delta(a_1 - b_1, \dots, a_p - b_p)$$

Taking the inner product with $(\alpha_1, \ldots, \alpha_p)$ we have

$$(1-\delta)_{j=1}^{p} \alpha_{j} (a_{j}-b_{j}) = \sum_{i=1}^{r} x_{i} B x_{i}^{*} > 0$$

and

$$-\delta \sum_{j=1}^{p} \alpha_{j}(a_{j}-b_{j}) = \sum_{i=1}^{r} y_{i}By_{i}^{*} > 0$$

which is a contradiction.

The following corollary follows immediately from Theorem 2.

COROLLARY 1. Let n > 2. Then for any A_1 , A_2 , $A_3 \in H_n(C)$, the set $\{(xA_1x^*, xA_2x^*, xA_3x^*): x \in C^n \text{ and } xx^* = 1\}$

is convex.

From Corollary 1, we have

COROLLARY 2. Let n > 2 . Then for any ${\rm A_1}, \, {\rm A_2}, \, {\rm A_3} \in {\rm H_n}({\rm C})$ and $\delta \in {\rm R}$, the sets

 $W_1(A_1, A_2; A_3, \delta) = \{(xA_1x^*, xA_2x^*): x \in C^n \text{ and } xx^* = 1 \text{ and } xA_3x^* \ge \delta\}$

 $W_2(A_1, A_2; A_3, \delta) = \{(xA_1x^*, xA_2x^*): x \in C^n \text{ and } xx^* = 1 \text{ and } xA_3x^* > \delta\}$

 $W_3(A_1, A_2; A_3, \delta) = \{(xA_1x^*, xA_2x^*) : x \in C^n \text{ and } xx^* = 1 \text{ and } xA_3x^* = \delta\}$

are convex.

By using the hermitian decomposition and the fact that $\|xA\|^2 = xAA^*x^*$, from Corollary 2, we have

COROLLARY 3. Let n > 2 . Then for any T , A $\epsilon \ M_n(C)$ and any $\delta \ \epsilon \ R$, the set

 $V(T; A, \delta) = \{xTx^*: x \in C^n \text{ and } ||x|| = 1 \text{ and } ||xA|| \ge \delta\}$

is convex.

The convexity of $V(T;\ A,\ \delta)$ was first asked by Stampfli [15] for the case A=T, and it is recently solved by Kyle [13] for general A and even for the case n=2.

RELATED TOPICS

Brickman [4] has proved that for any A_1 , A_2 , A_3 ϵ H_n (C) , the set

$$\hat{W}^{(1)}(A_1, A_2, A_3) = \{(xA_1x^*, xA_2x^*, xA_3x^*) : x \in C^n\}$$

is convex. Recently, this has also been obtained by Fox [8]. It is not difficult to see that this result follows immediately from Corollary 1, except for n=2. We shall generalize Brickman's result. For any $A_1,\dots,A_p\in H_n(F)$ and any $1\leq r\leq n-1$, let

$$\hat{W}^{(r)}(A_1, ..., A_p) = \{(\sum_{i=1}^r x_i A_i x_i^*, ..., \sum_{i=1}^r x_i A_p x_i^*) : x_1, ..., x_r \in F^n\}$$

For fixed pair of r, p and A_1 , ..., $A_p \in H_n(F)$ the convexity of $W^{(r)}(A_1, \ldots, A_p)$ would imply the convexity of $\hat{W}^{(r)}(A_1, \ldots, A_p)$. Given $1 \le r \le n-1$, a natural question is to find the maximum number p such that $\hat{W}^{(r)}(A_1, \ldots, A_p)$ is convex for any $A_1, \ldots, A_p \in H_n(F)$. The following theorem shows that even though \hat{W} has the relaxation of $\sum_{i=1}^r x_i x_i^* = 1$, the convexity of \hat{W} and \hat{W} only differs in the case when r = n-1.

THEOREM 3. If $1 \le r \le n-1$ and $p < f_F(r+1)$, then for any $A_1, \ldots, A_p \in H_n(F)$, the set $\hat{W}^{(r)}(A_1, \ldots, A_p)$ is convex.

PROOF. Let $1 \le r \le n-1$, $p \le f_F(r+1) - 1$ and $A_1, \ldots, A_p \in H_n(F)$. Since a matrix $X \in H_n(F)$ is ≥ 0 and of rank $\le r$ if any only if there are $x_1, \ldots, x_r \in F^n$ such that $X = \sum_{i=1}^r x_i^* x_i$, we see that

$$\hat{\mathbf{W}}^{(r)}(\mathbf{A}_1, \ldots, \mathbf{A}_p) = \{(\mathbf{Tr} \ \mathbf{A}_1 \mathbf{X}, \ldots, \mathbf{Tr} \ \mathbf{A}_p \mathbf{X}) : \mathbf{X} \ge 0 \text{ and } \mathbf{rank} \ \mathbf{X} \le \mathbf{r}\}$$

where 'Tr' means trace.

In order to prove that $\widehat{W}^{(r)}(A_1,\ldots,A_p)$ is convex, it suffices to show that for any $X \geq 0$ and rank $X = \ell + 1$, where $\ell \geq r$, there exists $Y \geq 0$ and rank $Y \leq \ell$ such that

$$\operatorname{Tr} A_{\mathbf{i}} X = \operatorname{Tr} A_{\mathbf{i}} Y$$
 for $i = 1, ..., p$

Without loss of generality, we may assume

$$X = \begin{bmatrix} I_{\ell+1} & 0 \\ \hline 0 & 0 \end{bmatrix}$$

Let

$$\mathcal{L} = \left\{ \left[\begin{array}{c|c} B & O \\ \hline O & O \end{array} \right] : B \in H_{\ell+1}(F) \right\}$$

Then $\dim \mathcal{L} = f_F(\ell + 1) \ge f_F(r + 1)$.

Let

$$\mathcal{L}(A_1, ..., A_p)^{\perp} = \{X \in H_n(F) : Tr A_i X = 0 \text{ for } i = 1, ..., p\}$$

Then dim
$$\mathcal{L}(A_1, \ldots, A_p)^{\perp} \ge f_F(n) - p \ge f_F(n) - f_F(r+1) + 1$$
. Hence
$$\mathcal{L} \cap \mathcal{L}(A_1, \ldots, A_p)^{\perp} \ne 0$$
.

Let
$$B = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{L} \cap \mathcal{L}(A_1, \ldots, A_p)^{\perp} \setminus \{0\}$$
. We may assume the eigenvalues of B are $1 = \beta_1 \ge \cdots \ge \beta_{\ell+1}$.

So
$$Y = X - \mathring{B} \ge 0$$
, rank $Y \le l$ and

$$Tr A_i Y = Tr A_i X$$
 for all $i = 1, ..., p$

This completes the proof of Theorem 3.

REMARKS.

- 1. The bounds $f_F(r+1) \delta_{n,r+1}$ and $f_F(r+1)$ in Theorems 2, 2' and 3 respectively are best possible.
- 2. If we consider the skew field Q of quaternions, then Theorems 2, 2' and 3 remain valid if we take $f_0(n)=2n^2-n$.

REFERENCES

- Y.H. Au-Yeung, A simple proof of the convexity of the field of values defined by two hermitian forms, Aequationes Math. 12, 82-83 (1975).
- 2. Y.H. Au-Yeung, A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two hermitian matrices, Proc. Amer. Math. Soc. 20, 545-548 (1969).
- 3. F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.
- 4. L. Brickman, On the field of values of a matrix, Proc. Amer. Math. Soc. 12, 61-66 (1961).
- 5. E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc. 15, 844-846 (1964).
- 6. W.F. Donoghue Jr., On the numerical range of a bounded operator, Michigan Math. J. 4, 261-263 (1957).

- P. Finsler, Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen, Comment. Math. Helv. 9, 188-192 (1936/37).
- 8. D.W. Fox, The convexity of the range of three hermitian forms and of the numerical range of sesquilinear forms, Linear Algebra Appl. 22, 191-194 (1978).
- 9. S. Friedland and R. Loewey, Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue, Pacific J. Math. 62, 389-399 (1976).
- A.J. Goldman and M. Marcus, Convexity of the field of a linear transformation, Canad. Math. Bull. 2, 15-18 (1959).
- F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3, 314-316, (1919).
- 12. M.R. Hestenes, Pairs of quadratic forms, Linear Algebra Appl. 1, 397-407 (1968).
- 13. J. Kyle, $W_{g}(T)$ is convex, Pacific J. Math. 72, 483-485 (1977).
- 14. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J. 1970, 95-101.
- J.G. Stampfli, The norm of a derivation, Pacific J. Math. 33, 737-747 (1970).
- 16. M.H. Stone, Hausdorff's theorem concerning hermitian forms, Bull. Amer. Math. Soc. 36, 259-261 (1930).
- 17. O. Taussky, Positive-definite matrices, in Inequalities (O. Shisha, Ed.), Academic, New York, 1967, 309-319.
- 18. O. Toeplitz, Das algebraishe Analogon zu einem Satze von Fejér, Math. Z. 2 (1918), 187-197.
- 19. F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: A survey, Linear Algebra Appl. 25, 219-237 (1979).

Department of Mathematics University of Hong Kong Hong Kong