A REMARK ON THE CONVEXITY AND POSITIVE DEFINITENESS CONCERNING HERMITIAN MATRICES
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1. INTRODUCTION

We denote by F the field R of real numbers or the field C of complex
numbers, and by Mh(F) the set of all n X n matrices with elements in F . A

matrix A € Mn(F) is called hermitian if A = A® | whé;e % denotes the
conjugate transpose. We denote by Hn(F) the real linear space of all n xn
hermitian matrices with elements in F . A matrix Ae Hn(F) is said to be
positive definite, writtem A > 0 , (respectively positive semidefinite, written

A 20) if =xAx® > 0 (respectively =xAx* z0) for all x e F'\{0} . The purpose
of this note is to consider the relationship between the convexity and definite-
ness concerning hermitian matrices and some related topics. In the following
content, we usually assume n 22 and for the convexity argument we identify

the complex plane with R2 .

2. CONVEXITY AND DEFINITENESS

Let A€ Mn(C) , Hausdorff [11] proved that the numerical range of A
defined by

W(A) = {xax* : x ¢ ¢, [|x]| = 1}

is convex. If we write A
A , then

1]

A1 + iAz , the unique hermitian decomposition of

)

i

W(a) = W(A, A, {(xAlx*, XA, %) :x e ¢ and xx* = 1} .

Therefore, Hausdorff's result may be stated as:

For any A, A, € Hn(C), W(Al’ AZ) is convex.

There were many other proofs of this result, for example see Donoghue [6], Goldman
and Marcus [10], Stone [16]. Brickman [4] considered the real analog of the
above result. He proved that if n 2 3 , then for any 3,, 5; ¢ Hn(R) , the set

{(xSlx*, x5,x%): x € R® and xx* = 1} is convex. (Here & merely means

transpose.) Combining these two results, we have
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T any AL A eH_(B) Y the st T

o7 JHEOREM 1., If .F .= C. and n.2 2. or, F=R .and.n.> 2 , then, for .. .

W(Al, Az) = {(XA1X*, XA2X*): xe ¥ and xx* = 1}

18 convex.

A unified. proof of Theorem 1 was . given by Au-Yeung [1]..

Let Al’ A2 € Mn(F) . Then another problem aries: under what condition
iﬁEﬂ_we\can conclude that there exist real nu@begs o,

ulAl + aZAz is positive definite. To this problem, we have the following =

and oy such that
theorem.

_THEOREM 1'."If F=C ard n2 2 or F=R and n > 2, then, for aw
Alj A, e Hn(F) such that .

(xa;x*, xA,x%) # (0, 0) for all x e F\{0}

3

there exist @, @, €R such that

alAl -+ azAz >0

Theorem 1' was first proved by Finsler (7] for F = R and there are many
other proofs, for example, Calabi [5], Hestenes [12], Taussky [17]. Au-Yeung [ 2]
has given a unified proof of Theorem 1' for both cases of F . For a more
detailed survey of this problem, see Uhlig [19].

In [17], Taussky proved that Theorem 1 implies Theorem 1!. But, it seems
to the authors that nothing has been mentioned about the converse, which, as we
shall see, is also true in a more general form.

A

A natural generalization of Theorem 1 is to comsider, for three Al’ 9

and A e Hn(F) , the convexity of the set
W(Al’ A, As) = {(xAlx*, xAzx*, xA3x*): x ¢ F' and xx* =1} .

For F = C , Hausdorff [11] mentioned that we can use Toeplitz's method [18] to
show that W(Al, Ay, A3)- has a convex boundary. He also remarked that, in

‘mgénéial;‘W(Al;“Aé,'Kg) is not convex. In [4], Brickman gives an example of'i -
Ay Ay, and Ay e Hn<R) such that W(Al’ Ay, Aa) is not convex. However, we
shall see that for F=C and n > 2 , W(Al, Ay, Ag) is always convex.
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Let fF'(n) be the dimension of the real linear space H (F).. Then .

obviously,
n(ot+l) . _
—5 o . if F=R
B =9 | | |
‘ n ' if F=C .

Now, we can give a generalization of Theorem 1.

THEOREM 2. If 1 =t sn-1 and »p <'fF(r+l) -8
A .y A e H (F) , the set
P n

n,rH then, for any

1,

r - r T
w(r)(Al,...,A) = {( L xAxF, ..., I xAx%):x el and I x x%=1}
P =1 1174 i=1 1P 1 i i=1 + 1

18 convezx, where aij 18 the Kronecker delta.

We shall proved that Theorem 2 is equivalent to Bohnenblust's result [3],
(see Friedland and Loewy [9] for another proof), which is a generalization of
Theorem 1'.

THEOREM 2'. (Bohnemblust) If 1 St sSn-1 and p < fF(r+l) -8

. n,r+l °’
then, for any A., ..., A € H (F) such that
Y 1 P n
(%) (§ A x* i A x*) # (0 |
= XA KT, ., Ly x; pxi y ceey O)
Il T
for all C P x) e F_x -+ % FA{(0, ..., 0)}
r-times

then there exist o a_ € R . such that

12 e Op
P
L, oA, >0
i=1 3]

PROOF.

"Theorem 2 => Theorem 2'"

Since W(r)(Al, v AP) is convex and from condition (x),
W(r)(Al, cees Ap) does not contain the origin in RP . The result follows

from.using the Separation Theorem for convex set (for example see [14]).
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g(x)
g(y)

dg(x)

and

3

J=

which is a contradiction.

88

"Theorem 2' => Theorem 2"

Assume the contrary that

+

Let D = {(xl, cens xr): x, € BV

i

r
Define g: D -+ rP by g(xl, veey xr) =( I

g(D)

(al,

(bys +vvs b))

(1 - 8)egly ¢ g

., a)

k

r
for i=4,...,r and I x.x; =1}.

i=1

y= (s «+e5y) €D and O0< § <1 such that

P

P

B, = A, - {(8a. + (1-8)b, ]I
; [ a (1-8) 31 a

i=1 1 +

o
xiAlxz, vees L %X, A X¥) . Then

i=1 i1p 1

g(D) = W(r)(Al, vees Ap) and we are going to prove that g(D) is convex.

is not convex. Let X = (X,, <., xr) )

1

-

Let In be the n x n identity matrix. Putting

for j =1, .c0, P

T T :
* *
then (iilziBlzi’ veey & zinzi) # (0, 0, ..., 0) for all (zl, cens zr) #

i=1
(0, ..., 0) . Therefore by Theorem 2', there exist s =) O R such that
p
B= L B, >0
j=1 13
. But
r * I %
(~£1xiB1xi’ cees iilxinxi) = (1 - 6)(a1—b1, cees ap—bp)
and
(I y.By* I.y.B y¥) = -s(a -b b )
PR E o LA LN AFL s o 2o A 6la;=by, wevs 270,
Taking the inner product with (o, -.., ap) we have
(1-8) 30, (a,b,) = b x Bx* >0
- a,(a,-b.) = x,Bx% >
=133 3 i=1"1 "1
and
5 (a.~b.) § By* > 0
-§ L a.(a,~b,) =  By¥* >
j=1L 3 31 ] i=1 Y17y

The following corollary follows immediately from Theorem 2.




A

COROLLARY 1. Let n > 2 . Then for any Al Ay,

3 € Hn(c) , the set
{(xA x*, xa,x*, >§A3x*):wx e ® and xx* = 1}

8 convew.
From Corollary 1, we have

COROLLARY 2. Let n > 2., Then for any . A, Ay, Ag e Hn(C). and §¢eR,

the sets o | N
Wo(A, Azé Ay, 8) = {-(_xAlx*,A XA, x*) 1 x e Cr'1 and xg* =l and anx* 25}
Wo(A , Ays Ay, 8) = {(xa %%, xAx%): x ¢ c? and_ xx* = 1 and. %A3x* > 8}
Wo(a), AZ; Ay, é) = {(xAlx*, xAéx*)i x.s‘Cn and 'xx*'= 1 and xA3x* = 8}

are convex.

By using the hermitian decomposition andvthe fact that ”XA”Z = xAAFx*
from Corollary 2, we have : . : o '

COROLLARY 3. Let.n > 2. Then forany T , & ¢ M (C) and any §eR,
the set '

V(T; A, §) = {xTx*: x e C© and x|l = 1 and ”xA“ z 8}

18 convex.

The convexity of V(T; A, §) was first asked by Stampfli [15] for the
case A =T, and it is recently solved by Kyle [13] for general A and even
for the case n = 2 . :

3. RELATED TOPICS

Brickman [4] has proved that for any Aj, Ay, Ag e Hn(C) , the set

A) = {(XAlx*, XA, x*, anx*): x e ch

(D
W (Al’ Az’ 3 2

is convex. Recently, this has also been obtained by Fox [8]. It is not
difficult to see that this result follows immediately from Corollary 1, except
~for n =2 . We shall generalize Brickman's result. TFor any Al,...,Ap € Hn(F)

and any 1 = r £ n-1 , let




~(x) I . . T K 0
W e = Yy aeey LX) -
‘ (Al’ , AP) {(iilxiAlxl’ s iElxiApxi) Xy s X_ € F}

For fixed pair of r, p and A;, ..., A ¢ Hn(F) the convexity of

P
() . ; ~(x) ,

W7 (A1, oeny Ap) would imply the convexity of W' " (4, ..., Ap) . Given

1L sr £ n-1, a natural question is to find the maximum number p such that

%(r)(Al, ciey Ap) is convex for any: A;, ..., Ap £ Hn(F) . The following
~ . r

theorem shows that even though W has the relaxation of ‘leix; =1, the
1=

convexify of W and W only differs in the case when r = n-1 .-

THEOREM 3. If 1 =t 2n-1 and p < £(ctl) , then for any
Ayy oes Ap € Hn(F) , the set w(r) (Al', cees Ap) 18 convec..

PROOF. Let 1 £rs=n-l1,p s fF(r+l) -1 and A, ..., A € Hn(F) .

Since a - matrix X € Hn(F) is 20 and of rank s r if any only if there are

X

el

. X, , We see that

n
Xqy se2y X £ F such that X = *
1 T i71

i=1

W(r)(Al, vees AP) = {(Ir A, ooy Ir APX):»X 20 and rank X = r}

where 'Tr' means trace,

(r)

In order to prove that W (Al’ veesy Ap) is convex, it suffices to show

that for any X 20 and rank X = 2 + 1 , where & 2 r , there exists Y=z 0
and rank Y = £ such that ’

Tr AX =Tr AY  for di=1, ...,p .

Without loss of generality, we may assume

X = . i
B| O : '
L = (. : BeH () .
ol o 4+1

i = - 2 . 1)
dim Z£. fF(Z + 1) fF(r + 1) .




Let'
Lo o .
Z(A, e, Ap) ={Xe Hn(F): Tr A X=0 for i=1,...,'p}
) L ' .
Then dim i(Al, cees Ap) 2 fF(n) ~-p 2 fF(n) - fF(r+l) + 1 . Hence

1
Zn i(Al, cens AP) #0 .

B 0 '
Let ¥ = { }e L0 LA, .., Apﬂi\ {0} . We may assume the eigenvalues of

Tt By
n
So Y=X-B&O0, rank Y £ 2 and
TrAAiY = Tr AiX for all i=1, ..., p .

This completes the proof of Theorem 3.

REMARKS.

— ] i ' —
1. The bounds fF(r+l) 6n,r+l and fF(r+l) in Theorems 2, 2' and 3 respec

tively are best possible.
2, If we ébnsider the skew field Q of quaternions, then Theorems 2, 2' and 3

remain valid if we take £.(n) = 2n2 -0 .

Q
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