
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007 1

On Scheduling of Peer-to-Peer Video Services
Ying Cai, IEEE member, Ashwin Natarajan, Student IEEE member, Johnny Wong, IEEE member.

Abstract— Peer-to-peer (P2P) video systems provide a cost-
effective way for a large number of hosts to colloaborate for
video sharing. Two features characterize such a system: 1) a
video is usually available on many participating hosts, and 2)
different hosts typically have different sets videos, though some
may partially overlap. From a client’s perspective, it can be
served by any host having the video it requests. From a server’s
perspective, it be used to serve any client requesting the videos
it has. Thus, an important question is, which servers should be
used to serve which clients in the system? In this paper, we refer
to this problem as service scheduling and show that different
matches between clients and servers can result in significantly
different system performance. Finding a right server for each
client is challenging not only because a client can choose only the
servers that are within its limited search scope, but also because
clients arrive at different times, which are not known a priori.
In this paper, we address these challenges with a novel technique
called Shaking. While the proposed technique makes it possible
for a client to be served by a server that is beyond the client’s
own search scope, it is able to dynamically adjust the match
between the servers and their pending requests as new requests
arrive. Our performance study shows that our new technique
can dynamically balance the system workload and significantly
improve the overall system performance.

Index Terms— P2P Systems, Video Services, Service Schedul-
ing, Service Latecy.

I. INTRODUCTION

Consider a decentralized Peer-to-Peer (P2P) overlay net-
work that consists of a large number of hosts that collaborate
for the purpose of providing video services to each other. The
hosts participating in such a system, which we will refer to
as P2P video system, are peer to each other in the sense that
they can all behave as clients and servers. While a host can
be a client in requesting video services from any other hosts,
it can also be a server by caching a number of videos to
serve the entire community. Without causing ambiguity, we
will simply use client to refer to a host requesting a video and
server a host supplying a video. Since a client can download
a video for its own playback and then cache it to serve future
requests, a highly demanded video can be quickly spread out
in the system. When a video can be supplied by many hosts
from different network domains, the bottleneck formed at the
original server is effectively alleviated.

A P2P video system can be built on top of a structured or
unstructured P2P file sharing systems. Since many techniques
have been proposed for efficient file lookup in such systems
(e.g., K-random walk [1], CAN [2], Chord [3], Pastry [4], just
to name a few), we will not concern ourselves on how a client
can locate the servers that have the video it requests. In this
paper, we focus on service scheduling, another component that

Manuscript received January 1, 2006; revised August 31, 2006.
Digital Object Identifier 10.1109/JSAC.2007.070104.

is critical to a P2P video system. Given a client requesting a
video, which is typically available on a number of servers,
which server should be used to serve the client? The problem
of service scheduling is complicated because of several factors,
the first one being obvious while the rest less apparent:

• From a client’s perspective, it should be served by the
one with minimal service latency, which is defined to be
the period starting from the time a client submits a video
request to the time it can start to download for playback.
However, although a video may be available on many
hosts in the system, a client looking for the video usually
can locate only a few, typically one, of them. The servers
found may not be able to provide the fastest service.

• Even if each client can find all available server candi-
dates, different match between clients and servers can
result in significantly different performance results. As
an example, consider two servers, S1 and S2. S1 caches
videos v1 and v2 while S2 has videos v1 and v3. Given
two clients, C1 and C2, requesting for v1 and v2, re-
spectively, if C1 is served by S1, C2 will have to wait
until S1 finishes serving C1. However, if C1 is served
by S2, then C2 can be served by S1 immediately. This
problem is attributed to this fact: while a client may have
a number of hosts as its server candidates, a host can also
be a server candidate to more than one client – a host
caching a number of files can be a server to any client
requesting these files.

• Clients request files at different times. Thus, the match
between clients and servers must be dynamically adjusted
as clients arrive. This is particularly challenging in decen-
tralized P2P systems, where each client finds and chooses
its server by its own. In the previous example, when C1

arrives, it can choose either S1 or S2. It is the next request
that determines which server should be used to serve C1.

In this paper, we address the challenges of scheduling
peer-to-peer video services. Although our discussion is in the
context of video services, the proposed solution is generic and
can be applied in any P2P file sharing systems. In P2P systems,
two clients looking for a same file may locate two different
sets of server candidates. This phenomenon is especially
popular when a file is cached by many hosts in the system.
Based on this observation, we develop a novel scheduling
technique, called Shaking [5], which is characterized by two
features. First, a client can be now be served by a server
that is beyond the client’s own search scope. Second, the
matches between servers and their pending clients can now
be dynamically adjusted as new requests arrive in the system.
As we will show, these two features can dynamically balance
server workload in the system and minimize client service
latency.

0733-8716$20.00 c© 2007 IEEE

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

II. SYSTEM MODEL AND ASSUMPTION

We assume a decentralized P2P system, where no central
server is used for file management. Since efficient file lookup
has been studied intensively and many techniques have been
proposed [1], [2], [2], [3], [4], we assume a client C requesting
a video V can simply call Search(V) to locate a set of servers
caching V and will not concern the detailed implementation
of this function. The servers found through the lookup process
form the client’s server pool, denoted as SPool(V), from
which the client chooses one as its server. To request video V
from server S, client C sends a command Request(C, V) to
the server.

At the server side, each server organizes its communication
bandwidth into a number of channels, each of which can
stream a cached video at its playback rate to a remote client.
Many P2P users connect to the Internet through some form
of broadband residential connections, such as ADSL or cable
modem, where the communication bandwidth are asymmetric
with uploading bandwidth significantly less than download-
ing bandwidth. For such network access, the communication
bottleneck is in its connection to the ISP, instead of in the
Internet backbone [6], [7]. In these cases, a number of hosts
can work as a single server by aggregating their uploading
bandwidth to serve a client [8]. Thus, in our discussion, we
simply assume each server can have at least one channel. We
also assume that each server maintains a service queue Q; and
all arriving requests are first appended to this queue. When a
channel becomes free, the server schedules a pending request
for services in a FIFO manner, i.e., clients are served according
to their arriving order. Thus, given a number of channels and a
list of pending requests, we can determine the service latency
of each request.

III. SHAKING

Suppose a client Ci requests a video Vi. The client can
call Search(Vi) to find a set of server candidates and then
submit its request to the one, say S, that can provide the fastest
service. Since client requests are served according to the order
of their arrival, Ci needs to wait until S finishes serving all
earlier requests. An important objective of our research is to
reduce this wait time. This goal can be achieved by trying to
move the requests that arrived earlier at S to other servers.
Assume client Cj is in the service queue and the video it
requests is Vj . Ci can launch a lookup for Vj and check if any
server found can provide Vj to Cj no later than S. If there
is such a server, say S′, then S′ can then be used to serve
Cj . When a request is moved out of S’s queue, all requests
pending after this request, including Ci itself, will be served
at an earlier time. Since a video may last many minutes, the
reduction on their service latency can be significant.

Given a set of server candidates, a client can contact them
for their pending requests and try to find each of them a
new server. We call this process as Shaking. Shaking makes
it possible for a client to be served by a server that is
beyond the client’s search scope. In the above example, S′

located by Ci may be invisible to Cj . Given a limited search
scope, each client may shake only a small number of servers.
However, many small shakes, originating by clients from

S
1

{V
1
, V

2
}

S
2

{V
2
, V

3
}

S
3

{V
2
, V

3
, V

4
}

C
1
, V

2
C

2
, V

2

C3, V3

C
4
, V

4

S
4

{V
3
, V

4
}

Fig. 1. Example

different locations, together can have a global effect. Since
each client can try to shake its server candidates, a more
demanded server may be shaken more frequently. Thus, the
pending requests in an overloaded server can be migrated
gradually to other less loaded servers in the system. Because
each shake dynamically adjusts the match between clients and
servers, the mismatch caused by limited search scope and
unpredictable client arrivals is effectively addressed.

A challenge of implementing the above Shaking idea is
the chaining effect. In Figure 1, a client C trying to shake
request [C1, V2] out of server S1 may find two servers, S2

and S3, that have V2. Although these two servers cannot serve
[C1, V2] earlier than S1, the client can try to see if it can shake
any pending requests out of S2 and S3. For example, it may
launch a search for V4 and find server S4, which is free of
workload at this moment. This example shows that in order to
successfully move out a request, a client may need to shake a
chain of servers. The chain may even consist of loops, which
happens when multiple requests pending on different servers
for a same video. In addition to the chaining issue, the order of
shaking also has significant impact on the shaking results. In
the above example, we can move [C4, V4] from S3 to S4, and
then [C2, V2] and [C3, V3] from S2 to S3, and finally [C1, V2]
from S1 to S2. This shaking order allows S1 to serve client C
immediately. However, if we move [C3, V3] first from S2 to S4,
client C will receive no benefit. We address these challenges
with a 3-step solution, building closure set, shaking closure
set, and executing shaking plan.

A. Building Closure Set
A closure set is the maximum set of servers that a client

can find to shake to minimize its service latency. A client
requesting video V can use Algorithm 1 to build such a closure
set. The client first calls Search(V) to find SPool(V), i.e., a
set of servers having video V , and contacts each server S for
its service queue. Then for each pending request [Ci, Vi] in the
queue, the client searches for SPool(Vi). Note that for each
video, the client needs to search its servers only once. Given
a same lookup mechanism, the client can find only a fixed
server pool for a particular video. The information about the
servers and their pending requests found during this process
are stored locally.

B. Shaking Closure Set
Given a set of the servers and their service queues, the client

now tries to find a shaking plan that can minimize its service
latency. A shaking plan is an ordered list of action items, each
denoted as T ([C, V], Si, Sj], meaning that ”transfer [C, V]

CAI et al.: SHAKING SERVICE REQUESTS IN PEER-TO-PEER VIDEO SYSTEMS 3

Algorithm 1 BuildingClosureSet(V)
1: ClosureSet = ∅;
2: sList = ∅;
3: vList = ∅;
4: Launch Search(V) to find SPool(V);
5: for all {S | S ∈ SPool(V) } do
6: sList = sList

⋃
{S};

7: end for
8: while sList 6= ∅ do
9: for all {S | S ∈ sList } do

10: ClosureSet = ClosureSet
⋃
{S};

11: sList = sList− {S};
12: Contact S for its service queue Q;
13: for all {[Ci, Vi] | [Ci, Vi] ∈ Q and Vi /∈ vList }

do
14: Launch Search(Vi) to find SPool(Vi);
15: for all {S′ | S′ ∈ SPool(Vi) and S′ /∈

ClosureSet } do
16: sList = sList

⋃
{S′};

17: vList = vList
⋃
{Vi};

18: end for
19: end for
20: end for
21: end while

from Si to Sj”. Recall that different shaking orders can have
significantly different results. Given a set of servers and their
service queues, the client can try different shaking orders to
generate various shaking plans and then choose the one that
has the best result. Specifically, given a list of servers in
SPool(V), say S1, ..., Sn, the client can try each server as
the start point of shaking and generate a shaking plan. Each
time it chooses a server, it first appends its request [C, V] in
the server’s queue and then tries to transfer other requests to
other servers. Trying to shake all servers allows the client to
find out which one should be used as its server. Note that all
such tries are done locally without actually getting the servers
involved.

In order to service a new request [Cx, Vx], a server say
S from SPool(Vx) which can provide the fastest service,
is chosen and [Cx, Vx] is appended to its service queue. To
provide [Cx, Vx] with a faster service, all requests in S that
arrived earlier should be shaken out, if possible. For each
earlier request [C, V], Shake([C, V], S) is called. When the
Shake algorithm is invoked on the first request, ShakingPool
is initialized with the server in which the request is queued.
ShakingSet for all requests is initially empty. Algorithm 2
gives a formal description on how to shake a given request
[C, V] which is currently queued in S. Latency([C, V], S)
denotes the expected service latency of [C, V] if it is served by
S. ShakingPool is the set of servers currently under shaking.
SP lan denotes the shaking plan generated during this process.

Given a request [C, V], the above algorithm finds SPool(V)
first and then checks if any server in SPool(V) can serve
V no later than S. If there exists such a server, say S′, an
action T ([C, V], S, S′) is appended to the shaking plan. If
there is no server, it creates a ShakingSet for this request,

Algorithm 2 Shake([C, V], S)
1: Get SPool(V)
2: S′ ⇐ {s ∈ SPool(V) and latency([C, V], s) ≤

latency([C, V], S) and latency([C, V], s) is the least
among SPool(V) }

3: if S′ 6= ∅ then
4: Append {T([C,V],S,S’)} to SP lan
5: return S’
6: else
7: ShakingSet([C, V]) = {s | s ∈ SPool(V) and s /∈

ShakingPool }
8: if ShakingSet([C, V]) = ∅ then
9: return NULL;

10: end if
11: for all {s | s ∈ ShakingSet([C, V])} do
12: ShakingPool = ShakingPool

⋃
s

13: for all [Cx, Vx] ∈ Q(s) do
14: Destination([C, V]) = Shake([Cx, Vx], s);
15: if Destination([Cx, Vx]) 6= NULL then
16: Append {T ([Cx, Vx], s, Destination([Cx, Vx])}

to SP lan
17: if latency([C, V], s) ≤ latency([C, V], S)

then
18: Append {T([C,V],S,s)} to SP lan
19: return s
20: end if
21: end if
22: end for
23: ShakingPool = ShakingPool - {s}
24: end for
25: return NULL;
26: end if

which contains all servers that are in SPool(V), but not in
ShakingPool. Note that ShakingPool is the set of servers
that are currently under shaking. The algorithm then recur-
sively tries to shake out each request in the service queue of
the servers in [C, V]’s ShakingSet.

As an example, consider Figure 2. Suppose a client Cx

requests video Vx and builds a closure set that contains
five servers, S1, S2, S3, S4, and S5. The videos cached
by these servers and their service queues are shown in
the figure. Since Vx is cached only by S1, [Cx, Vx] is
added to S1’s service queue. Cx then tries to create a
ShakingP lan so that it can be served earlier. It first tries
to shake out [C2, V2]. Since SPool(V2) contains {S1, S2}
and S2 can serve [C2, V2] earlier than S1, Cx adds an
action T ([C2, V2], S1, S2) to ShakingP lan. Cx then tries to
shake out [C1, V1]. Since SPool(V1) contains {S1, S2, S3}
and neither one of them can serve [C1, V1] earlier than S1,
Cx creates ShakingSet([C1, V1]), which contains {S2, S3}.
{S2, S3} are added to the ShakingPool. Cx starts to
shake S2. SPool(V2) contains {S1, S2}. However, S1 cannot
serve V2 earlier. So Cx creates ShakingSet([C2, V2]). Since
ShakingSet([C2, V2]) = ∅ as S1 is in ShakingPool, Cx

goes ahead to shake S3. SPool(V3) contains {S3, S4}. Cx

adds S4 to ShakingPool. As S4 cannot serve [C3, V3] earlier

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

S
1

c
1
, v

1

S
2

cx, vx

Requests
arrive in

this order
T([C

2
, V

2
], S

1
, S

2
)Shaking Action

Shaking
Handle

Shaking Pool
c

2
, v

2

{V1,V2,Vx} {V
2
}

Requests
arrive in

this order

S1

c1, v1

S
2

c3, v3

S
3

cx, vx
Shaking
Handle

S4

S5

c4, v4

{V1, V2, Vx} {V2}
{V1,V3}

{V3,V4}

{V4}

c2, v2

T([C4, V4], S4, S5)
T([C3, V3], S3, S4)
T([C

1
, V

1
], S

1
, S

3
)

Shaking Action

Shaking Set(C1,V1) = {S3}

 S1Shaking Pool

Requests
arrive in

this order T([C2, V2], S1, S2)

S
1

c1, v1

S2

c3, v3

S3

c
x
, v

x
Shaking
Handle

S
4

S5

 ShakingSet(C1,V1) = {S2, S3}
ShakingSet(C2,V2) = {S1}
ShakingSet(C3,V3) = {S4}

c2, v2

c
4
, v

4Shaking Pool S1, S3, S4

{V
1
,V

2
,V

x
} {V

2
} {V

1
,V

3
}

{V3,V4}

{V
4
}

Shaking Action

c1, v1

c2, v2

S1 S2

{V
1
,V

2
,V

x
} {V

2
}

c
3
, v

3

S3

{V
1
,V

3
}

S4
S5

c4, v4

{V3,V4} {V
4
}

Closure
Set for
[Cx, Vx]

Fig. 2. Generating Shaking Plan.

than S4, Cx tries to shake S4 and adds it to ShakingPool.
SPool(V4) contains {S4, S5}. Because S5 can serve V4

earlier than S4, [C4, V4] is shaken out to S4 and an ac-
tion T ([C4, V4], S4, S5) is appended to ShakingP lan. Since
S4 can accept [C3, V3], another action T ([C3, V3], S3, S4) is
appended to ShakingP lan. S4 is then removed from the
ShakingPool. Since S3 can accommodate [C1, V1] now, an
action T ([C1, V1], S3, S4) is appended to the ShakingP lan
and S3 is removed from ShakingPool. Since all requests have
been shaken out, Cx proceeds to execute the actions listed in
ShakingP lan.

C. Executing Shaking Plan
Given a shaking plan, client C tries to execute the listed

actions one by one in order as follows. For each action
T ([C, V], S, S′) in the plan, the client sends server S a mes-
sage Transfer([C, V], S′). Upon receiving such a request, S
first checks if request [C, V] is still in its service queue. If it is
not, the server sends an Abort message to client C. Otherwise,
the server sends a message Add([C, V], L) message to S′,
where L is the expected service latency of [C, V] at S. When
S′ receives such a message, it checks if it can serve [C, V] in
the next L time units. If yes, it appends [C, V] to its service
queue and sends to an OK message to S. Otherwise, it sends
an Abort message to S. When S receives an OK message

from S′, it removes [C, V] from its service queue and sends a
message OK to client C. In the case that S receives an Abort
message from S′, it also sends an Abort message to client C.
After the client receives an OK message from S, it continues
to execute the next action listed in the shaking plan. When
client C receives an Abort message, it aborts all remaining
actions in the shaking plan.

It is worth mentioning that in the above process, the shaking
client does not transfer the pending requests directly. Rather,
the client can only recommend a list of transferring actions: for
each action T ([C, V], S, S′), the client can only submit it to S.
It is S′, the destination server, that has the final approval on the
transferring action, and S′ will not approve unless it can serve
the request [C, V] no later than S. There are two advantages
of this simple approach. First, it avoids the potential abuse
of selfish clients, which may try to generate bogus shaking
plans to get earlier services. The above approach ensures that
a request cannot be transferred at the compromise of its service
latency. Second, this approach does not require a shaking
client to have the latest workload of the servers being shaken.
When a client submits an action T ([C, V], S, S′) to S, S can
inform S′ of the actual value of L, i.e., the expected service
latency of [C, V] at S.

IV. DISCUSSIONS

A. Implementation Issues

The file lookup techniques used in many structured P2P
systems [3], [4], [2], [9], [10] allow a client to efficiently
locate a server that has the file it requests. When such lookup
techniques are adopted for P2P video systems, the cost of
building a closure set for a video will not be a major concern.
However, if some flooding-based lookup technique is used, a
closure set may contain many servers and could be expensive
to build. A simple way to address this problem is to apply
some threshold control mechanism. For instance, when the
number of servers in the closure exceeds some threshold, the
client can stop searching for new servers. Another problem is
server crashes. When a server crashes, all requests in its queue
are lost. With Shaking, a client request can be transferred from
one server to another. Thus, a client may not be aware that
its request is lost. To address this problem, each server can
periodically update its current clients about their expected ser-
vice latency. If a client does not receive such information for
some time period, it can simply resubmit its request. Finally,
a server may be shaken by several clients simultaneously.
In the execution of shaking plans, each request transfer is
treated as one transaction. Thus, a failed request transfer does
not affect the requests that have been transferred successfully.
However, when a request transfer fails, the remaining actions
in a shaking plan are aborted. This scenario typically happens
when a server is included by many clients in their closure sets.
This problem can be largely avoided by marking a server when
it is included in some closure set. A marked server will then
not be included in another closure set for some time period.

B. Multi-source Shaking

So far we have assumed a client downloads its video from
a single source. In reality, a source may not be able to upload

CAI et al.: SHAKING SERVICE REQUESTS IN PEER-TO-PEER VIDEO SYSTEMS 5

a video at its playback rate. This is particularly true since
many participating peers access the Internet through last-mile
connections such as DSL and cable modem, which normally
have a very limited uploading bandwidth. It is possible to
extend our Shaking algorithm for a client to find a set of
servers that can provide it with the fastest download. Given
a client C that requests video V , the client first constructs
SPool(V) and selects a set of servers, denoted as ServerSet,
from this pool. For each server in ServerSet, the client can
then try to shake out its spending requests using our early
algorithm. The servers selected in ServerSet should be able
to allow the client to playback the video at a minimal latency.
To construct such a ServerSet, the client needs to compute
the service latency given a set of servers. This can be done as
follows.

Suppose there are n servers in a ServerSet. Each server S
in SPool(V) has a bandwidth b and a service time t, which
is the time when S can start to serve C. Since the client
knows the service time and bandwidth of each server in the
ServerSet, the client can create a download schedule. To
minimize service latency, the download schedule should allow
the client to download from each server as soon as possible
and use all of them until the video download is completed.
Thus, all servers ServerSet will finish serving C at the same
time. Without loss of generality, we sort these servers in the
increasing order of their service times, as showed in Figure 3.
Given a server Si, we denote its bandwidth and service time
as bi and ti, respectively. Let d0 = t0 and di = ti − ti−1,
where i > 0. After ti time units, the amount of video data
received by the client can be calculated as

Dti
=

i∑
j=1

dj

j−1∑
k=0

bk. (1)

After tn time units, all servers start transmission and they
will finish at the same time. Suppose it takes T time units for
server Sn to finish transmission. Let b be the play-back rate
of the video and L be the length of video. Then T can be
calculated as

T =
b ∗ L−Dtn∑n

i=0 bi
. (2)

From Equation (2), we can find the total time taken for
the client to receive the entire video. Let Lt be the total
transmission time for video V from all the servers in the
ServerSet. Then, Lt is given by,

Lt = d0 + (tn − t0) + T. (3)

Finally, the Service Latency for the client, which is the
amount of time the client C has to wait before transmitting
the whole video is given by

Latency = Lt − L. (4)

V. PERFORMANCE STUDY

Until now, a client requesting for a video first locates a set
of servers and then simple chooses the one that can provides
the least service latency. We call this approach Naive and use

S�0�

S�1�

S�2�

S�n�

b�0�

b�1�

b�2�

b�n�

d�1�

d�2�

t�1�

t�2� t�n�

Fig. 3. The bandwidth and service time of each server in ServerSet

it as a baseline to compare with Shaking in our performance
study. We simulate a decentralized P2P video system, where a
number of servers together cache 100 different videos. Without
loss of generality, each video lasts 60 minutes and is MPEG-I
compressed with a constant playback rate of 1.5 Mbps. We
also assume each server has one channel. In reality, a server
may have n channels. When a client finds such a server, it
can treat it as n virtual servers, each having one channel and
the same set of videos. We choose average service latency as
the performance metric and study how it is affected by these
parameters: request arrival interval, number of servers, skew
of server capacity, skew of video replication, and skew of video
popularity. Because of the space constrain, we report only the
performance results under various request arrival interval and
number of servers.

A. Effect of Request Arrival Interval
In this study, we fixed the number of servers at 500 and

varied the request arrival interval from 20 to 100 second
per request. We collected two groups of performance data.
In the first group, we assume the servers are uniform in
their capacity, i.e., each server caches a randomized number
of different videos. In the second group, the server capacity
has skew of 0.5. Under both settings, the copies of a video
available in the system is generated proportionally to its
popularity. Note that this is the perfect status pursued by many
file replication techniques. Figure 5 shows the performance
results. It shows that under all scenarios, Shaking outperforms
Naive to a great extend. For example, when the request interval
is 100 seconds/request, Shaking achieves 0 service latency. In
contrast, Naive still incurs about 100 seconds of latency. When
the request arrival interval increases (i.e., the request rate
decreases), the service latency under both techniques reduces.
However, the reduction rate under Shaking is more significant.
Importantly, the figure shows that Naive is quite sensitive to
the server skew and performs better when there is no skew. In
contrast, the performance of Shaking is not affected much by
the skew of server capacity. As Shaking dynamically adjusts
the match between clients and servers, the server workload is
effectively balanced. Thus, it can be regarded as a dynamic
load balancing technique.

B. Effect of Number Of Servers
In this study, we fixed the request arrival interval at 60

seconds/request and varied the number of servers from 100
to 1,000. Similarly, we collected two groups of performance
data, one without server capacity skew and the other with

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

Fig. 4. Effect of Client Arrival Interval

Fig. 5. Effect of Number of Servers

skew at 0.5. Given a fixed client request rate, increasing
the number of servers reduces the average server workload
in the system. Again, under all simulation setting, Shaking
performs significantly better than Naive. When the number of
servers is 100, the average service latency under Shaking is
less than 50 seconds. In contrast, Naive incurs nearly 1000
seconds of latency. This study also confirms that Shaking can
effectively handle the skew of server capacity. Such capability
is important given the fact that the hosts participating in P2P
sharing are typically heterogeneous in their caching capacity.

VI. CONCLUDING REMARKS

In this paper, we investigate the problem of service schedul-
ing in P2P video systems and propose a novel technique,
called Shaking. The proposed technique is characterized by
a few desirable features. First, Shaking makes it possible for
a client to be served by a server that is beyond the client’s
own search scope. Second, the match between the servers and
clients can be dynamically adjusted to minimize client service
latency. Furthermore, the proposed scheme is able to avoid
potential abuse of selfish clients, which may try to preempt

all earlier requests in a server. The proposed technique can
be used in general to improve the performance of regular
P2P file sharing systems, which to our knowledge do not
consider service scheduling up to date. As indicated by our
performance study, an effective scheduling algorithm is critical
to the system load balancing and can significantly reduce the
average service latency.

REFERENCES

[1] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication
in Unstructured Peer-to-Peer Networks. In Proc. of ACM Int’l Conf. on
Supercomputing, June 2002.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proc. of ACM SIGCOMM,
pages 161–172, San Diego, CA, 2001.

[3] I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman.
Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applica-
tions. In Proc. of ACM SIGCOMM, pages 149–160, San Diego, CA,
2001.

[4] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc.
of IFIP/ACM Int’l. Conf. Distributed Systems Platforms (Middleware),
pages 329– 350, Heidelberg, Germany, 2001.

[5] Ying Cai, Ashwin Natarajan, and Johnny Wong. Shaking Service
Requests in P2P Video Systems. In Proc. IEEE GLOBECOM 2005,
St.Louis, MO., October 2005.

[6] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, and D. Yao.
Optimal Peer Selection for P2P Downloading and Streaming. In Proc.
of INFOCOM’5.

[7] S. Ganguly, A. Saxena, S. Bhatnagar, S. Banerjee, and R. Izmailov. Fast
Replication in Content Distribution Overlays. In Proc. of INFOCOM’5.

[8] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. K. Bhargava. PROMISE:
Peer-to-Peer Media Streaming Using CollectCast. In Proc. of ACM
Multimedia’03, pages 45–54, Berkeley, CA, 2003.

[9] A. Rowstron and P. Druschel. Storage Management in Past: a Large-
Scale, Persistent Peer-to-Peer Storage Utility. In Proc. of 18th ACM
Symposium on Operating Systems Principles (SOSP’01), pages 188–
201, Alberta, Canada, 2001.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale Persistent Storage. In
Proc. of ACM ASPLOS, November 2000.

Ying Cai received his Ph.D. in computer science from the University of
Central Florida in 2002. Currently, Dr. Cai is an assistant professor in the
Department of Computer Science at the Iowa State University. His research
interests include wireless networks, mobile computing, and multimedia sys-
tems.

Ashwin Natarajan received his B.E in Computer Science and Engineering
from National Institute of Technology, Trichy, India. He received his M.S
in Computer Science from Iowa State University in 2004 and is currently
pursuing his Ph.D. His research interests include Media Streaming, P2P
Systems and Wireless networks.

Johnny Wong is a Professor & Associate Chair of the Computer Science
Department at Iowa State University. He received his Ph.D. in Computer
Science from University of Sydney, Australia. His research interests include
Software Systems & Networking, Security & Multimedia Systems. Most
of his research projects are funded by government agencies and industries.
He has served as a member of program committee of various international
conferences on intelligent systems and computer networking. He co-chaired
the COMPSAC 2006 conference and has published over 100 papers in peer
reviewed journals and conferences, and is a member of IEEE Computer
Society and ACM.

