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Abstract—We propose a framework, called Overlay Subscription Network (OSN), for live Internet TV broadcast, where a subscriber

can choose to watch at any time. This framework allows the source server to incrementally build a topology graph that contains the

network connections not only from the server to each subscriber, but also among the subscribers themselves. With such a topology

graph in place, we consider efficient overlay multicast for scalable OSN services. We first show that idling nodes, which do not receive

video data for their own playback, can actually be used for data forwarding to significantly reduce the cost of overlay multicast. In light

of this observation, we then propose a novel overlay multicast technique that distinguishes itself from existing schemes with these

three aspects. First, the proposed technique is centered on the topology graph and can take advantage of the actual network

connections among the subscribing nodes. Second, the new scheme is able to find and incorporate appropriate idling nodes in

multicast to reduce network traffic. Third, with our approach, a node can be used in multiple multicast trees for data forwarding to

improve the overall system performance. We evaluate the performance of the proposed technique through simulation. Our extensive

studies show that the proposed framework has the potential to enable the Internet, a vehicle up to date mainly for transferring text and

image data, for large-scale and cost-effective TV broadcast.

Index Terms—Overlay subscription networks, overlay multicast, video services, live streaming.
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1 INTRODUCTION

UNLIKE text or image files, streaming a video to a remote
client takes a significant amount of communication

bandwidth. A video server typically can sustain only a very
limited number of concurrent video streams. This problem,
known as server or network-I/O bottleneck, limits the
scalability of video services. To improve server throughput,
two main categories of techniques have been proposed. The
techniques in the first category explore the facility of
IP multicast for clients to share server bandwidth. Many
early techniques, such as on-demand multicast [8], [17], [13],
[11] and periodic broadcast [26], [18], [16], are in this category.
The techniques in the second category are often referred to
as overlay multicast [23], [6], [22], [7]. Instead of relying on
IP multicast, overlay multicast expands the server capacity
by requiring the clients which are being served to buffer
and forward their incoming video streams to serve others.

Overlay multicast is an attractive solution for video
distribution over today’s Internet, where the deployment of
IP multicast has been slow and difficult due to issues like
group management, congestion and flow control, and
security [9]. Unlike the traditional client/server architec-
ture, this strategy allows a client to contribute its computing
resource to serve the entire community, rather than just
being a burden to some central server. Under this approach,
the clients, together with the source server, form a live
video distribution tree that dynamically expands and
shrinks as clients join and leave. Since the clients typically
access the Internet from vastly different network domains,

the problem of server bottleneck can be addressed effec-
tively by arranging video data to flow through different
network links to reach the receiving ends.

Suppose a television broadcast company wants to stream
its real-time TV programs over the Internet to its sub-
scribers. Similarly to traditional satellite/cable services,
these subscribers pay a monthly fee and register their
computers to watch the programs. In this paper, we refer to
the network formed by the source server and its subscribers
as the Overlay Subscription Network (OSN). Such a network
has an inherent feature that makes it possible to apply the
concept of overlay multicast. That is, an OSN is a trusted
overlay network in the sense that its subscribers trust the
source server and, hence, pay for its services. Because of
such trustiness, effective incentive mechanisms can be
designed to encourage a subscriber to contribute its
resource to serve others. As a simple example, a member
can be given some discount on its subscription fee based on
the amount of data it forwards. Such a realistic monetary
incentive can effectively turn many subscribers into service
partners to assist in data forwarding, a prerequisite to
applying overlay multicast in reality. Effective incentive
mechanisms for peer-to-peer networks have recently
attracted great research interests; interested readers are
referred to [15], [21], [4], [12]. In this paper, we simply
assume some incentive mechanism is in place to motivate
subscribing clients to contribute their resources in video
services.

In this paper, we consider overlay multicast for large-
scale Internet TV broadcast. Because of the inability of
existing technologies, traditional cable/satellite broadcasts
are still the primary media for distributing continuous and
endless video programs such as TV broadcast. The main
contributions of this paper are as follows:
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1. We propose a framework by which the server can
incrementally learn and build the topology graph
that reflects the actual network connections from the
server to each subscriber and among the subscribers
themselves. Such topology information is crucial to
constructing efficient overlay multicasts. Existing
topology-oriented techniques, such as TAG [19],
[20], consider only the network connections from the
server to each individual client.

2. An OSN may have a large number of subscribing
nodes, yet, at any one time, only a small percentage
of them are actually receiving the programs for
playback. We demonstrate that recruiting the idling
nodes, which are online but not receiving the
programs, for data forwarding can significantly
reduce the cost of overlay multicast. We propose a
novel technique that is able to find and incorporate
appropriate idling nodes for data forwarding. Such
capability is unique since existing techniques can
leverage only the computing resource of the clients
who are playing back videos themselves.

3. The source server may provide multiple sessions of
video programs simultaneously. Observing the
advantages of leveraging idling nodes, we consider
how a node can be recruited in multiple sessions to
further reduce network traffic. This capability is also
unique, considering the fact that, in existing techni-
ques, a client can only contribute its resource to
serve other clients who are in the same session.
Because of this limitation, the server needs to build a
distinct multicast tree for each session.

The remainder of this paper is organized as follows: In
Section 2, we discuss the OSN framework and its manage-
ment in details, including subscription management, topol-
ogy graph, and stream management. We present the
concept of incentive forwarding in Section 3 and then in

Section 4, apply this idea in constructing single- and
multisession overlay multicast. The performance of the
proposed technique is evaluated in Section 5. In Section 6,
we give our concluding remarks.

2 OVERLAY SUBSCRIPTION NETWORK (OSN)

OSN is an overlay network consisting of one central server

that provides continuous video programs (e.g., TV broad-
cast) and a number of subscribers that register their
receivers and pay a monthly fee to watch the programs.
Without causing ambiguity, we will use the terms sub-
scriber, member, and node interchangeably. In OSN, the
server maintains a subscription database storing all informa-

tion about its subscribers, including ID and password,
IP address, payment, incentive, and so on. The server may
ask a member to forward video data to serve others. If a
member agrees to serve others, the server will record and
store in the database the time duration and bandwidth
contributed by the member. We assume some mechanism is

used to calculate incentive amount based on the contribu-
tion of a member within one billing cycle.

OSN is a registration-based network. This makes it
possible to use a topology graph to record its underlying

network topology. When a new member subscribes to the
system, the server detects its path to the member and adds
the path in the topology graph. For path finding, many
approaches can be used. A simple approach is using
tracepath [1], which is ICMP-based and has been used
extensively for Internet topology discovery. The path
obtained may be at the router level or the coarse-grained
AS level. Without loss of generality, we assume the router-
level path. If only AS information is available, we treat each
AS as a router. In addition to the path from the server to
each subscriber, the topology graph can also store the
routing paths among the subscribers, when such informa-
tion becomes available. That is, when a subscriber A
forwards its incoming stream to serve another subscriber
B, A can detect and report the actual streaming path to the
server, which will update the topology graph if necessary.

In this paper, we argue that a detailed and accurate
topology graph is crucial to constructing efficient overlay
multicast. Although exploiting network topology was first
investigated in [19], [20], the proposed Topology Aware
Grouping (TAG) technique considers only the paths from the
server to its clients. In particular, it assumes that only the
network links in these paths can be used by the clients to
communicate with each other. Such an assumption can be
unrealistic. As an example, consider Fig. 1. It shows a
source server S, three clients A, B, and C, and the paths
from the server to each of them. Suppose S is serving A and
B when C arrives. In TAG, the server will ask A to forward
its video data to serve C and expects the traffic to flow
through router R4, R3, R7, and R8. In reality, however, the
actual streaming path may be quite different. For instance,
the stream from A to C may actually go through R4, R6, and
R8, the links of which are unknown to the server in TAG. In
general, a topology containing only the path from the server
to each client can be too coarse to be relied upon in building
an efficient overlay multicast. In OSN, as the server learns
the actual connections among its subscribers, it can
incrementally update the topology graph for better multi-
cast construction. In the above example, A is required to
report its actual streaming path to the server. With the
newly discovered links, the server may later ask B to serve
C.

In addition to the subscribers and their topology
information, the source server also tracks all streams and
their streaming paths. A stream from node X to Y is
denoted as X ) Y if the stream flows from X to Y directly.
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Suppose S in Fig. 1 serves A directly and A forwards its
stream to B. Then, two streams are formed, S ) A and
A) B. We say a router is an active router if there is at least
one stream flowing through it. Thus, given a stream, all
routers on its streaming path are active. The information of
each stream and its streaming path can be stored in a binary
relation, each row being a tuple of ðX;Y ;RÞ, denoting that
stream X ) Y flows through router Ri. Thus, given a
router, we can find the streams, if any, flowing through it.
Many access structures can be used to support such queries
efficiently. For example, we can hash or build a Bþ-tree
index on the network links. Alternatively, we can also store
the entire information in an adjacency matrix instead of a
relational table. Hence, we will not concern ourselves with
its implementation details.

3 INCENTIVE FORWARDING

Similar to traditional TV broadcast, the programs provided
by OSN are continuous and endless—24 hours a day, 7 days
a week. A SON may have a large number of registered
nodes, yet, at any one time, only a small percentage of them
are actually watching, while many of the rest are just idling.
We refer to these two types of nodes as playing nodes and
idling nodes, respectively. We note that, unlike regular TV
sets, which are dedicated to broadcast receiving and could
be turned off when they are not in use, the computers
registered in an OSN are more likely left powered on even
though they are not receiving a broadcast. These computers
may be powered on for other purposes, such as e-mail/
document processing. In fact, according to [2], many office
and residence computers are simply never turned off.

With realistic monetary incentive in place, a subscribing
node can be highly motivated in data forwarding. This
makes it possible to apply overlay multicast for scalable
broadcast in OSN. Efficient overlay multicast has been
studied intensively in the past few years and many
approaches have been proposed, such as Chaining [23],
Narada [6], [5], NICE [22], ZIGZAG [24], and TAG [19], just
to name a few. Existing techniques, however, consider only
the playing nodes in constructing overlay multicast. That is,
they can leverage only the computing resource of playing
nodes for data forwarding. In this paper, we argue that
idling nodes, when chosen appropriately, can be used to
significantly reduce the cost of overlay multicast.

As a motivation example, consider Fig. 2. It shows a
source server S and three subscribing nodes, A, B, and
I, and their underlying network topology. Suppose A

and B are playing and I is idling. If the server serves A

and B directly, the network traffic on links R1 and R2

will be duplicated. Alternatively, the server may serve A

directly and ask A to serve B. This approach creates

duplicate traffic on links R2 and R3. In addition, the data

arriving at B experiences a longer latency since it flows

through S ! R1 ! R2 ! R3 ! A! R3 ! R2 ! R4 ! B.

Similar problems exist if S serves B directly and asks

B to serve A. Now, suppose I, an idling node, has the

capacity and can be recruited to serve A and B. Then,

the server can send data to I first and let I forward to A

and B. Apparently, this approach minimizes the back-

bone network traffic and also ensures good data

freshness.
When an idling node is recruited to forward data, we say

this node becomes an incentive node.1 A major challenge of

implementing such incentive forwarding is to find and

incorporate appropriate idling nodes in constructing overlay

multicast. Unlike a playing node, an idling node does not

need video data for its own playback. Thus, an idling node

should be recruited only when its assistance in data

forwarding can reduce the service cost. Obviously, such

an idling node must be able to forward its incoming stream

to serve at least two other nodes.

4 SESSION MANAGEMENT

In this section, we consider the problem of constructing

overlay multicast in OSN. Our proposed techniques are

centered on the topology graph discussed earlier. To

facilitate our discussion, we define the following terms

and notations:

. PathðX;Y Þ denotes the sequence of routers on the
shortest path from nodes X to Y and HopðX;Y Þ the
number of routers on PathðX;Y Þ. In Fig. 2,
PathðS;AÞ ¼ R1 !R2 !R3 and HopðS;AÞ ¼ 3.

. Given a routerR,RingðR; iÞ denotes the set of routers
that are an i-hop away from R, where i � 0. In Fig. 2,
RingðR2; 0Þ ¼ fR2g and RingðR2; 1Þ ¼ fR1;R3;R4g.

. Given a node and a router that connect each other
directly, we say the node is the router’s local node and
the router is a node’s local router.
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1. A playing node is also paid if it is recruited for data forwarding. Thus,
in terms of monetary incentive, such a playing node is also an incentive
node.

Fig. 2. Motivation example.



. A node’s capacity is the maximum number of
children it can have and its degree is the number of
children it is serving.

In the following discussion, we first present our
technique for single-session management, where we as-
sume that the server supplies only one channel of video
programs. We will then extend our technique for multi-
sessions management. In this case, the server broadcasts a
number of channels simultaneously, similarly to the
traditional TV broadcast.

4.1 Single-Session Management

In OSN, a node can be offline or online. An online node is
idling if it does not receive any video stream. Otherwise, the
node must participate in some multicast session and is
called an active node. An active node can be in playing or
incentive mode. In the former case, the node plays back the
stream it receives, while, in the latter case, the node is an
idling node and is recruited as an incentive node for data
forwarding. Since only the server can decide when to
recruit an incentive node, a node can make itself only
offline, idling, or playing. Assuming that the server
provides only one session of video programs, we discuss
in the following how to handle when a node changes its
status.

4.1.1 A Node Becomes Online

When an offline node N becomes online, it notifies server S.
If N can serve at least two children and at least two streams
flow through N’s local router, N can be recruited as an
incentive node to save the network traffic. In this case, the
server calls the following BundleðN;SSÞ procedure, where
SS denotes the set of streams flowing through N ’s local
router:
BundleðN;SSÞ

1. Check each stream in SS and find the one, say
X ) Y , that has the smallest HopðX;NÞ.

2. Create two new streams, X ) N and N ) Y , and
terminate stream X ) Y .

3. Repeat the following until N can have no more child
or SS becomes empty:

. Check each stream in SS and find the one, say
X ) Y , that has the largest HopðX;NÞ.

. Create a new stream N ) Y and terminate
X ) Y .

When a stream X ) Y is bundled, the traffic saved can
be calculated as HopðX;NÞ � b, where b is the playback rate
of the stream. We use Fig. 3 to explain the above bundle
algorithm. Suppose N can serve two children and three
streams, X1 ) Y1, X2 ) Y2, and X3 ) Y3, flow through
N ’s local router R. To minimize the cost of including N in
the session, the server chooses X1 to be N ’s parent since X1

is closest to N . Thus, X1 serves N and N forwards its stream
to Y1, which was X1’s child. Since N has the capacity for one
more child, Y3 becomes its child. Y3 is chosen because the
path from X3 to N is the longest, thus maximally reducing
the network traffic.

Note that, whenever a stream X ) Y is terminated, the
server needs to check if X can be removed from the session.

If X is an incentive node and has no more children, the

server removes X from the session by terminating the

stream from X’s parent to X, and then recursively checks if

X’s parent can be removed.

4.1.2 A Node Becomes Playing

When a node N wishes to join the session, it notifies the

server. If the node is currently an incentive node, i.e., is

being recruited in the session to serve others, the server

simply updates the node’s status as playing and the node

can start to playback the stream. Otherwise, the server

includes the node in the session as follows: In our

discussion, we first assume node N ’s capacity is 0 and

then extend our algorithm to handle when this is not true.
To include N in the session, the server first checks if

there is any active router on PathðS;NÞ. If none of them is

active, the server starts a new stream S ) N to serve N

directly. Otherwise, the server tries to find an existing active

node or recruit a new incentive node to serve N . Let Rj be

the active router on PathðS;NÞ that is closest to N . Since Rj

is the nearest router on PathðS;NÞ that N can access to

some on-going stream, N ’s parent should be as close as

possible to Rj in order to minimize the cost of serving N .

The server uses the following procedure to find a list of

parent candidates for N :
FindParentCandidatesðRjÞ

1. Set CandidateSet ¼ ; and i ¼ 0.
2. While CandidateSet ¼¼ ;, do the following:

. Set LocalNodeSet ¼ ;.

. For each router on RingðRj; iÞ, add its local
nodes to LocalNodeSet.

. Check each node in LocalNodeSet and add it to
CandidateSet if the node is currently active and
can serve one more child.

. If CandidateSet 6¼ ;, return.

. Otherwise, check each node in LocalNodeSet
and add it to CandidateSet if the node is
currently idling and can serve at least two
children.

. Increase i by 1.

In the above algorithm, the server first checks router Rj

(i.e., RingðRj; 0Þ) to see if any local active node can serve N .
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If no such active node is available, it tries to recruit a new
incentive node. If this also fails, it expands the search scope
by checking RingðRj; 1Þ, RingðRj; 2Þ; . . . , until at least one
parent candidate is found. Apparently, such a ripple
searching process will locate N ’s nearest parent candidates.

Suppose the server stops its search on RingðRj; iÞ. If the
candidates found are active nodes, the server can simply
choose the one that has the minimum latency to serve N .
Otherwise, these candidates must be idling nodes and the
serve recruits one of them as a new incentive node. Before
discussing how to select a new incentive node, we first
discuss the cost of including an incentive node, say I, in the
session. Given a streamX ) Y flowing through some router
on RingðRj; iÞ, we can redirect the stream to serve I, i.e.,
X ) I and I ) Y . Thus, the cost of serving I is
HopðX; IÞ þHopðI; Y Þ �HopðX;Y Þ. Since I is recruited to
serve N , the total cost of including both I and N , which
we will denote as CostðX ) Y ; I;NÞ, is equal to
HopðX; IÞ þHopðI; Y Þ þHopðI;NÞ �HopðX;Y Þ. This can
be seen as the cost of recruiting I to serve N . Thus, given a
set of streams flowing through RingðRj; iÞ, we can find out
the one that can be redirected to serve I and N with the
minimal cost. This node is then recruited as an incentive
node. A more formal description of such a selection process is
given below. Note that, after selecting a node, the server
needs to contact the node to find out if it is online and can be
used for incentive forwarding. If not, the server repeats the
above process for another candidate.
ChooseIncentiveNodeðCandidateSet;NÞ

1. SS ¼ ;.
2. For each active router R on RingðRj; iÞ, add all

streams that flow through R to SS.
3. For each node I in CandidateSet and each stream

X ) Y in SS, calculate CostðX ) Y ; I;NÞ.
4. Return I if CostðX ) Y ; I;NÞ is the smallest.

Our discussion so far assumes that N cannot have any
child. If N ’s capacity is not 0, it can be included in the
session as follows: The server first searches RingðRj; 0Þ,
trying to find an active node or recruit a new incentive node
to serve N . If this fails, the server continues to search
RingðRj; 1Þ, RingðRj; 2Þ; . . . , and so on. However, it stops
once the search is expanded to the ring that contains
N ’s local router. Since N can serve at least one child, it can
be included in the session by redirecting a stream that flows
through the routers on the ring. If more than one stream is
available, the server chooses the one with the least cost.

4.1.3 A Node Becomes Offline or Idling

A playing node or an incentive node may decide to be
idling or offline. It is also possible that a node may wish to
reduce the number of its current children. When this
happens, the server schedules an emergent stream to serve
each affected child. At the same time, the server uses the
algorithms discussed in the previous section to either find
an existing active node or recruit an incentive node to serve
the child. Once a new parent is found for a child, the
emergent stream can be terminated.

A node leaving from the session may cause temporal
service disruption to its downstream nodes. To avoid such
an undesired effect, one can use multiple descriptions

coding to encode a video stream into a set of substreams
and, for each substream, build a multicast tree using our
proposed technique. A node can then receive the set of
substreams from different parents and recover the original
stream even if some parent fails. Much effort has been done
on fault-tolerant overlay multicast; interested readers are
referred to [25], [14], [10], [27] for more information. In
OSN, incentive mechanisms can also be used to encourage a
node to become a stable service partner or, before leaving
the session, give some grace period for smooth service
transition. In addition, the server can build some reputation
management and choose only the subscribers with a good
reputation for data forwarding. These subjects are beyond
the scope of this paper and we will leave them for future
study.

4.2 Multisession Management

A TV station normally broadcasts a number of channels
simultaneously. Likewise, an OSN may provide multiple
sessions of video programs and a subscriber can choose to
watch any one of them at any time. In this section, we
discuss how our single-session management technique can
be extended for multisessions broadcast. To save network
traffic, an idling node can actually be incorporated in
multiple sessions, subject to its capacity (e.g., downloading
and uploading bandwidth). With existing techniques, the
server needs to build a distinct multicast tree for each
session. In these schemes, only the playing nodes can
contribute their resources and only the nodes in the same
session can serve each other.

As discussed early, when an offline node N becomes
online, it may be included as an incentive node to bundle
the streams flowing through its local routerR. In the case of
multisession broadcasts, these streams may belong to
different sessions. Since N is an idling node, it can be
recruited in any session for data forwarding. The question
is, which sessions should N be used for? Recall that, when a
stream X ) Y is bundled, the traffic saved can be
calculated as HopðX;NÞ � b, where b is the playback rate
of the stream. Thus, we can calculate the savings of
bundling each session of streams and select the session
with the maximum savings to bundle first. This process is
repeated until either all sessions are bundled or N runs out
of its idling capacity. Note that only the sessions with at
least two streams can be bundled and to bundle one session,
N needs to have bandwidth to download one stream and
forward it to serve at least two children.

Let N be a node that wants to watch session Si. If N is a
playing node and/or an incentive node that is currently
serving some nonpeer nodes (i.e., not in session Si), then the
server may need to remove these children and find them
new parents. This process, which we refer to as sanitization,
is necessary for two reasons. First, serving nonpeer nodes
may exhaust N’s capacity and make N unable to download
data from its own session. For example, N may run out of
its downloading bandwidth. Second, it is preferable for a
playing node to serve other nodes that are in the same
session. Serving its peer nodes does not require the playing
node to have extra bandwidth for data downloading. When
a playing node has extra capacity that is not used by its own
session, it is possible to recruit this node as an incentive
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node for other sessions to save their traffic. However, this

node must be sanitized again when it can be used to serve

the nodes in its own session (e.g., a new peer node joins). To

avoid such overhead, we can limit a playing node to join

only one session, even if some of its capacity may not be in

use for some time period. After N is sanitized, the server

can use the algorithms presented in the previous section to

find N a parent. Note that, in the step of FindParentCandi-

date, a node should now be considered as an idling node as

long as it is not a playing node and has sufficient idling

capacity.

5 PERFORMANCE STUDY

To evaluate the performance of our proposed techniques,

we have implemented a detailed OSN simulator that can

provide a number of current TV programs over the Internet.

For performance comparison, we implement three different

overlay multicast techniques:

. OSN_BASE: In this scheme, only the playing node
can contribute their resource to serve others. This
approach is similar to TAG [19], [20], an existing
topology-oriented overlay multicast technique.
However, OSN_BASE is centered on the topology
graph and can take advantage of the actual network
connections among the subscribers.

. OSN_SINGLE: This approach implements the pro-
posed single-session management technique. It is
able to find and incorporate appropriate idling
nodes for data forwarding. However, it allows a
node to participate in one session only. In OSN_
SINGLE, a distinct multicast tree is built for each
session.

. OSN_MULTIPLE: This technique is the implementa-
tion of the proposed multisessions management
technique. In OSN_MULTIPLE, a node can partici-
pate in a number of sessions, subject to its available
capacity.

For simplicity, we will refer to the above three

techniques as BASE, SINGLE, and MULTIPLE, respectively.

Similarly to other real-time overlay multicast techniques [6],

[22], [19], we choose these performance metrics:

. Link Stress: Given a network link, its stress is defined
to be the total number of streams flowing through it.
For each network link, we calculate its stress and
report their sum. This metric is also referred to as the
network cost of overlay multicast.

. Maximum Link Stress: This metric is defined to be the
maximum stress of all links in a multicast tree. A
higher value of this metrics means a higher chance of
creating a network bottleneck.

. Mean Relative Delay (MRP): Assuming the stream
serving node X flows through n routers from
source S before arriving at X, the relative delay for
X is defined to be n

m , where m is the number of
routers in the shortest path from S and X. This
metric reflects the relative increase of packet delay as
a result of using overlay forwarding. We compute

the relative delay for all playing nodes and report
their mean value.

For SINGLE and MULTIPLE, we also report the number
of incentive nodes used in these two approaches.

We are interested in how the above performance metrics
are affected by subscription size (i.e., the number of
subscribers), active rate (i.e., the percentage of the sub-
scribers actually watching), and session number (i.e., the
number of video sessions provided by the server). In our
simulation, the underlying Internet topology is created
using Brite’s TOP_DOWN model [3] and consists of
5,000 routers. The topology is a two-level network hier-
archy, interconnected higher level (AS level) and lower
level stub domains (router level), and each AS contains
20 routers in average. We then generate a number of end
systems (i.e., subscribers) and randomly connect them to
the edge routers within each AS. The bandwidth of a
subscribing node is randomly set to be in between one and
six streams. We assume symmetric network connections
and do not distinguish downloading and uploading
bandwidth. Roughly, we simulated a local TV broadcast
station of a small city. Each data point in the performance
figures is averaged from 20 simulation runs, each randomly
choosing one multicast source. The confidence level is
98 percent. Table 1 summarizes the parameter values used
in our simulation.

5.1 Effect of Subscription Size

In this study, we varied the number of subscribers from
2,000 to 20,000 and assume 50 percent of them are playing.
The number of video sessions provided by the server is 50.
The performance results are plotted in Fig. 4. It shows that,
under all scenarios, BASE incurs the highest total stress and
max stress. In particular, the performance gap between
BASE and the other two schemes increases sharply as the
number of subscribers increases. This result confirms that
leveraging idling nodes for data forwarding can indeed
significantly reduce network traffic and minimize the
chance of creating network bottleneck. As for MULTIPLE
and SINGLE, Figs. 4a and 4b both show that MULTIPLE
consistently outperforms SINGLE in terms of total stress
and max stress. By allowing an idling node to be recruited
in multiple sessions, MULTIPLE has a better chance than
SINGLE in locating a nearest parent for a new playing node.
We now look at the mean relative delay caused by the three
techniques. Fig. 4c shows that, when the subscription size is
small, BASE has the least delay. BASE leverages only the
playing nodes for data forwarding. When the number of
playing nodes is smaller, their relative distance is larger as
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they randomly span in the entire network. As a result, the
chance is higher for the server to serve each individual
subscriber. As Fig. 4c shows, when the number of
subscribers is 2,000, the mean relative delay is nearly 1 for
BASE, indicating that almost all playing nodes are served
directly by the server. Fig. 4b confirms that, in this setting,
BASE has presented a major network bottleneck, where the
worst network link has to sustain more than 750 video
streams. In contrast, both SINGLE and MULTIPLE have
quite stable relative delay and max stress. As Figs. 4b and 4c
show, the two techniques are not sensitive to the number of
subscribers in terms of max stress and relative delay. This
feature is highly desirable and it indicates they can be used
in a large-scale OSN with expected good performance.
Fig. 4d shows that SINGLE uses much more incentive nodes
than MULTIPLE. This indicates that, when a new playing
node comes, SINGLE has to find the node a farther parent,
although many times a nearby incentive node could be
recruited.

5.2 Effect of Active Rate

In this study, we fixed the number of subscribers at 10,000
with 50 sessions and varied the active rate from 10 percent to
100 percent. The performance results are plotted in Fig. 5.
Figs. 5a and 5b show that the total stress and max stress
incurred by BASE are both the highest and they become
worse and worse than the other schemes as the active rate
increases. This is a very interesting phenomenon. Given a
fixed number of subscribers, increasing the active rate
increases the number of playing node and reduces the
number of idling nodes. When the active rate becomes
100 percent of active rate, all three schemes have exactly the
same number of playing nodes for SINGLE and MULTIPLE,

there is no idling node to recruit at all. Thus, one may expect
all three schemes to eventually perform similarly. However,
Figs. 5a and 5b show that BASE remains the worst performer.
Such a performance difference is due to the different orders of
adding nodes in sessions. In SINGLE and MULTIPLE, an
idling node is recruited in a session whenever doing so
reduces the network traffic. When an incentive node later
becomes a playing node, there is no extra cost since the node
has already been in the session. Thus, SINGLE and MULTI-
PLE are flexible in the order of adding nodes. In contrast,
BASE includes a node in a session only when it becomes a
playing node. When the active rate is low, the server may
have to find a parent node very far away to serve a new
playing node. As the active rate increases, more and more
idling nodes become playing nodes. However, these idling
nodes may again have to find their parents, which are far
away because their nearby playing nodes have run out of
their capacity in order to serve early playing nodes. This
performance result indicates that in the application scenarios
where recruiting idling nodes is infeasible, periodically
reconstructing the overlay multicast as new playing nodes
join can significantly improve the overall system perfor-
mance. Fig. 5a shows that, when the active rate is low, BASE
incurs the least mean relative delay. As we have explained in
the previous study, this is simply because, when the number
of playing nodes is low and their relative distance is large,
most of them are served directly by the server. In this
simulation, MULTIPLE again consistently outperforms
SINGLE in all settings.

5.3 Effect of Session Number

In this study, we fixed the number of subscribers at 10,000
within a network with a total of 5,000 routers. We assume

CAI AND ZHOU: AN OVERLAY SUBSCRIPTION NETWORK FOR LIVE INTERNET TV BROADCAST 7

Fig. 4. Effect of subscription size.



the active rate is fixed at 50 percent and vary the session

number from 10 to 100. The performance results are plotted

in Fig. 6. Similarly to the previous two studies, the results

show that BASE imposes much more network traffic and

results in a longer relative delay than the other two

approaches that leverage the idling capacity of the

subscribers. As the session number increases, MULTIPLE

outperforms SINGLE more and more. This is due to the fact
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that, in SINGLE, once an idling node is recruited in one
session, the node cannot be used in other sessions even if it
has sufficient idling capacity. As a result, the server would
need to find a farther parent for a new playing node. As the
number of sessions increases, the chance of finding a nearer
parent is reduced. Fig. 6c shows that, when the session
number is low, MULTIPLE incurs more max stress than
SINGLE. Since an idling node is used to support more
sessions, MULTIPLE generates more network traffic on the
routers that are near to the incentive node. However, as the
session number increases, MULTIPLE gradually outper-
forms SINGLE. With a higher session number, the chance is
higher for SINGLE to have to find a farther parent to serve a
new playing node. The network traffic from the parent to
the new playing node then needs to flow more network
links. As Fig. 6d shows, more and more incentive nodes are
recruited in SINGLE when the session number increases.

6 CONCLUDING REMARKS

Because of the inability of existing technologies, traditional
cable/satellite broadcasts are still the primary media for
distributing TV programs. In this paper, we propose a
framework, namely, OSN, aiming at enabling the Internet
for large-scale and cost-effective TV broadcast. Similarly to
cable/satellite broadcasts, the video programs provided by
OSN are continuous and endless—24 hours a day, 7 days a
week. There may be a large number of subscribers, yet, at
any one time, only a small percentage of them are actually
watching. However, unlike regular TV sets, which are
dedicated to broadcast receiving and could be turned off
when they are not in use, the computers registered for
Internet TV services are more likely left powered on even
though their owners are not watching. These computers
may be in use and, thus, powered on for other purposes,
such as e-mail/document processing. In fact, many office
and residence computers are powered on without actually
being in use [2]. In this paper, we show that such idling
nodes can be used in constructing highly efficient overlay
multicast. Since an idling node does not need video data for
its own playback, it should be incorporated in multicast
only when doing so can reduce the cost of overlay
multicast. To find and incorporate only the appropriate
idling nodes for data forwarding, we propose a novel
topology-oriented overlay multicast technique. Our exten-
sive simulation studies have showed convincingly that
leveraging idling nodes for data forwarding can result in
significant performance advantages in terms of reducing
network traffic and balancing the workload of network
links.
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