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ABSTRACT

Let 9, be the set of all 3X3 unitary matrices, and let A and B be two 3X3
complex norinal matrices. In this note, the authors first give a necessary and sufficient
condition for a 3 X3 doubly stochastic matrix to be orthostochastic and then use this
result to conmsider the structure of the sets W (A)={DiagUAU*:U€ 3} and

W(A,B)={TrUAU*B: U €9}, where * denotes the transpose conjugate.

1. INTRODUCTION

Let A and B be two nXn complex matrices, and let 9, be the set of all
nX n unitary matrices. Define U (A)={DiagUAU*: U €9,,} and W(A,B)
={TrUAU*B: U €, }, where * denotes the transpose conjugate. Horn [3]

‘proved that if A is Hermitian, then °Uf (A) is convex. Au-Yeung and Sing [1]
proved that if A is normal, then AUW(A) is convex if and only if the
eigenvalues of A are collinear. Williams [7] characterized the structure of
U (A) for a 3X3 normal matrix A. Westwick [6] (in an equivalent form)
proved that if A is normal and the eigenvalues of A are collinear, then
W(A, B) is convex. He also gave an example of two 3 X3 normal matrices A
and B such that W(A, B) is not convex.

An nXn doubly stochastic (d.s.) matrix () is said to be orthostochastic
(0.s.) if there exists (u;;) €A, such that g;= ]u |2 The purpose of this note is
(1) to give a necessary and sufﬁment condltlon for a 3X3 d.s. matrix to be
0.5., (2) to give another characterization of the structure of W (A) for a
normal 3 X 3 matrix A and (3) to give a necessary and sufficient condition for
the convexity of W(A,B) in terms of the eigenvalues of A and B for 3X3
normal matrices A and B.
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9. ORTHOSTOCHASTIC MATRICES AND THE CONVEXITY
OF GENERALIZED NUMERICAL RANGES

~“We first give a necessary and sufficient condition for a-d.s: matrix to be -
0.S.

TuroreM 1. Let (a;) be a 3X3 real matrix such that E?=1a,.7-=1
(1=1,2,3) and }_,a,=1 (j=1,2,3). Then

(1) if (ay) is 0.5., then for any j7j and for any

Vayay < z *

l

() conversely, if there exist j7j such that a; >0, a; >0 (i=1,2,3) and

for any 1, the inequality (*) holds, then (ay) is o. 5. 1

Proof Suppose ( ;) is 0.s.; then there exist real numbers 8; (i,j=1,2,3)
such that (\/— e ) is unitary. Hence for any j=j’

Z \/—‘“ V=1 (8,-0y) — 0,

and consequently the inequality (*) follows.

Conversely, suppose there exist {7j’ such that the mequallty (*) holds for
any l. For definiteness, we assume j=1 and j'=2. Then the nonnegative
_ numbers Va,,a,5 , Vay,8y5 , Vayas, form the lengths of the three sides of a
triangle. Hence there exist real numbers # and ¢ such that

V=1o 4 V=1v=,

\/aualz +\/a21a22 € Qg 839 €
Use=Va, ¢’ 1Y, and (u13, Ugs, Uss) be any unit vector orthogonal to (un,
Ugy, Usp) and (ulz,uzz, Us5)- Then (u, )1s unitary and a,; —'{ |2

In the following we shall use A and B to denoté two complex normal
matrices with eigenvalues A, Ay, A, and p, gy, iy Tespectively. It follows from
the definitions that W (A)= {(}\1,)\2,?\ )(a;):(ay) is a 3X3 o.s. matrix} and
WI(A, B) = {(A1; A5, Ag)(a;)( By oo o) 2 (@ a;) is a 3X3 o.s. matrix}, where T

denotes the transpose. From Theorem 1, we have
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CoroLLARY 1. (¥1,Yse,Ys) € %( A) (yEW(A,B) 76379@3“’331?/) if and only

if (Y0, Y2 ¥a) = A An A)(@y) (¥ = (A Mgy Ag)(a) iy, oo us)"  respectively),
where (a;) is a d.s. matrix satisfying (*) for some j7=i" and for any I.

- Obviously, if (1,Ys7vs) EW(A), then each v, (i=1,2,3) is a convex
combination of A;, A, and A; and Y1+ Yo+ ¥3=A; A +A;. The foﬂowmg
theorem gives a characterization of % (A).

THEOREM 2. Suppose Ay, Ay and Ay are not collinear and v,=a;\;+
g+ 0aAg (0,20, oy +ap+az=1). Then (Y1 Yo Y3) € W (A), where yo=xA,
+yhy+ 2N, %,4,2 >0, x+y+2=1 and v;=TrA —(y,+7y), if and only if

(i) x<ay+a, and _
() (Vagogx — Vaga, < (ag+ az)y < (Vajagx + Vaga, )2, where a,
= Olg+ 03— X. : :

Proof. We first observe that

o x l—a;—x

(')’1:')'2:73):@1)‘2)\3) ag Yy l—ay—y

Now if (Y;,72,¥3) € W (A ( ) then there exists an o.s. matrix (a;) such that

ApAgAg)| @y l—ag—y| = (Al’}\,‘%v}\a)(aﬁ)'

Since A;, A, and A, are not collinear, by comparing the coefficients we see
that

O(l X l“al—“x

Gy Yy ll—oz'z—-y =(aij)'
a; 2 l—a3—z

Consequently, by Theorem 1, (v;,7s7s)EW(A) if and only if all the
following three inequalities hold: *'

(1) Va,x <Vayy + Vayz,

(2) Vagy < Vax + Vayz,

3) \/oz3z < \/alx + Vagy .
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If oy + a3 =0, from (1), x=0 and y can take any value between 0 and 1.
So we may assume ay+ a3 >0 and notice that (1), (2) and (3) together are
equivalent to

(Vagx — Vagz P<agy<(Vax + Vagz )?
e —2Va oz <ogy— o x—azz<2Va,o5xz

lagy—ayx—ag(l—x— Yy <4ajazx(l—x—y)

()

)

(ag+ “3)2!/2 —2[a 0% + az(ag+ oz — x)] Yy +[a;x— ‘_"3(1 - x)]z <0
(. a;tagt+ a3=1)’
< [(ag+ a3)2y]2 —2[ayapx + az(ag+ az— x)][(ay + “3)2!/]

+ [oy 0% — ag(1— x) + a;a,* < 0 (.0 agtoayta;=1).

Putting ¢ = (ay+ a)%, then the above inequality holds for nonnegative real
numbers ¢ if and only if '

: 2 2
as0p > 0 and (\/aloczx —Vaza, ) <t< (\/alazx + Vasa, ) ,
which in turn are equivalent to (i) and (ii), since if a3 =0, then
t=aly=aox = x=ayx+y) <a, 5

The following theorem shows that the matrix

(111
=31 1 1
11 1

plays an important role in the consideration of 3 X3 o.s. matrices.

Turorem 3.! A convex combination of a 3X3 o.s. matrix (a;) and C, is
an o.s. matrix. Furthermore, the matrix C, is the unique o.s. matrix with this

property.

'Theorem 3 and Corollary 2 were also obtained by M. Goldﬁerg and E. Straus (private
communication). The authors are thankful to Straus for giving the second statement of Theorem
3 with a proof which is different from the one given here.
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Proof. Let 0<a<1. Then for any [ |

3 Yo 5o 5

-« l1—a l—a l—a
+2‘§/(aai1+ T)(aai2+ T)(aai,1+ ———3—)(aai,2+———é——)

(1<i<i'<3, i,i'#l)

3
a(l—a 1—a)?
> Z [azailaﬂ + all—a) (a1 +ag)+ ( ) ] + 20V 4,050,105

i=1 3 3
is=]
(1<i<i’' <3, i,i'#l)
3 2 _ 3 | A2
= o’ Z V Q105 +£X'£‘1’3—’9£)" Z (@, + ay) +2( L 3&)
il ot

Hence, by Theorem 1, a(a;)+ (1—a)C, is o.s. for any 0<a <1,
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For uniqueness, call any o.s. matrix with such property a censer.Let

C=(c) be a center and I the 33 identity matrix. Then, for any 0<a <1,
the matnx (1—a)I+aC is os,, and by Theorem 1 we have

\/&012[ 1+a(c;—1)] < \/01021[1 + a(022 —1)] +yo%cace

and

\/&021[1+a(022—1)] <\/a012[1+a(cu—1)} +V/acgi0q5 -

Hence

(\/0_21[1"*’“(022”“1)] “\/012[1+a(011“1)] )2 < 0C3)C9

for any 0<a <1. This implies cy; = ¢yo. It is obvious that if C is a center,
then for any permutation matrices P, and P,, P,CP, is also a center.
Therefore, by the above argument we have ;= -:1; fori,j=1,2,3. 2

CoroLLARY 2. For any u €U (A) (x € W(A, B) respectively) and any
0<a<]l, a(y,7,7)+(1—a)ucUW(A), where y=z\;+As+A;) (a/3)A;+
Ag+Ag)( g+ po+ pg) + (1 — a)x € W(A, B) respectively).

Let M, (M_) denote the set of all 3X3 even (odd) permutation
matrices. Define V, = {(A;,Ap, A))P:PEM .}, V_={(ALAs,A\)P:PEM_},
V= {(A0 A0 Ag) P 1y, g, p) PEM.Y, V_={QAnA ) P(piy, pio, o) :PE
M_}. A permutation matrix is o.s. For a convex combination of two
permutation matrices, we have the following theorems.

Tueorem 4. For any PL.€M,, P,EM_ and any 0<a< <1, aP,+
(1—a)P, is o0.s.

Proof. Without loss of generality, we may assume P; to be the identity
matrix (otherwise we consider PP; and PP,, where P is a permutation matrix).
Then P, is obtained from P, by transposing two rows of P;. For definiteness
we assume




ORTHOSTOCHASTIC MATRICES AND NUMERICAL RANGES 75

Then obviously,
1 0 0 . 1 0 O 1 0 0
al0 1 o|+(1-a)j0 0 1|=|0 o« 11—«
0 0 1 0 1 0J 0 l1-a a
is 0.s. | 0

CoroLLARY 3. For any u€YV, (xEV, respectively), vEV_ (yEV_)
and any 0<a <1, we have au+(1—a)o €W (A) (ax+(1— a)y € W(A, B)).

THEOREM 5. For any distinct P, and P, in M, (or in M_) and any
0<a<1, aP;+(1— a)P, is not an o.s. matrix.

Proof. Without loss of generality, we may assume P, to be the identity
matrix. For definiteness, we assume A

0 1 O
P2=0 0 1}.
1.0 O

Then for any 0<a <1,

1 0 O 0 1 0 o 1—a 0
al0 1 o|+(1—a)j0 0 1{=]| 0 « l-al,
0 0 1 1 0 O l—a 0 o
which, by Theorem 1, is obviously not o.s. '

Lerer [4] gave an example of a unitary matrix U such that U (U) is not
convex. But by applying Theorem 5 and comparing coefficients, we have the
following result.

CoroLrary 4. If Aj,Ap,A; are not collinear, then for any distinct
u,0€V, (or V_) and any 0<a <1, au+(1—a)o& W (A).

For any two distinct complex numbers x and y, we shall denote by
L(x,y) the line passing x and y.

CoroLrLary 5. If x,y are two distinct points in V. (V_ respectively)
such that all the points in V_ (V. respectively) lie on one side (the open
half plane) of L(x,y), then ax+(1— o)y & W(A,B) for any 0<a <1.
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Proof. Supposeé there exist x,y €V, (or V_) and 0<a <1 such that
ax+(1— )y E W(A,B). Then there exists an o.s. matrix (a;) such that

ax + (1= a)y = (ApApAg)(ay)( iy, o big) -

* By Birkhoff’s theorem (for example, see [5]), (a;) is a convex combination of
permutation matrices. Since all the points in V_ lie on one side of L(x,y),
and since the triangles C(V ) and C(V_), [where C(X) is the convex hull of
X] have the same center ¢,=5(A; +Ay+Ag)(py + i + i), the third point z in
V, (or V_ respectively) also lies on the same open half plane with the points
in V_ (or V). Consequently, we hiave (a;)=aP;+(1— a)P,, where P, and
P, arein M, (or M_), contradicting Theorem 5. =

TureoreM 6. W(A,B) is not convex if and only if there exist distinct x
and y in V. (orin V_) such that all points.in V_ (or V. respectively) lie on
one side (the open half plane) of L(x,y). |

Proof. For any two distinct complex numbers x and y, we denote by
S(x,y) the line segment joining x and y. It is known [2] that C(W(A,B))=
@(V,UV_). By Corollary 3, we see that if x€V, and yEV_, then
S(x,y)C W(A,B), and by Corollary 2, if x& W(A,B), then S(x,c)C
W(A,B), where

D =
M
=

i
|
™M
=®

il
| =
=

0‘1’”‘2'”\3)( ih‘*’.“z’*‘l*s) =

O b

Co =
xEV, UV

Therefore, if W(A,B) is not convex, then there exist distinct x and yin V
(or in V_) and 0<a <1 such that ax +(1— a)y & W(A,B). The third point z
in V, (in V_ respectively) cannot lie on L(x,y); otherwise, ¢o € L(x,y) and .
consequently S(x,y) C W(A,B). Now all points in V_ (in V respectively)
must lie on the same side with z (equivalently with c,) with respect to
L(x,y), since if there exists x, in V_ (in V. respectively) such that x, lies on
L(x,y) or on the other side of L(x,y), then S(cyw)C W(A,B) for all
w € S(xy,%) U S(x0,y) and consequently S(x,y) C W(A,B).

The other part of the theorem is a consequence of Corollary 5. So the
proof of the theorem is completed.

Bh

3. EXAMPLES

In the following figures, we use O to denote points in V., and X to
denote points in V_.
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ExampLE 1 (see Fig. 1).

| ,eV—lZ'zr/S

V+ — {émw/3’6m2w/3,0},

V. ={1,-1L,V-3}
W(A,B) is convex. X

ExampLE 2 (see Fig. 2).
0
A= 1

V—1a/3

€

-

vV, = {%Zv—l w/lz’e\/—-l w/3,1+_;_e\/—1 5w/1;z}

VvV = {1’%6\/45”/12,%6\/-—1w/12+e\/——17/3}

W(A,'B) is convex.

b

‘.
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X

~ ~. 1_*_%8\/:'{57/12
//O' A
X
fO 3 |
A= 1 ,
- aJ
fo )
B = 1 |, a is not real,
~ o
V,={a,al+aa},
V_={Laa,a+a}.
W(A, B) is not convex.
o
ol
I T~
| ~<
[ ~~o
| ~<
l \\
X L x X TS0 l+aa
I -
| -
] -
[ -
P
o/
&
Fic. 3.
ExampLE 4 (see Fig. 4).
0 0
A= 1 B= 1 ; ,
V-1 V-1
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- W(A, B) is not convex. (Westwick [6] has considered ghis_example.)

X

Fic. 4.
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