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ABSTRACT
In this work, the electrostatic response of an electrolyte solution to a spherical ion is studied with a Gaussian field theory. In order to capture
the ionic correlation effect in concentrated solutions, the bulk dielectric response function is described by a two-Yukawa response function.
The modified response function of the solution is solved analytically in the spherical geometry, from which the induced charge density and
the electrostatic energy are also derived analytically. Comparisons with results for small ions in electrolyte solutions from the hyper-netted
chain theory demonstrate the validity of the Gaussian field theory.
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I. INTRODUCTION

The dielectric continuum theory and its generalizations are use-
ful tools to understand the screening effect of polar species and ionic
species on charged objects, which has wide applications to colloidal
suspension,1–3 electric double layer,4–8 solvation,9–12 and solvation
dynamics13–16 in electrolyte solutions.

In general, there are two different approaches in the dielec-
tric continuum theories. One approach is to consider the elec-
tric potential of a solute using an electrostatic model, where the
electric potential in the solution region satisfies various electro-
static models, such as the Born model,17–19 the Poisson–Boltzmann
theory20–22 or the modified Poisson–Boltzmann theory,23–25 and
the linearized Poisson–Boltzmann theory, or equivalently, the
Debye–Hückel (DH) theory26–29 and its extension with multi-DH
response modes,30–33 extra local dielectric response,34–36 or non-
local dielectric response.37–43 Once the electric potential is deter-
mined, one can use it to compute the induced charge density and
electrostatic solvation energy.

The other approach is to use the linear response theory to
directly determine the induced charge density around a solute.
As the linear response theory can take into account the excluded
volume effect of the solute, the Gaussian field theory, developed
by Chandler for fluids with short-range interactions,44 has been

extended to polar fluid systems.14,45,46 The Gaussian field theory
introduces a modified response function due to the excluded vol-
ume of a solute to evaluate the induced charge density, which can be
further used to compute the electric potential and the electrostatic
solvation energy.

In a previous study,47 the Gaussian field theory was extended to
electrolyte systems with a planar geometry. In order to capture the
ionic correlations in concentrated electrolytes, a two-Yukawa (TY)
function is used to describe the bulk dielectric response function,
whereas the single Yukawa model case leads to the conventional lin-
earized Poisson–Boltzmann theory. The modified response function
in the planar geometry is determined analytically, from which the
planar electric double layer problem is solved analytically. When
the Stillinger–Lovett second moment condition48 and the contact
theorem49–52 are used as constraints for the parameters of the TY
response function, our theory could capture the nonlinear response
effect of the electric double layer as well. This approach goes beyond
the mean field theory, such as the Poisson–Boltzmann theory, by
incorporating multiple screening lengths of the electrolyte solution
and leads to a different perspective on the electrostatic response of
ionic fluids.

In this work, the Gaussian field theory is further extended to
the solvation of a spherical solute in an electrolyte solution. In par-
ticular, the Gaussian field theory is used to understand the solvation

J. Chem. Phys. 160, 034102 (2024); doi: 10.1063/5.0187141 160, 034102-1

Published under an exclusive license by AIP Publishing

 16 January 2024 14:54:17

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0187141
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0187141
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0187141&domain=pdf&date_stamp=2024-January-16
https://doi.org/10.1063/5.0187141
https://orcid.org/0000-0001-7652-5645
https://orcid.org/0000-0001-5142-4223
mailto:xsong@iastate.edu
https://doi.org/10.1063/5.0187141


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of a spherical ion in electrolyte solutions. The bulk electrostatic
response function of a concentrated solution is also described by a
TY function. The modified response function in a spherical symme-
try is derived analytically and is further used to evaluate the induced
charge density profile and the electrostatic solvation energy. When
the theory is applied to spherical ions in electrolyte solutions, good
agreements with the hyper-netted chain (HNC) theory demonstrate
the validity of our approach.

This paper is organized as follows: In Sec. II, the induced charge
density around a spherical ion is presented with the Gaussian field
theory combined with a TY response function. In Sec. III, applica-
tions to ions in electrolyte solutions are presented to demonstrate
the utility of our approach. A brief summary of our findings is given
in Sec. IV.

II. A GAUSSIAN FIELD APPROACH TO THE SOLVATION
OF SPHERICAL IONS IN ELECTROLYTE SOLUTIONS
A. Model of an ion in a restricted primitive model
(RPM) of electrolyte solutions

The electrolyte solvent is described by an RPM for the simplic-
ity of our presentation. An ion is characterized by a charged hard
sphere. The cations and anions of the electrolyte have the same dia-
meter σs but opposite charges. The solute ion has a charge qo and
a hard sphere diameter σo, and then, a = (σs + σo)/2 is the radius
of the solute–solvent hard sphere interaction. Both the solvent ions
and the solute ions are immersed in a dielectric background with a
relative dielectric constant εr . The electrostatic interaction potential
between two ions, tagged as i and j, is qiq j

ϵsr
, where εs = 4πε0εr and ε0

is the permittivity in vacuum. Denote qi = ±qs the charge of cation
and anion species (i = 1, 2), ns the total particle number density, and
β = 1/(kBT) the reduced inverse temperature. The molar fraction of
solvent ionic species is x1,2 = 1/2. The inverse Debye length of the

bulk solution reads kD =

√

4πβq2
s ns/ϵs. The electrostatic coupling

parameter is defined as Γ = q2
s /(ϵsσskBT).

This work focuses on the charge distribution around a dilute
solute rather than an electrolyte ion; namely, the interactions
between solute ions are neglected. The solute is located at the origin
and generates an external electric potential,

ψ(r) =
qo

ϵsr
, (1)

where r = (x, y, z) is the coordinate and r =
√

x2
+ y2
+ z2. When qo

is nonzero, the free ions will form a spherical double layer around
the solute. Considering the excluded volume effect of the solute, the
induced charge density can be determined from the linear response
theory,14,53

ρind(r) = ∫ χ(m)(r, r′)ψ(r′)dr′, (2)

where χ(m)
(r, r′) is the modified response function of the bulk

solvent in the presence of the solute. In general, χ(m)
(r, r′) is deter-

mined by the bulk response function χ(∣r − r′∣) and the boundary
condition due to the solute. In the limit a→ 0, χ(m)

(r, r′) reduces to

the bulk response function χ(∣r − r′∣). More details about the mod-
ified response function and the Gaussian field theory are presented
in Appendix A.

Due to the spherical symmetry of the system, it would be con-
venient to expand a function F(r, r′) with its spherical harmonics
component Fn(r, r′),37

F(r, r′) =
1

4πrr′
∞

∑
n=0

Fn(r, r′)Pn(cos γ)

=
1

rr′
∞

∑
n=0

n

∑
m=−n

Fn(r, r′)Ynm(θ,ϕ)Y∗nm(θ
′,ϕ′), (3)

where cos γ = r⋅r′
rr′ , Pn(x) is the Legendre polynomial, and Ynm(θ,ϕ)

is the spherical harmonics function.
The electric potential ψ(r) can also be expanded

with its spherical harmonics component ψn(r), i.e., ψ(r)
= 1

r∑
∞
n=0∑

n
m=−n ψn(r)Ynm(θ,ϕ). As the solute charge is located at

the origin of a spherical cavity, there is no high order multipole con-
tribution to the electric potential. The nonzero spherical harmonics
component of ψn(r) is

ψ0(r) =
qo

ϵs
, (4)

while other components vanish, i.e., ψn(r) = 0 for n ≥ 1.
The induced charge density depends only on a variable r such

that ρind(r) = ρind(r) due to the spherical symmetry of the solute.
Denote gio(r) (i = 1, 2) as the radial distribution function between
the free solvent ion species i and the solute o. According to the the-
ory of simple liquids, the induced charge density is related to a linear
combination of the solute–solvent radial distribution function, i.e.,
ρind(r) = ∑i=1,2 qinsxi gio(r). Using the spherical harmonics compo-
nent χ(m)n (r, r′) of χ(m)

(r, r′), the induced charge density can be
rewritten as

ρind(r) =
1
r ∫

∞

a
ψ0(r′)χ(m)0 (r, r′)dr′. (5)

The electric potential ϕ(r) in the solution region is related to
ρind(r) via the Poisson equation,

∇
2ϕ(r) = −

4π
ϵs
ρind(r), r > a. (6)

Note that there is no induced charge in the core region r < a; the
Poisson equation reduces to

∇
2ϕ(r) = −

4π
ϵs

qoδ(3)(r), r < a, (7)

where δ(3)
(r) is the three-dimensional delta function. As long as the

induced charge density ρind(r) is known, Eqs. (6) and (7) can be used
to determine the electric potential ϕ(r).

Denote χ(k) = ∫ χ(r)e
−ik⋅rdr as the three-dimensional

Fourier transform of χ(r). The conventional DH theory can
be obtained using a bulk response function χ(k)DH = −

ϵs
4π

k2k2
D

k2
+k2

D

= −
k2

Dϵs
4π (1 − k2

D
k2
+k2

D
). Namely, using this response function, the Gaus-

sian field theory leads to ϕ(r > a)DH =
qo
ϵs

e−kD(r−a)
(1+kDa)r , which is exactly
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the same as that from the linearized Poisson–Boltzmann theory for
the spherical symmetry.54 Without breaking the presentation of our
main results, details of these results are summarized in Appendix B.

B. Solvation of a spherical ion in an electrolyte
solution with a TY response function

In our previous study of the planar electric double layer prob-
lem, a TY response function was used to capture the correlated
response in concentrated electrolytes.47 The TY response function

reads χ(k)TY = −
κ2ϵs
4π (1 −∑i=1,2

Cik2
i

k2
+k2

i
) in k-space, with C1 + C2 = 1

due to the charge neutrality condition and κ2
= k2

1k2
2/(C2k2

1 + C1k2
2)

due to the Stillinger–Lovett second moment condition.48 The TY

response reads χ(r − r′)TY = −
κ2ϵs
4π [δ

(3)
(r − r′) −∑i=1,2

Cik2
i

4π
e−ki ∣r−r′ ∣

∣r−r′ ∣ ]

in r-space. The spherical harmonics component of χ(r − r′) is55

χn(r, r′)TY = −
κ2ϵs

4π
[δ(r − r′) −∑

i=1,2
Cik2

i gn(r, r′; ki)], (8)

where gn(r, r′; k) =
√

rr′In+ 1
2
(kr)Kn+ 1

2
(kr′) for r < r′ and gn(r, r′; k)

=
√

rr′In+ 1
2
(kr′)Kn+ 1

2
(kr) for r > r′. δ(x) is the one-dimensional

delta function; In(x) and Kn(x) are the modified Bessel functions
of the first and second kind.

The modified response function χ(m)n (r, r′)TY can be evaluated
analytically, as shown in Appendix C. The final result reads

χ(m)n (r, r′)TY = −
κ2ϵs

4π

⎡
⎢
⎢
⎢
⎢
⎣

δ(r − r′) −∑
i=1,2

Cik2
i gn(r, r′; ki)

− ∑
i,j=1,2

αijKn+ 1
2
(kir)Kn+ 1

2
(kjr′)

⎤
⎥
⎥
⎥
⎥
⎦

, (9)

where the coefficients αij are defined in Eq. (C6) of Appendix C.
The analytical form of χ(m)n (r, r′) is used to determine the

induced charge density ρind(r). It is noted that only the n = 0 compo-
nent has a net contribution as the point charge is located at the center
of the hard sphere; otherwise, other n components will be needed for
off-centered charges.

After some straightforward calculations, it was found that the
induced charge density reads

ρind(r) = −
qo

4π∑i=1,2

Dik2
i e−ki(r−a)

(1 + kia)r
(10)

with the coefficient Di defined in Eq. (C8) of Appendix C. In the
k-space, the induced charge density reads

ρind(k) = ∫ ρind(r)
sin (kr)

kr
4πr2dr

= −qo∑
i=1,2

Dik2
i [cos (ka) + ki sin (ka)/k]
(k2

i + k2
)(1 + kia)

. (11)

The integrated induced charge reads

Qind = ρind(k = 0) = −qo(D1 +D2). (12)

One can check that D1 +D2 = 1 so that the local charge neutrality
condition Qind = −qo is fulfilled.

The electrostatic energy ue of the solute ion can be evaluated
directly using the induced charge density,

βue =
1
2∫

∞

a

βqoρind(r)
ϵsr

4πr2dr = −
βq2

o

2ϵs
∑
i=1,2

Diki

1 + kia
. (13)

Due to the linear response, ue also equals the electrostatic solvation
free energy.30

Note that the electric potential has been widely used in studying
charge solvation. With the analytical form of ρind(r) in Eq. (10), the
electric potential ϕ(r) can be determined from Eqs. (6) and (7). Note
that the electric potential satisfies ϕ(r →∞) = 0 and dϕ(r→∞)

dr = 0. It
is found that

ϕ(r) =
qo

ϵs
∑
i=1,2

Di

1 + kia
e−ki(r−a)

r
, r ≥ a. (14)

The electric potential ϕ(r) in the range r < a reads

ϕ(r) =
qo

ϵsr
+ A, r < a, (15)

with A = − qo
ϵs
∑i=1,2

Diki
1+kia

being the induced potential at the origin.
The electrostatic energy ue can also be evaluated as30

βue =
βqoA

2
= −

βq2
o

2ϵs
∑
i=1,2

Diki

1 + kia
, (16)

which is the same as Eq. (13).
To test the validity of our approach, a procedure is needed

to determine the parameters κ, C1,2 of the solvent. The parameters
κ, C1,2 are chosen in such a way that the Gaussian field theory
reproduces the same linear coefficients Ds

1,2 for solvent species in a
self-consistent manner, which can be done with the following two
steps given that k1,2 is known.

Step 1: Ds
1,2 for solvent species are determined. Note that

the Stillinger–Lovett second moment condition leads to Ds
1 fs(k1)

+Ds
2 fs(k2) = 1 with fs(ki) =

κ2
D

k2
i

1+kiσs+k2
i σ

2
s /2+k3

i σ
3
s /6

1+kiσs
for the solvent

species.30 One can solve Ds
1 +Ds

2 = 1 and Ds
1 fs(k1) +Ds

2 fs(k2) = 1 to
determine Ds

1,2.
Step 2: We apply the Gaussian field model to solvent species

by taking a = σs and qo = qs, namely the solute ion being the same
as a solvent ion. Then, the Gaussian field theory leads to coeffi-
cient Di∣a=σs = Vi(C1, 1 − C1, k1, k2, σs) for the solvent species [see
Eq. (C8)]. The self-consistency condition requires that Di∣a=σs = Ds

i ,
and hence, one can solve V1(C1, 1 − C1, k1, k2, σs) = Ds

1 numerically
to find the coefficient C1. The other parameters are evaluated with
C2 = 1 − C1 and κ = k1k2√

C1k2
2+C2k2

1

.

It is noted that the Gaussian field theory has been used as an
alternative approach to derive the Born model of ion solvation in
polar fluids.14,19 Based on the linear response theory, a generalized
Stillinger–Lovett second moment condition of the polar fluids has
been used by Remsing and Weeks to derive the induced charge den-
sity and the electrostatic energy of a spherical solute ion.19 Remsing
and Weeks also considered the charge solvation in electrolyte solu-
tions and adopted a generalized DH theory to account for the higher

J. Chem. Phys. 160, 034102 (2024); doi: 10.1063/5.0187141 160, 034102-3

Published under an exclusive license by AIP Publishing

 16 January 2024 14:54:17

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

order moments. Their results are similar in spirit to our work, i.e.,
multiple screening lengths are needed to give a good description of
the dielectric response function of electrolytes.

III. APPLICATIONS TO SPHERICAL IONS
IN RPM IONIC FLUIDS

In this section, the Gaussian field theory is applied to spherical
ions in two RPM ionic fluids. The hyper-netted chain (HNC) theory
is known to be very accurate for simple electrolytes over a very large
range of parameter spaces56,57 and is chosen as the benchmark of
this study. Note that the HNC theory uses reduced dimensionless
parameters to characterize the electrolyte system.58 For the sake of
simplicity, symbols for real parameters of the ionic fluids are adopted
for the reduced parameters.

Denote gij(r) as the radial distribution function between
two ion species i and j (i, j = 1, 2). The total correlation functions
hij(r) = gij(r) − 1 of the ionic species are evaluated using the HNC
theory, which is further used to compute the dielectric function
εl(k) of the bulk system as well as the induced charge density of a
solute. Denote hij(k) = ∫hij(r) sin (kr)

kr 4πr2dr as the Fourier trans-
form of hij(r). The function Y(k) ≡ 1 − ϵs

ϵl(k)
=

4πβns

k2 [∑i=1,2 q2
i xi

+ ns∑i, j=1,2 qiqjxixjhij(k)] is further fitted to a half-empirical

formula Y(k) = a0k2

k4
+(a1k2

−a2) cos (kb)+a3 sin (kb)+a2
. The first

two roots of εl(k) are determined by numerically solving
k4
+ (a1k2

− a2) cos(kb) + a3 sin(kb) + a2 = 0 with k = ikn (n = 1, 2)
and Re(kn) > 0.43 k1,2 are combined with the two-step pro-
cedure to determine the parameters {C1,2, κ} used in the TY
response function. Using these parameters, the coefficients
[Di = V i(C1, C2, k1, k2, (σo + σs)/2)] are further calculated for
various solute parameters; namely, the dielectric response of the
solute is linear even though some nonlinear response is captured
through a charge renormalization parameter κ in a self-consistent
manner. The induced charge density ρind(k) and electrostatic energy
βue from the Gaussian field theory are evaluated with Eqs. (11)
and (16).

For the first ionic fluid, the reduced parameters for the solvent
are chosen as qs = 1, σs = 1, ns = 0.22,β = 2.15, εs = 1. The inverse

Debye length is kD =

√

4πβq2
s ns/ϵs ≃ 2.44. The electrostatic coupling

parameter is Γ = βq2
s /(ϵsσs) = 2.15. This system is used to mimic a

NaCl-like aqueous solution with a molar concentration of 2 M and a
mean diameter of 4.5 Å, for which the relative dielectric constant is
about 58 at temperature T = 298 K due to the dielectric decrement
effect.59 The first two roots of εl(k) are a pair of conjugate com-
plex numbers k1,2 ≃ 1.896 ± 2.304i. Using the two-step procedure,
the parameters in the TY model are κ ≃ 2.051, C1,2 ≃ 0.5 ± 1.177i.

As the first test, our theory is used to predict the induced
charge density ρind(k). The solute charge is fixed at qo = 1, and the
solute diameter σo is taken as the control parameter. It is noted that
D1,2 = 0.5 ∓ 0.1706i, 0.5 ∓ 0.1422i, 0.5 ∓ 0.0927i for σo = 0.5, 1, 3,
respectively. One can see that the linear coefficients have a
weak dependence on the solute size parameter σo. ρind(k) for
solutes with diameters σo = 0.5, 1, 3 is shown in Figs. 1(a)–1(c),
respectively. The conventional DH theory leads to ρind(k)
= −qo

k2
D[cos (ka)+kD sin (ka)/k]
(k2

D+k2
)(1+kDa) ,60 which is also used for comparison.

FIG. 1. Induced charge density around a spherical cation with qo = 1 in an RPM
electrolyte solution with κD ≃ 2.44, from the HNC theory (filled squares), the DH
theory (hollow circles), and the Gaussian field theory (hollow stars). The lines are
a guide to the eye. (a) The ion diameter is σo = 0.5. (b) The ion diameter is
σo = 1. (c) The ion diameter is σo = 3.

As one can see, the Gaussian field theory leads to accurate induced
charge densities for these three solutes, while the DH theory is a bit
less accurate than the Gaussian field theory. We also test our theory
for other solute size parameters in the range of 0.5 ≤ σo ≤ 8, where
similar good agreements between our theory and HNC theory are
found.
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As the second test, our theory is used to predict the electrostatic
energy βue. The DH theory leads to βue = −

βq2
o

2ϵs

kD
1+kDa ,60 which is also

used as a comparison. As one can see, the Gaussian field theory leads
to very accurate electrostatic energy, while the DH theory is much
less accurate. βue as a function of solute size σo for solutes with fixed
charge qo = 1 is shown in Fig. 2(a). In the range of 0.35 ≤ σo ≤ 9, the
relative energy difference between the Gaussian field theory and the
HNC theory is no more than 3%, while the relative energy differ-
ence between the DH theory and the HNC theory is about 5–22%.
βue as a function of solute charge qo for solutes with fixed diameter
σo = 1 is shown in Fig. 2(b). In the range of qo ≤ 5, the relative energy
difference between the Gaussian field theory and the HNC theory is
no more than 5%, while the relative energy difference between the
DH theory and the HNC theory is about 17–20%. It is also noted
that the Gaussian field theory becomes less accurate for solutes with
smaller sizes and larger charges, i.e., the relative energy differences
between the Gaussian field theory and the HNC are about 2, 3, and
5% for solutes with sizes and charge parameters (σo, qo) = (1, 1),
(1, 3), and (1, 5), respectively. This is most likely due to the fact that
the linear response becomes less accurate for a solute with a smaller

FIG. 2. Electrostatic energy of a spherical cation in an RPM electrolyte solution with
κD ≃ 2.44, from the HNC theory (filled squares), the DH theory (hollow circles),
and the Gaussian field theory (hollow stars). The lines are a guide to the eye. (a)
The ion charge is qo = 1. (b) The ion diameter is σo = 1.

size and a larger charge, where the charge renormalization in the
solution becomes different from that in the pure solvent.

For the second ionic fluid system, the parameters for the sol-
vent are chosen as qs = 1, σs = 1, ns = 0.55,β = 2.6, εs = 1. The inverse

Debye length is kD =

√

4πβq2
s ns/ϵs ≃ 4.24. The electrostatic coupling

parameter is Γ = βq2
s /(ϵsσs) = 2.6. This system is used to mimic a

NaCl-like aqueous solution with a molar concentration of 5 M and

FIG. 3. Induced charge density around a spherical cation with qo = 1 in an RPM
electrolyte solution with κD ≃ 4.24, from the HNC theory (filled squares), the DH
theory (hollow circles), and the Gaussian field theory (hollow stars). The lines are
a guide to the eye. (a) The ion diameter is σo = 0.5. (b) The ion diameter is
σo = 1. (c) The ion diameter is σo = 4.
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a relative dielectric constant of 48 at a temperature of T = 298 K.59

The first two roots of εl(k) are a pair of conjugate complex numbers
k1,2 ≃ 1.503 ± 3.257i. Using the two-step procedure, the parameters
in the TY model are κ ≃ 3.304, C1,2 ≃ 0.5 ± 1.201i.

As the third test, our theory is used to predict the induced
charge density. The solute charge is fixed at qo = 1, and the solute
diameter σo is taken as the control parameter. It is noted that
D1,2 = 0.5 ∓ 0.5019i, 0.5 ∓ 0.4454i, 0.5 ∓ 0.3432i for σo = 0.5, 1, 4,
respectively. The results from the DH theory are also shown. ρind(k)
for solutes with diameters σo = 0.5, 1, 4 is shown in Figs. 3(a)–3(c),
respectively. As one can see, the Gaussian field theory leads to a good
prediction of the location and height of the first peak and valley of
induced charge densities, while the discrepancy between the DH
theory and the HNC theory is evident. For the small solute with σo
= 0.5 and qo = 1, both the HNC theory and the Gaussian field theory
lead to ρind(k) + qo < 0 in the range of 0.1 < k < 1, which reveals
the existence of charge inversion. This observation implies that the
Gaussian field theory combined with the TY response function can
be applied to study the phenomenon of charge inversion. When
compared with the results for the first test system, it is noted that
both the DH theory and the Gaussian field theory become less

FIG. 4. Electrostatic energy of a spherical cation in an RPM electrolyte solution with
κD ≃ 4.24, from the HNC theory (filled squares), the DH theory (hollow circles),
and the Gaussian field theory (hollow stars). The lines are a guide to the eye. (a)
The ion charge is qo = 1. (b) The ion diameter is σo = 1.

accurate in electrolyte systems with a larger electrostatic coupling
parameter Γ = q2

s /(ϵsσskBT). We also test our theory for other solute
size parameters in the range of 0.5 ≤ σo ≤ 7, where similar results
are found.

As the fourth test, our theory is used to predict the electrostatic
energy. The conventional DH theory is also used as a comparison.
βue as a function of solute size σo for solutes with a fixed charge
qo = 1 is shown in Fig. 4(a). In the range of 0.5 ≤ σo ≤ 7, the rel-
ative energy differences between our theory and the HNC theory
are about 3–5%, while the relative energy difference between the
DH theory and the HNC theory is about 9–29%. βue as a func-
tion of solute charge qo for solutes with a fixed diameter σo = 1 is
shown in Fig. 4(b). In the range of qo ≤ 5, the relative energy dif-
ferences between our theory and the HNC theory are no more than
6%, while the relative energy differences between the DH theory and
the HNC theory are about 22–25%. So one can see that the Gaus-
sian field theory also leads to accurate electrostatic energy for this
system.

As a brief summary, our theory is applicable to spherical ions
in 1:1 electrolyte solutions with moderate electrostatic coupling, as
long as the solute charge number is not very large. However, it is
also worth pointing out that our theory could fail for the problem of
spherical double layers with a larger surface charge density. Denote
Cs =

σe
ζ as the capacitance of a spherical double layer, where ζ = ϕ

(r = a) is the zeta potential and σe =
qo

4πa2 is the surface charge den-
sity. Previous studies show that Cs is a nonlinear function of the
surface charge density as long as the cavity radius a is fixed.61,62

However, the Gaussian field theory used in this study is a simple
linear response theory and predicts that Cs is a constant for a fixed
cavity radius of a, no matter how large the charge density is. This
means that our theory cannot be used to understand the nonlin-
ear response of the spherical double layers, especially in the case
of large surface charge densities. Then the exact contact theorems
may be used as constraints to improve the accuracy of the Gaus-
sian field theory, just as in the case of the planar electric double
layer.47 The extension of the Gaussian field theory to a spherical elec-
tric double layer with a large charge density is underway. Note that
in this work, we focus on RPM electrolytes with valency symmetric
ions. When the cations and anions of the electrolyte have different
sizes, previous studies show that the size-asymmetry leads to an extra
effective charge density around a neutral solute.63,64 It is also noted
that the nonlinear response effects in electrolytes with higher valency
and/or asymmetric valency will be stronger.65–67 These effects are
not included in the present Gaussian field model and deserve further
study.

IV. CONCLUDING REMARKS
In summary, the solvation of a spherical ion in electrolyte

solutions is studied using a Gaussian field theory. In order to cap-
ture the ionic correlation effect in concentrated solutions, the bulk
dielectric response function is described by a two-Yukawa response
function. The modified response function in the spherical symme-
try is derived analytically, which is further used to evaluate the
induced charge density and electrostatic energy. Applications to
spherical ions demonstrate the validity of the Gaussian field theory
by comparing it with the numerical HNC theory.
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APPENDIX A: MODIFIED RESPONSE FUNCTION
FROM A GAUSSIAN FIELD APPROACH

For the solvation problem with a spherical symmetry, the “in”
region is defined for the excluded volume r < a, while the “out”
region is defined for r > a. Denote χ(m)n (r, r′), Δχ(m)n (r, r′), and
χ−1

in,n(r, r′) as the expansion component of χ(m)
(r, r′), Δχ(m)

(r, r′),
and χ−1

in (r, r′), respectively. Then, it is found that

χ(m)n (r, r′) = χn(r, r′) − Δχn(r, r′), (A1)

with

Δχn(r, r′) = ∫
a

0
dr′′∫

a

0
dr′′′χn(r, r′′)χ−1

in,n(r
′′, r′′′)χn(r′′′, r′),

(A2)
and the inverse function χ−1

in,n(r, r′) is defined as

∫

a

0
χ−1

in,n(r, r′′)χn(r′′, r′)dr′′ = δ(r − r′), r < a and r′ < a. (A3)

It is easy to check that

χ(m)n (r, r′) ≡ 0, r < a or r′ < a, (A4)

which is related to the fact that solvent species cannot enter
the excluded volume. Given the spherical harmonics component
χn(r, r′) of the bulk response function, one can use these relations
to determine χ(m)n (r, r′) in the “out” region r, r′ > a.

Denote f (k) = ∫ f (r)e−ik⋅rdr as the three-dimensional Fourier
transform of f (r). Define t(k) = 1/χ(k) and t(r) as the inverse
Fourier transform of t(k). The relation t(k)χ(k) ≡ 1 leads to

∫ t(r − r′′)χ(r′′ − r′)dr′′ = δ(3)
(r − r′). Denote tn(r, r′) is the

spherical harmonics component of the function t(∣r − r′∣). It is easy
to check that ∫

∞

0 χn(r, r′′)tn(r′′, r′)dr′′ = δ(r − r′). So, χn(r, r′) is
the inverse function of tn(r, r′) in the space r, r′ <∞. It is noted that
the modified response function can also be determined via

∫

∞

a
χ(m)n (r, r′′)tn(r′′, r′)dr′′ = δ(r − r′), r, r′ > a. (A5)

This equation implies that χm
n (r, r′) is the functional inversion of

tn(r, r′) in the out region. Note that the application of Eq. (A5) is
a bit simpler than that of Eqs. (A1)–(A3) (for a more detailed dis-
cussion, see Ref. 47). In this work, Eq. (A5) will be used to determine
the modified response function χm

n (r, r′).

APPENDIX B: MODIFIED RESPONSE FUNCTION
χ(m)n (r, r′) AND INDUCED CHARGE DENSITY
FROM THE DH RESPONSE FUNCTION

Consider a dilute electrolyte solution. The DH theory leads

to χ(k)DH = −
ϵs
4π

k2k2
D

k2
+k2

D
= −

k2
Dϵs
4π (1 − k2

D
k2
+k2

D
) and t(k)DH ≡ 1/χ(k)DH

= − 4π
k2

Dϵs
(1 + k2

D
k2 ). In r-space, the DH response function leads to

χ(r − r′)DH = −
k2

Dϵs
4π [δ

(3)
(r − r′) − k2

D
4π

e−kD ∣r−r′ ∣

∣r−r′ ∣ ]. The spherical har-

monics component of χ(r − r′)DH is55

χn(r, r′)DH = −
k2

Dϵs

4π
[δ(r − r′) − k2

Dgn(r, r′; kD)], (B1)

with

gn(r, r′; k) =
√

rr′In+ 1
2
(kr)Kn+ 1

2
(kr′) for r < r′,

gn(r, r′; k) =
√

rr′In+ 1
2
(kr′)Kn+ 1

2
(kr) for r > r′.

(B2)

As discussed in Appendix A, a different way to derive the
modified response function is to evaluate the functional inver-
sion t−1

out(r, r′) of the new response function tn(r, r′). In the
r-space, the new response function t(r − r′)DH reads t(r − r′)DH

= − 4π
k2

Dϵs
[δ(3)(r − r′) + k2

D
4π

1
∣r−r′ ∣]. The spherical harmonics compo-

nent tn(r, r′)DH of t(r − r′)DH is55

tn(r, r′)DH = −
4π

k2
Dϵs
[δ(r − r′) + k2

Dgn(r, r′)], (B3)

with

gn(r, r′) =
√

rr′

2n + 1
(

r
r′
)

n+ 1
2

for r < r′,

gn(r, r′) =
√

rr′

2n + 1
(

r′

r
)

n+ 1
2

for r > r′.

(B4)

The trial solution of the modified response function
χ(m)n (r, r′)DH in the range of r, r′ > a reads55
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χ(m)n (r, r′)DH = −
k2

Dϵs

4π
[δ(r − r′) − k2

D(gn(r, r′; kD)

− vn
gn(r, a; kD)gn(a, r′; kD)

gn(a, a; kD)
)]. (B5)

Equation (B5) is inserted into Eq. (A5). By matching the coefficient
of Kn+ 1

2
(kDr)Kn+ 1

2
(kDr′) in the two sides, it is found that

vn =
Kn− 1

2
(kDa)

Kn+ 3
2
(kDa)

. (B6)

χ(m)0 (r, r′) is used to determine the induced charge density,
which reads

ρind(r) =
1
r ∫

∞

a
ψ0(r′)χ(m)0 (r, r′)DHdr′ = −

qk2
D

4π
e−kD(r−a)

(1 + kDa)r
. (B7)

These results from the Gaussian field theory are also exactly the
same as those from the linearized Poisson–Boltzmann theory in the
spherical symmetry.54

APPENDIX C: DETAILS FOR χ(m)n (r, r′)
FOR A TY RESPONSE FUNCTION

Consider an electrolyte solution with a TY response func-

tion χ(k)TY = −
κ2ϵs
4π (1 − C1k2

1
k2
+k2

1
−

C2k2
2

k2
+k2

2
). The new response function,

defined as t(k)TY ≡ 1/χ(k)TY , can be rewritten as47

t(k)TY = −
4π
κ2ϵs
(1 +

C3

k2
+ k2

3
+

C4

k2
+ k2

4
) (C1)

with k3 =
√

C2k2
1 + C1k2

2, k4 = 0, C3 = C1k2
1 + C2k2

2 − κ2, and C4 = κ2.
The response function and the new response function in the

r-space, respectively, read55

χ(r − r′)TY = −
κ2ϵs

4π

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) −

C1k2
1

4π
e−k1 ∣r−r′ ∣

∣r − r′∣

−
C2k2

2

4π
e−k2 ∣r−r′ ∣

∣r − r′∣

⎤
⎥
⎥
⎥
⎦

,

t(r − r′)TY = −
4π
κ2ϵs

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) +

C3

4π
e−k3 ∣r−r′ ∣

∣r − r′∣

+
C4

4π
1

∣r − r′∣
].

(C2)

The spherical harmonics component of χ(r − r′)TY and
t(r − r′)TY reads55

χn(r, r′)TY = −
κ2ϵs

4π
[δ(r − r′) −∑

i=1,2
Cik2

i gn(r, r′; ki)],

tn(r, r′)TY = −
4π
κ2ϵs
[δ(r − r′) + C3gn(r, r′; k3) + C4gn(r, r′)],

(C3)

with gn(r, r′; k) and gn(r, r′) defined in Eqs. (B2) and (B4).

Note that χn(r, r′)TY is the inverse function of tn(r, r′)TY in the
whole space. The trial solution of χ(m)n (r, r′)TY can be constructed
by adding terms proportional to Kn+ 1

2
(kir)Kn+ 1

2
(k jr) to χn(r, r′)TY ,

χ(m)n (r, r′)TY = −
κ2ϵs

4π

⎡
⎢
⎢
⎢
⎢
⎣

δ(r − r′) −∑
i=1,2

Cik2
i gn(r, r′; ki)

+ ∑
i,j=1,2

αijKn+ 1
2
(kir)Kn+ 1

2
(kjr′)

⎤
⎥
⎥
⎥
⎥
⎦

, r, r′ > a. (C4)

When the trial solution Eq. (C4) is inserted into Eq. (A5), both
sides of the equation are linear combinations of exponential terms.
By matching the coefficients of Kn+ 1

2
(kir)Kn+ 1

2
(k jr) to tn(r, r′)TY ,

the constraints for the parameters {αij} are derived. After some
lengthy calculations, it was found that

αij = Cik2
i Tij/T,

T = f3(a; k1, k3) f4(a; k2) − f3(a; k2, k3) f4(a; k1),
T11 = f1(a; k1, k3) f4(a; k2) − f3(a; k2, k3) f2(a; k1),
T12 = f3(a; k1, k3) f2(a; k1) − f1(a; k1, k3) f4(a; k1),
T21 = f1(a; k2, k3) f4(a; k2) − f3(a; k2, k3) f2(a; k2),

T22 = f3(a; k1, k3) f2(a; k2) − f1(a; k2, k3) f4 (a; k1))

(C5)

with

f1(r; ki, k3) =
1

k2
3 − k2

i
[k3rIn+ 1

2
(kir)In+ 3

2
(k3r)

− kirIn+ 1
2
(k3r)In+ 3

2
(kir)],

f2(r; ki) =
1
ki

rn+ 3
2 In+ 3

2
(kir),

f3(r; ki, k3) =
1

k2
3 − k2

i
[k3rIn+ 3

2
(k3r)Kn+ 1

2
(kir)

+ kirIn+ 1
2
(k3r)Kn+ 3

2
(kir)],

f4(r; ki) = −
1
ki

rn+ 3
2 Kn+ 3

2
(kir). (C6)

One can check that α12 = α21 so that the symmetry condition
χ−1

in,n(r, r′)TY = χ−1
in,n(r

′, r)TY is fulfilled.
The term χ(m)0 (r, r′) is used to determine the induced charge

density in the solvent region,

ρind(r) =
1
r ∫

∞

a
ψ0(r′)χ(m)0 (r, r′)TY dr′ = −

qκ2

4π ∑i=1,2

wie−kir

r

= −
q

4π∑i=1,2

Dik2
i e−ki(r−a)

(1 + kia)r
, r > a, (C7)
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with

wi = Ci cosh (kia) +∑
j=1,2

παije−kj a

2kj
√

kikj
,

Di = Vi(C1, C2, k1, k2, a) ≡
κ2

k2
i

1 + kia
ekia

⎛
⎜
⎝

Ci cosh (kia)

+∑
j=1,2

παije−kj a

2kj
√

kikj

⎞
⎟
⎠

.

(C8)
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