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ABSTRACT
In this work, the planar, electric, double-layer structures of non-polarizable electrodes in electrolyte solutions are studied with Gaussian
field theory. A response function with two Yukawa functions is used to capture the electrostatic response of the electrolyte solution, from
which the modified response function in the planar symmetry is derived analytically. The modified response function is further used to eval-
uate the induced charge density and the electrostatic potential near an electrode. The Gaussian field theory, combined with a two-Yukawa
response function, can reproduce the oscillatory decay behavior of the electric potentials in concentrated electrolyte solutions. When the
exact sum rules for the bulk electrolyte solutions and the electric double layers are used as constraints to determine the parameters of
the response function, the Gaussian field theory could at least partly capture the nonlinear response effect of the surface charge density.
Comparison with results for a planar electrode with fixed surface charge densities from molecular simulations demonstrates the validity of
Gaussian field theory.
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I. INTRODUCTION

Electric double layer (EDL) is crucial to understand the
screening effect of free ions to the charged surfaces, which
has wide applications in understanding the instability of col-
loidal suspension,1–3 the capacitance of electrodes with various
geometry,4–7 the ionic transport in nano channels,8–10 the charg-
ing behavior of super capacitors,11–13 and even the electrochemical
reactions near solid–liquid interfaces.14–16

The mean field theories provide very useful insight intothe
EDL structures in electrolyte solutions. The most widely used mean
field theory for the EDLs is the Gouy–Chapman (GC) theory,
where the ionic radial distribution function is treated with the
Poisson–Boltzmann (PB) approach.2,17 When the surface charge
density is low, one can further use the linearized Poisson–Boltzmann
(LPB) theory or equivalently the Debye–Hückel (DH) theory to treat
the EDLs.18–20 Both the GC theory and the DH theory use the inverse
Debye length kD to capture the electrostatic response of free ions.
As a consequence, these two theories imply that the electric poten-
tial, as well as induced charge density near an electrode, is a simple
exponential decay function in space, and, hence, cannot predict the

oscillatory decay charge density profile around an electrode in con-
centrated electrolyte solutions. To capture the correlations beyond
the mean field theory in concentrated electrolyte solutions, such as
the nonlocal response of polar solvent, the nonlocal response of salt
species, and the interplay between polar species and the salt species,
a nonlocal dielectric function can be used in the study of EDLs.21–24

Or equivalently, multiple screening lengths are introduced to under-
stand the EDLs in systems with strong electrostatic coupling, as
suggested in the dressed ion theory,25–27 the modified PB theory28–30

and the molecular DH theory,31–33 such that the electric potential
near an electrode consists of several exponential decay functions.
The nonlinear effect for electrodes with high polarization is also
of special interest,34–36 which are relevant for the understanding of
super-capacitors and electrochemical kinetics.

In this study, a Gaussian field theory is used to understand
the planar EDL of electrodes in electrolyte solutions. In particu-
lar, the Gaussian field theory was first developed by Chandler and
co-workers for fluids with short-range interactions37 and was later
extended to solvation dynamics in polar fluids.38,39 As the Gaussian
field theory uses the perspective of solvent and solute to deal with
the solvent’s linear response to the solute, the nonlinear response

J. Chem. Phys. 158, 174104 (2023); doi: 10.1063/5.0138568 158, 174104-1

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0138568/17145713/174104_1_5.0138568.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0138568
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0138568
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0138568&domain=pdf&date_stamp=2023-May-1
https://doi.org/10.1063/5.0138568
https://orcid.org/0000-0001-7652-5645
https://orcid.org/0000-0001-5142-4223
mailto:xsong@iastate.edu
https://doi.org/10.1063/5.0138568


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

effect due to the surface charge density of an electrode needs to
be incorporated in the overall response. To this end, exact sum
rules for electrolyte solutions and EDLs, such as the charge neutral-
ity condition, the Stillinger–Lovett (SL) second moment condition
and the contact theorems, are used as constraints to determine
some parameters in a two-Yukawa (TY) response function. When
the two-Yukawa response function obtained from the sum rule
constraints is used for concentrated electrolyte solutions, the oscil-
latory decay behavior of the electric potential near the electrode
can be reproduced from the Gaussian field theory quantitatively
when comparisons with Monte Carlo (MC) simulations are made.
Furthermore, the differential capacitance as a function of surface
charge also agrees with simulation results qualitatively. It should be
noted that the current approach represents a general strategy to go
beyond the mean field theory systematically by incorporating multi-
ple screening lengths of the electrolyte solution, and the non-linear
response is captured by the exact sum rules.

This paper is organized as following. In Sec. II, the planar
electric double layer is presented with the Gaussian field theory,
combined with a two-Yukawa response function, where the sum
rules are used to determine the parameters of the two-Yukawa
response function. In Sec. III, applications to an electrode in an elec-
trolyte solution, where simulation results are known, are presented
to demonstrate the utility of our current approach. A brief summary
of our findings is given in Sec. IV.

II. A GAUSSIAN FIELD APPROACH TO THE PLANAR
ELECTRIC DOUBLE LAYER IN RESTRICTED,
PRIMITIVE-MODEL ELECTROLYTE SOLUTIONS
A. Model of a planar, non-polarizable electrode
in a RPM electrolyte solution

A schematic plot of a planar, non-polarizable electrode in a
restrictive primitive model (RPM) electrolyte solution is shown in
Fig. 1, where the solution is constrained in the right half plane z > 0,
and the electrode with a surface charge density σ is located at z = −b.
The RPM electrolyte solution is used to simplify the presentation,
but the developed theory can be used for any ionic fluid with a
known dielectric function, and extension to models of polarizable
electrodes is also straightforward.

Both the ions and the electrode are located in a dielectric back-
ground with a dielectric constant εs. An ion of the RPM electrolyte
is characterized by a charged hard sphere. The cations and anions

FIG. 1. A schematic plot of a non-polarizable electrode in an electrolyte solution.

have the same diameter d but opposite charge numbers. qi denotes
the charge of cation and anion species (i = 1, 2), ns the total particle
number density, and β = 1/(kBT) the reduced inverse temperature.

The inverse Debye length reads kD =

√
4πβq2

s ns
εs

, with qs = ∣q1,2∣. Due
to the hard sphere interaction, there is a space near the electrode that
the ions cannot penetrate. As one can see, b = d/2 is the length scale
of this excluded space.

The external field produced by the surface charge density σ at
z = −b is

ψ(r) = ψ(z) = −
4π
εs
σ(z + b). (1)

When the surface charge density is nonzero, the free ions will form
an induced charge density around the electrode. Considering the
excluded volume effect of the electrode, the induced charge density
can be determined from the linear response theory:39,40

ρind
(r) = ∫ χ(m)(r, r′)ψ(r′)dr′, (2)

where χ(m)
(r, r′) is the modified response function of the bulk

solution in the presence of the electrode. In general, χ(m)
(r, r′) is

determined by the bulk response function χ(∣r − r′∣) and the bound-
ary condition around the solute. When the hard sphere interactions
between the electrode and the ions are turned off, the modified
response function χ(m)

(r, r′) reduces to the bulk response function
χ(∣r − r′∣). More details about the modified response function and
the Gaussian field theory are discussed in Appendix A.

Due to the planar symmetry of the system, it would be conve-
nient to introduce the Bessel–Fourier component F(z, z′; Q) for a
function F(r, r′)41

F(r, r′) =
1

2π∫
∞

0
dQQJ0(Qρ)F(z, z′; Q),

F(z, z′; Q) = 2π∫
∞

0
dρρJ0(Qρ)F(r, r′),

(3)

where ρ =
√

∣r − r′∣2 − (z − z′)2, r = (x, y, z) is the coordinate, Q is
the Fourier component conjugated to (x, y), and J0(ρ) is the zeroth
Bessel function.

Using Eq. (3), the Bessel–Fourier component of ψ(r) reads

ψ(z; Q) = −
8π2σ(z + b)δ(Q)

εsQ
, (4)

with δ(Q) the Dirac delta function.
In the planar symmetry, the induced charge density

depends only on variable z such that ρind
(r) = ρind

(z). Using
the Bessel–Fourier component χ(m)

(z, z′; Q) of χ(m)
(r, r′), the

induced charge density in planar symmetry can be rewritten as

ρind
(z) =

1
2π∫

∞

0
dQQ∫

∞

0
dz′χ(m)(z, z′; Q)ψ(z′; Q),

= −
4πσ
εs
∫

∞

0
dQδ(Q)∫

∞

0
dz′χ(m)(z, z′; Q)(z′ + b),

= −
4πσ
εs

f (z; 0), (5)

where
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f (z; Q) ≡ ∫
∞

0
dz′χ(m)(z, z′; Q)(z′ + b).

The electric potential ϕ(z) in the solution region is related to
ρind
(z) via the Poisson equation

d2ϕ(z)
dz2 = −

4π
εs
ρind
(z), z > 0. (6)

Note that there is no induced charge in the region −b < z < 0, and
the Poisson equation reduces to

d2ϕ(z)
dz2 = 0, −b < z < 0. (7)

As long as the induced charge density ρind
(z) is known, Eqs. (6) and

(7) can be used to determine the electric potential ϕ(z).
Denote χ(k) = ∫ χ(r)e

−ik⋅rdr as the three-dimensional Fourier
transform of χ(r). The DH theory uses only one length scale
1/kD treated at the mean field level and leads to a response

function χ(k)DH = −
εs
4π

k2k2
D

k2
+k2

D
= −

k2
Dεs
4π (1 − k2

D
k2
+k2

D
). Based on this

response function, the Gaussian field theory leads to ϕ(z > 0)DH

= 4π
εs

σ
kD

e−kDz , which is exactly the same as that obtained from
the LPB theory—32 hence the equivalency between this formula-
tion and the conventional mean field approach (LPB or linearized
Gouy–Chapman) for this model. The DH theory always predicts an
exponentially decaying electric potential and is not able to capture
the correlated response of concentrated electrolytes. Without break-
ing the presentation of our main result, details of these results are
summarized in Appendixes B and C.

B. Planar EDL from a two-Yukawa response function
Motivated by our work on the molecular Debye–Hückel the-

ory,31 which used multiple Debye screening lengths to capture
the correlated response, a two-Yukawa (TY) response function for
concentrated electrolyte solutions

χ(k)TY = −
κ2εs

4π
(1 −

C1k2
1

k2
+ k2

1
−

C2k2
2

k2
+ k2

2
) (8)

is used as a starting point to study the EDL problem in the pres-
ence of correlated responses of an electrolyte solution. In r-space,
the response function containing two Yukawa functions reads

χ(r − r′)TY

= −
κ2εs

4π

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) −

C1k2
1

4π
e−k1 ∣r−r′ ∣

∣r − r′∣
−

C2k2
2

4π
e−k2 ∣r−r′ ∣

∣r − r′∣

⎤
⎥
⎥
⎥
⎦

. (9)

As one can see, there are two length scale parameters, 1/k1 and 1/k2,
in this response function, which are obtained from the roots of the
dielectric function of the electrolyte solution;31 hence, our formula-
tion is not restricted to a particular type of electrolyte model. The
Bessel–Fourier component of χ(r − r′) is41

χ(z − z′; Q)TY

= −
κ2εs

4π
[δ(z − z′) −

C1k2
1

2Γ1
e−Γ1 ∣z−z′ ∣

−
C2k2

2

2Γ2
e−Γ2 ∣z−z′ ∣

], (10)

with Γ1 =
√

Q2
+ k2

1 and Γ2 =
√

Q2
+ k2

2.
The solution of χ−1

in (z, z′; Q)TY and the modified response
function χ(m)

(z, z′; Q)TY can be evaluated analytically, as shown in
Appendix D. The final result for the modified response function
reads

χ(m)(z, z′; Q)TY = −
κ2εs

4π

⎡
⎢
⎢
⎢
⎢
⎣

δ(z − z′) −
C1k2

1

2Γ1
e−Γ1 ∣z−z′ ∣

−
C2k2

2

2Γ2
e−Γ2 ∣z−z′ ∣

− ∑
i, j=1,2

αi je−Γiz−Γ j z′
⎤
⎥
⎥
⎥
⎥
⎦

, (11)

with the coefficient αij defined in Appendix D.
The analytical form of χ(m)

(z, z′; Q) is now used to determine
the function f (z; 0) defined in Eq. (5) and the induced charge
density ρind

(z). It should be emphasized that only the Q = 0 com-
ponent of the response function is used here, as the surface charge
is uniform; otherwise, other Q-components will be needed (hence,
the screening lengths will be modified) for inhomogeneous surface
charges.

After some calculations (details in Appendix D), it is found
that f (z; 0) is independent of the parameter b, the excluded region
between the solution and the electrode (see Fig. 1):

f (z; 0) =
εsκ2

4π
(δ1e−k1z

+ δ2e−k2z
), (12)

with δi =
Ci
2ki
+∑ j=1,2

α0
i j

k2
j
(i = 1, 2) and α0

i j = limQ→0 αi j .

Denoting D1 ≡
δ1κ2

k1
=
(k1−k3)k2
(k1−k2)k3

and D2 ≡
δ2κ2

k2
=
(k2−k3)k1
(k2−k1)k3

,
Eqs. (5) and (12) lead to the induced charge density

ρind
(z) = −

4πσ
εs

f(z; 0) = −σ(D1k1e−k1z
+D2k2e−k2z

). (13)

The cumulated induced charge density reads

σind
= ∫

∞

0
ρind
(z)dz = −σ(D1 +D2). (14)

One can check that D1 +D2 = 1, so that the local charge neutrality
condition σind

= −σ is fulfilled.
With the analytical form of ρind

(z) in Eq. (13), the electric
potential ϕ(z) can be determined from Eqs. (6) and (7). Note that
the electric potential satisfies ϕ(z →∞) = 0 and dϕ(z→∞)

dz = 0. After
integrating Eq. (6) twice, it is found that

ϕ(z) =
4πσ
εs
(

D1

k1
e−k1z

+
D2

k2
e−k2z
), z ≥ 0. (15)

The electric potential ϕ(z) in the range−b < z < 0 is a linear function
of z:

ϕ(z) = V0 −
4πσ
εs
(z + b), −b < z < 0, (16)

with V0 =
4πσ
εs
(b + D1

k1
+ D2

k2
) the electric potential on the electrode

surface.
Here are some observations on the parameters k1,2 in the TY

response function. The parameters k1,2 are related to the first two

J. Chem. Phys. 158, 174104 (2023); doi: 10.1063/5.0138568 158, 174104-3

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0138568/17145713/174104_1_5.0138568.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

effective inverse Debye lengths of the bulk system and can be eas-
ily evaluated from the bulk longitudinal dielectric function εl(k).31

In general, k1 and k2 depend on the reduced Debye parameter
KD = kDd. When the electrostatic coupling is weak, or, equivalently,
KD is small, both k1 and k2 are real numbers, and then the electric
potential is a simple decay function. When KD is larger than a criti-
cal value Kc, k1 and k2 become a pair of conjugate complex numbers,
such that k1,2 = kR ± ikI .42,43 In this case, D1 and D2 also become a
pair of complex conjugates, and then Eq. (15) can be rewritten as
ϕ(z) = 4πσ

εs
γe−kRz cos [kIz + ψ0], with the two parameters γ and ψ0

determined by k1,2 and D1,2. Then, it is easy to see that the electric
potential becomes an oscillatory decaying function with decay rate
1/kR and oscillation period 1/kI . In general, the values of kR and kI
depend on kD in an implicit way, which, in turn, depends on the
approximation used and needs to be solved numerically. According
to our previous study on concentrated RPM electrolytes,43 kI is an
increase function of kD, so that the period of the oscillation decreases
as the coupling strength increases.

C. A two-Yukawa response function built
from exact sum rules

Until now, the parameters in the TY response function have not
been specified. In general, one may treat the response function χ(k)
as a pure solvent property, and then all five parameters {k1,2, κ, C1,2}

used in Eq. (8) are independent of the surface charge density σ of the
electrode; hence, the formulation will be a linear response approach.
However, an effective charge density, or charge renormalization,
is necessary to capture the nonlinear response effect of electrolyte
solutions.25

To build a response model, taking into account the nonlinear
response effect, while introducing the effective charge density in a
self-consistent manner, the parameters k1,2 are kept as properties of
the bulk solution, but the other parameters {κ, C1,2} depend on the
electrode–ion interactions and, hence, are σ-dependent. To this end,
the exact sum rules for electrolyte solutions and EDLs are used to
determine these parameters in the TY response function, as long as
k1,2 for the bulk solution are known.

There are exact sum rules for the bulk solution and the
EDLs, such as the charge neutrality condition, the homogeneous
Stillinger–Lovett (SL) second moment condition for bulk solution,44

and the contact theorems for EDLs.45–48 These sum rules are used
as constraints for the parameters used in the TY model, which serve
as a charge renormalization mechanism, to capture the nonlinear
response. The charge neutrality condition leads to the first constraint

C1 + C2 = 1. (17)

As one shall see, the homogeneous SL condition leads to the sec-
ond constraint in Eq. (18), while the inhomogeneous SL condition
or the nonlocal contact theorem for gd(z) eventually leads to the
third constraint in Eq. (27). To this end, the sum rules play a vital
role in building our self-consistent theory.

The application of the SL condition is a bit more subtle. Strictly
speaking, the original SL condition applies only to a homogeneous
bulk electrolyte solution. The inhomogeneity of the electrolytes
solutions in the presence of the electrode originates from the short-
ranged, wall–ion interaction and the long-ranged, wall–ion elec-
trostatic interaction. A generalized form of the SL condition for

inhomogeneous electrolytes has been derived by Carnie and Chan,49

which is the nonlocal contact theorem.50 When the charge den-
sity of the electrode is low, it is expected that the presence of the
electrode has only a minor effect on the electrostatic response of
the confined solution; therefore, the homogeneous SL condition is
still a reasonable constraint for the electrolyte in the presence of a
charged electrode. A similar idea has been used in the study of polar
fluids confined between two plain dipolar layers, where the dielec-
tric function of the confined solvent is approximated by that of the
bulk solvent.51 The SL condition limk→0

−4πχ(k)
εsk2 = 131,44 leads to the

second constraint

κ2
=

k2
1k2

2

C2k2
1 + C1k2

2
. (18)

As one shall see in Sec. III, numerical results imply that the para-
meters {κ, C1,2} only have a weak dependence on the surface charge
density σ; therefore, one may conclude that the homogeneous
SL condition is a reasonable constraint for the electrode-solution
system.

Note that there are contact theorems on the EDL in
electrolyte solutions.45–48 Denote gs(z) = [g1(z) + g2(z)]/2 and
gd(z) = [g1(z) − g2(z)]/2, with gi(z) the singlet distribution func-
tion of the cation(i = 1) and anion species (i = 2) around the
electrode. The function gd(z) is evaluated as

gd(z) =
ρind
(z)

qsρs
= −

be

kD
(D1k1e−k1z

+D2k2e−k2z
), (19)

where be =
4πβqsσ
εskD

is a dimensionless surface charge density, and the
relation σ

qsρs
= be

kD
is used. Equation (19) leads to a contact value

gd(0) = −
be

kD
(D1k1 +D2k2). (20)

The nonlocal contact theorem for gd(z) is an exact sum rule for
the EDL, which can be used to incorporate the nonlinear response
effect and to derive the third constraint. The exact nonlocal contact
theorem for gd(z)

47 reads

gd(0) = βqs∫

∞

0
gs(z)

dϕ(z)
dz

dz. (21)

In order to apply the nonlocal contact theorem, gs(z) needs to
be specified. Denote t(z) ≡ βqs

dϕ(z)
dz . It is found that

t(z) = −
4πβqsσ
εs
(D1e−k1z

+D2e−k2z
),

= −bekD(D1e−k1z
+D2e−k2z

), z ≥ 0. (22)

The charge neutrality condition D1 +D2 = 1 leads to t(0) = −bekD.
Inspired by the exact local contact theorem gs(0) = a + b2

e/245,46

and the PB expression of the gs(z),
47 gs(z) is approximated as a

quadratic function of ϕ(z):

gs(z) ≃ g0(z) +
b2

e

2
(

D1

k1
e−k1z

+
D2

k2
e−k2z
)

2
/(

D1

k1
+

D2

k2
)

2
, z > 0,

(23)
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where g0(z) is the Percus–Yevick (PY) singlet hard sphere distri-
bution function, which can be evaluated analytically using the zone
expansion method.52 It is known that g0(0) = a, with a = βP/ns
the osmotic coefficient for a hard sphere fluid with particle num-
ber density ns.40 According to Eq. (23), it is easy to check that
gs(0) = a + b2

e/2; hence, the local contact theorem for gs(z) is
fulfilled. Using the contact value a = g0(0) and its derivative
a1 =

dg0(z=0)
dz as input, we further approximate g0(z) by

g0(z) ≃ 1 +Me−Λz , z > 0, (24)

with M = a − 1 and Λ = −a1/a.
When Eqs. (19) and (22)–(24) are inserted into Eq. (21), one

can find another expression for the contact value of gd(z). After
some straightforward calculations, Eq. (21) reduces to

gd(0) = ∫
∞

0
gs(z)t(z)dz = −bekD f0(D1, D2), (25)

with

f0(D1, D2) =
D1

k1
+

D2

k2
+M(

D1

k1 +Λ
+

D2

k2 +Λ
) + f1(D1, D2),

f1(D1, D2) =
b2

e

2
[

D3
1

3k3
1
+

D2
1D2

2k1 + k2
(

2
k1k2

+
1
k2

1
),

+
D1D2

2

k1 + 2k2
(

2
k1k2

+
1
k2

2
) +

D3
2

3k3
2
]/(

D1

k1
+

D2

k2
)

2
.

(26)

Comparing Eqs. (20) and (25), one can find that the self-
consistency requirement leads to the third constraint

D1k1 +D2k2 = k2
D f0(D1, D2). (27)

Note that D1 +D2 = 1, D1 = (k1 − k3)k2/[(k2 − k3)k3] and κ = k1k2/k3.
When k1,2 of the bulk solution is known, Eqs. (17), (18), and (27)
form a set of closed equations for the three unknowns {κ, C1,2} in
the TY response function. To this end, a combination of Gaussian
field theory with a TY response function and the sum rules, such as
the charge neutrality condition, the SL second moment condition,
and the nonlocal contact theorem, provides a complete solution to
the EDL problem.

In practice, Eqs. (17), (18), and (27) can be solved numeri-
cally. There are several solutions from these equations, and only the
solution with κ > 0 is physically reasonable. According to the above
procedure, it is easy to see that the parameters C1,2 and κ used in the
Gaussian field theory depend on the surface charge density σ, and
then the nonlinear response effect of the surface charge density can
be captured.

One may note that there are other ways to construct the
response function with two length scales 1/k1 and 1/k2. In our
previous study, an extended DH theory with a fourth order
gradient term was used for concentrated electrolyte solutions,
where the electric potential ϕ(r) in the solution fulfills ∇2ϕ(r)
= κ2ϕ(r) + L2

Q∇
4ϕ(r).33 This theory is equivalent to using a differ-

ent longitudinal dielectric response function εl(k) = εs(1 + κ2
/k2

+ L2
Qk2
) and a response function χ(k) = − k2εs

4π [1 − εs/εl(k)]

= − εs
4π [k

2
− 1

L2
Q
(1 − k2

+κ2

k2
+κ2
+L2

Qk4 )] = −
εs
4π [k

2
− 1

L2
Q
(1 − C5

k2
+k2

1
− C6

k2
+k2

2
)],

with k1,2 =

√

(1∓
√

1−4κ2L2
Q)/2

LQ
, C5 + C6 =

1
L2

Q
, and C5k2

2 + C6k2
1

= κ2

L2
Q

. In r-space, the response function reads χ(r − r′)

= − εs
4π [−∇

2δ(3)(r) − 1
L2

Q
(δ(3)(r) − C5

4π
e−k5 ∣r−r′ ∣

∣r−r′ ∣ −
C6
4π

e−k6 ∣r−r′ ∣

∣r−r′ ∣ )]. This

new response function can also be used in the Gaussian field theory
to treat the EDLs. However, due to the existence of a fourth order
gradient term ∇

4ϕ(r), an extra term ∇
2δ(3)
(r) appears in the

response function χ(r) and renders the application of the Gaussian
field model to be fairly complicated. Extension of the Gaussian
field theory to an electrolyte with such a response function is
underway, which is really the impetus for the current study, due to
the uncertainty of the boundary conditions with two length scales
in the response model.33

To summarize, a TY response function is used for the bulk solu-
tion and leads to a complete solution for the EDL problems. Note
that the effective Debye parameters k1,2 become a pair of conju-
gate complex numbers, as long as the electrostatic coupling is strong
enough Eq. (15) implies that the electric potential ϕ(z) becomes
an oscillatory exponential decay function. With the charge neutral-
ity condition, the SL second moment condition, and the nonlocal
contact theorem for gd(z) as constraints, the parameters in the TY
model can be uniquely determined as long as the first two effective
Debye parameters k1,2 of the bulk solution are known. As shown
in Sec. III, the TY response function can be used to reproduce the
oscillatory decaying electric potential and hence goes beyond the
DH approach to describe correlated dielectric responses beyond the
mean field approach.

III. APPLICATIONS TO THE EDL IN AN RPM IONIC
FLUID

In this section, the Gaussian field theory is applied to the EDL
in an ionic fluid studied by Lamperski and Kłos53 using Monte Carlo
(MC) simulations. The system is a 1:1 RPM electrolyte, where the
ion diameter is d = 4 Å, the packing fraction is η = 0.35, the relative
dielectric constant of the background is εr = 10, and the temperature
is T = 1400 K. Denote the cation and anion species as species 1 and 2.
The charge of the cation and anion species is q1 = −q2 = qs = e0, with
e0 the elementary charge. εs = 4πε0εr is the dielectric constant used
in the Gaussian unit, and ε0 is the permittivity in vacuum. The total
particle number density is ns = 6η/(πd3

). The inverse Debye length

is kD =

√

4πβq2
s ns/εs ≃ 1.25 Å−1. The length parameter b in the EDL

model is b = d/2 = 2 Å. The surface charge density on the electrode
is σ and leads to a dimensionless surface charge density be =

4πβqsσ
εskD

.
Note that the hyper-netted-chain (HNC) integral equation

theory leads to a very accurate description of simple electrolytes
over a very large range of parameter space;54–56 hence, HNC theory
will be used to determine some parameters of the bulk solvent in
the Gaussian field model. The HNC theory is used to evaluate the
total correlation functions hij(r) of the ionic species, from which
the dielectric function εl(k) of the bulk system is determined.
Due to the symmetry of the RPM electrolyte solution, h11(r)
= h22(r) and h12(r) = h21(r). Denote hD(r) = [h11(r) − h12(r)]/2
as the asymmetric part of the total correlation function hij(r). The
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TABLE I. Parameters used in the TY response model. The MC results of V0 are from Fig. 6 of Ref. 53.

σ (C/m2
) κ (Å−1) C1,2 D1,2 V0 (V) (theory) V0 (V) (MC)

0.025 0.929 0.5 ± 1.303i 0.5 ∓ 0.343i 0.048 0.034
0.15 0.910 0.5 ± 1.336i 0.5 ∓ 0.331i 0.29 0.22
0.4 0.832 0.5 ± 1.488i 0.5 ∓ 0.287i 0.82 0.67
0.5 0.804 0.5 ± 1.555i 0.5 ∓ 0.270i 1.04 0.94

function M(k) ≡ 1 − εs/εl(k) =
k2

D
k2 [1 + nshD(k)] is fitted to a half-

empirical function f(k) = a0k2

k4
+(a1k2

−a2) cos (b1k)+a3k sin (b1k)+a2
.32 The

Debye parameters kl can be evaluated numerically by solving
εl(k = ikl) = 0, or, equivalently, k4

+ (a1k2
− a2)cos(b1k)

+ a3k sin(b1k) + a2 = 0. The first two roots of εl(k) are a pair of
conjugate numbers k1,2 ≃ (0.334 ± 0.869i)Å−1, which is used to con-

struct the TY response function χ(k) = − κ
2εs
4π (1 −

C1k2
1

k2
+k2

1
−

C2k2
2

k2
+k2

2
). For

the packing fraction η = 0.35 and hard sphere diameter d = 4 Å, the
PY theory52 leads to a = g0(0) ≃ 4.02 and a1 =

dg0(z=0)
dz ≃ −3.25 Å−1,

and then the parameters M and Λ introduced in Eq. (24) are
M = a − 1 = 3.02 and Λ = −a1/M = 1.075 Å−1, respectively.

Following the discussion in Sec. II B, we solve Eqs. (17),
(18), and (27) numerically and find the physically reasonable solu-
tion for {κ, C1,2} and the coefficients D1,2. Using these parameters,
the potential V0 on the electrode surface is evaluated as V0 =

4πσ
εs

(b + D1
k1
+ D2

k2
). For σ = 0.025, 0.15, 0.4, 0.5 C/m2, the numerical

results for κ, C1,2, D1,2, V0 are shown in Table I. As one can see, κ, C1,2
and D1,2 only have a weak dependence on the surface charge density
σ, so that the SL condition in Eq. (18) is a reasonable constraint for
the confined electrolyte solution. The predicted results for V0 are
in reasonably good agreement with the MC simulations, given that
there are no adjustable parameters in the theory.

With D1,2, the electric potential ϕ(z) is evaluated using
Eqs. (15) and (16), and the results are shown in Fig. 2. As one can
see, the Gaussian field theory leads to a reasonable description of the
EDL under four different surface charge densities, where the electric

FIG. 2. Electric potential ϕ(z) near a metallic electrode in an ionic fluid, where
the surface charge density on the electrode is σ = 0.025, 0.15, 0.4, 0.5 C/m2. The
results from Monte Carlo simulations (Fig. 6 in Ref. 53) are denoted by symbols,
while results from the Gaussian field theory are denoted by lines.

potentials in the electrolyte region are oscillatory decay functions.
However, the depth of the first valley of ϕ(z) from Gaussian field
theory is a bit larger than that from simulations for large charge den-
sity. According to our previous study on RPM electrolytes,31 four
screening length scales may be necessary to capture the ionic correla-
tion of the ionic fluids with strong coupling, so that the two-Yukawa
response function may be inadequate for the electrostatic interaction
of the ionic fluid studied. This could be one reason for the discrep-
ancy between the theory and the MC results. Another reason may be
due to the limitation of the Gaussian field theory, where the effec-
tive charge density is not considered explicitly, and the nonlinear
response effect is only partly accounted for in Eq. (23).

The Gaussian field theory is also used to study the differential
capacitance Cμ =

dσ
dV0

of an electrode. The differential capacitance
is an important thermodynamic property of a planar electrode
immersed in an electrolyte solution. It is known that the differential
capacitance has a nontrivial dependence on the surface potential V0,
which could be a bell shape or a camel shape, depending on the prop-
erties of the electrolytes.57,58 These effects have been studied with
nonlinear mean field theories and density functional theories.59,60

Note that the MC results for Cμ in Ref. 53 is shown as a function
of σ rather than V0. In order to compare with the MC results, the
numerical results for Cμ as a function of σ are shown in Fig. 3. As one
can see, when the surface charge density is lower than 0.3 C/m2, the
Gaussian field theory predicts 0.47 F/m2

< Cμ < 0.52 F/m2, which is
in fair agreement with the MC results 0.53 F/m2

< Cμ < 0.71 F/m2.
The Gaussian field theory predicts that Cμ is a bell shape function
of the charge density σ, which is the same as the simulation results.

FIG. 3. Differential capacitance Cμ as a function of the surface charge density σ.
The results from Monte Carlo simulations (Fig. 8 in Ref. 53) are denoted by filled
circles, while results from the Gaussian field theory are denoted by hollow circles.
The lines are guides to the eye.
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FIG. 4. The differential capacitance Cμ as a function of the surface potential V0.
The results from theory are denoted by hollow squares. The lines are guides to the
eyes.

The numerical results for Cμ as a function of V0 are shown in Fig. 4,
where the MC results are not available in Ref. 53. As one can see,
Cμ from the Gaussian field theory is also a bell shape function of
V0. As a comparison, the conventional GC theory predicts that Cμ
is always an increasing function of V0 and hence cannot describe
the saturation effect in the large electric potential regime.57 To this
end, the Gaussian field model leads to a fairly good description of
the differential capacitance, given that the electric potential V0 is not
really high.

IV. CONCLUDING REMARKS
In summary, the planar, electric, double-layer structure of a

non-polarizable electrode in electrolyte solutions is studied using
the Gaussian field theory combined with a two-Yukawa response
function. The modified response function in the planar symmetry
is derived analytically, which is further used to evaluate the induced
charge density and the electrostatic potential near an electrode. The
Gaussian field theory using a two-Yukawa response function can
reproduce the oscillatory decay behavior of the electric potentials in
concentrated electrolyte solutions. When the exact sum rules, such
as charge neutrality condition, the Stillinger-Lovett second moment
condition, and the contact theorem of the electric double layer, are
used as constraints to determine the parameters of the response
function, the Gaussian field theory could partially capture the non-
linear response effect of the surface charge density. Applications to
electrodes with fixed surface charge density demonstrates the valid-
ity of the Gaussian field theory, by comparing with Monte Carlo
simulations.
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APPENDIX A: MODIFIED RESPONSE FUNCTION
FROM A GAUSSIAN FIELD APPROACH

The Gaussian field theory uses the concept of solvent and solute
to deal with the linear response of the solution so that the excluded
volume effect of a solute can be accounted for in a simple manner.
Specifically, the solute will generate an excluded volume in which the
solvent species cannot enter and, hence, modifies the local response
function. Denote the exclude volume of the solute as the “in” region
and the volume occupied by the solvent as the“out” region. The
modified response function χ(m)

(r, r′) in the Gaussian field model
reads37,39

χ(m)(r, r′) = χ(r − r′) − Δχ(r, r′), (A1)

with

Δχ(r, r′) = ∫
in

dr′′∫
in

dr′′′χ(r − r′′)χ−1
in (r

′′, r′′′)χ(r′′′ − r′), (A2)

and the inverse function χ−1
in (r′′, r′′′) is defined as

∫
in
χ−1

in (r, r′′)χ(r′′ − r′)dr′′ = δ(3)(r − r′), r, r′ ∈ in, (A3)

with δ(3)
(r) the three-dimensional Dirac function. It is easy to check

that χ(m)
(r, r′) vanishes in the “in” region, such that χ(m)

(r, r′) = 0
for r ∈ in or r′ ∈ in. According to Eqs. (A1)–(A3), χ(m)

(r, r′) is a
response function in the “out” region, which needs to be evaluated,
given the pure solvent response function χ(r − r′) and the geometry
of the solute.

It is interesting to note that the modified response func-
tion can also be evaluated in a different way. Consider a charged
solute in an electrolyte solution. Define t(k) ≡ 1/χ(k) as a new
response function in k-space. The linear response theory also
implies that ψ(r) = ∫ t(r − r′)ρind

(r′)dr′, with ψ(r) the bare elec-
tric potential generated by the solute and t(r) the inverse Fourier
transform of t(k). It is found that ρind

(r) = 0 for r ∈ in due to
the excluded volume effect. Then, the response equation reads
ψ(r) = ∫out t(r − r′)ρind

(r′)dr′ for r ∈ out. Note that Eq. (2) reduces
to ρind

(r) = ∫out χ
(m)
(r, r′)ψ(r′)dr′ for r ∈ out. It is found that
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∫out t(r − r′′)χ(m)
(r′′, r′) = δ(r − r′) for r, r′ ∈ out. Define t−1

out(r, r′)
as the functional inverse of t(r − r′) in the “out” region, such that
∫outt(r − r′′)t−1

out(r′′, r′) = δ(r − r′) with r, r′ ∈ out. As one can see,
the relation χ(m)(r, r′) = t−1

out(r, r′) is valid for a solute with gen-
eral geometry and provides another route to compute the modified
response function. In a previous study on the dielectric response in
a polar solvent, similar results had been derived by Kornyshev51 and
Georgievskii and co-workers.61 In Appendixes C and D, it is verified
that χ(m)

(r, r′) from these two routes are the same for the special case
of a one/two-Yukawa response function.

For the EDL problem with planar symmetry, the “in” region
is defined for the left plane z < 0 while the “out” region is defined
for the right plane z > 0. Denote χ(m)

(z, z′; Q), Δχ(m)
(z, z′; Q)

and χ−1
in (z, z′; Q) as the Bessel-Fourier component of χ(m)

(r, r′),
Δχ(m)

(r, r′) and χ−1
in (r, r′), respectively. Then it is found that

χ(m)(z, z′; Q) = χ(z − z′; Q) − Δχ(z, z′; Q), (A4)

with

Δχ(z, z′; Q) = ∫
0

−∞
dz′′∫

0

−∞
dz′′′χ(z − z′′; Q)

× χ−1
in (z

′′, z′′′; Q)χ(z′′′ − z′; Q), (A5)

and the inverse function χ−1
in (z, z′; Q) is defined as

∫

0

−∞
χ−1

in (z, z′′; Q)χ(z′′ − z′; Q)dz′′ = δ(z − z′), z < 0 and z′ < 0.
(A6)

It is easy to check that

χ(m)(z, z′; Q) ≡ 0, z < 0 or z′ < 0. (A7)

Given the bulk response function χ(z, z′; Q), the main mathematical
problem in the Gaussian field theory is to determine χ(m)

(z, z′; Q) in
the “out” region z, z′ > 0.

APPENDIX B: PLANAR EDL FROM THE DH RESPONSE
FUNCTION

Before computing the modified response function, the response
function of the bulk electrolyte solution needs to be specified. Con-
sidering an electrolyte solution at low concentrations, the DH theory
leads to εl(k)DH = εs(1 + k2

D/k
2
),40 and then

χ(k)DH = −
k2

Dεs

4π
(1 −

k2
D

k2
+ k2

D
). (B1)

In r-space, the DH response function contains a single Yukawa
function

χ(r − r′)DH = −
k2

Dεs

4π

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) −

k2
D

4π
e−kD ∣r−r′ ∣

∣r − r′∣

⎤
⎥
⎥
⎥
⎦

. (B2)

The Bessel–Fourier component of χ(r − r′) is41

χ(z − z′; Q)DH = −
k2

Dεs

4π
[δ(z − z′) −

k2
D

2Γ
e−Γ∣z−z′ ∣

], (B3)

with Γ =
√

Q2
+ k2

D. The inverse function in the range z, z′ < 0
reads41

χ−1
in (z, z′; Q)DH

= −
4π

k2
Dεs
[δ(z − z′) +

k2
D

2g
e−g∣z−z′ ∣

−
(g − Γ)2

2g
eg(z+z′)

], (B4)

with g = Q. The modified response function χ(m)
(z, z′; Q)DH in the

range z, z′ > 0 reads

χ(m)(z, z′; Q)DH

= −
k2

Dεs

4π
[δ(z − z′) −

k2
D

2Γ
e−Γ∣z−z′ ∣

−
(Γ − g)2

2Γ
e−Γ(z+z′)

]. (B5)

χ(m)
(z, z′; Q) is used to determine the function f (z; Q) ≡ ∫

∞

0
dz′χ(m)(z, z′; Q)(z′ + b) and f (z; 0). After some straightforward
calculations, it is found that

f (z; 0) =
kDεs

4π
e−kDz. (B6)

According to Eq. (5), the induced charge density reads

ρind
(z) = −

4πσ
εs

f (z; 0) = −kDσe−kDz. (B7)

Detailed derivations of the modified response function and the
function f (z; 0) are summarized in Appendix C.

With the analytical form of ρind
(z) in Eq. (B7), the electric

potential ϕ(z) can be determined from Eqs. (6) and (7). Note that
the electric potential satisfies ϕ(z →∞) = 0 and dϕ(z→∞)

dz = 0. After
integrating Eq. (6) twice, it is found that

ϕ(z)DH =
4π
εs

σ
kD

e−kDz , z ≥ 0. (B8)

The electric potential ϕ(z) in the range−b < z < 0 is a linear function
of z:

ϕ(z)DH = V0 −
4πσ
εs
(z + b), −b < z < 0, (B9)

with V0 =
4πσ
εs
(b + 1

kD
) the electric potential on the electrode. Note

that the Debye parameter kD is a positive number; Eq. (B8) implies
that the electric potential ϕ(z) is always a simple exponential decay
function. These results from the Gaussian field theory are exactly
the same as those from the LPB theory;32 so, one can conclude that
the Gaussian field theory does lead to a different perspective to the
EDL problem. This work can also be regarded as an extension of the
Gaussian field theory of polar fluids by Song and Chandler39 to dilute
electrolyte solutions, given that the dielectric response function for
polar fluids is replaced by that of electrolyte solutions, but even for
this case, it is highly nontrivial, due to the functional inverse of the
response function in a confined region.

Note that there are contact theorems on the EDL in the
electrolyte solutions45–48 which are exact sum rules; it would
be of interest to see whether the contact theorems are fulfilled
by the DH theory. Denote gs(z) = [g1(z) + g2(z)]/2 and gd(z)
= [g1(z) − g2(z)]/2, with gi(z) the singlet distribution function of
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the cation(i = 1) and anion species i = 2 around the electrode. As the
Gaussian field theory in this study only treats the electrostatic inter-
action, we just test the DH theory for the contact value of gd(z). The
exact nonlocal contact theorem for gd(z)

47 reads

gd(z = 0) = βqs∫

∞

0
gs(z)

dϕ(z)
dz

dz. (B10)

Note that the induced charge density ρind
(z) is related to gd(z)

via ρind
(z) = qsρs gd(z);

48 gd(z) is evaluated as

gd(z) =
ρind
(z)

qsρs
= −

σkD

qsρs
e−kDz

= −bee−kDz , (B11)

with be =
4πβqsσ
εskD

, a dimensionless surface charge density. Equa-
tion (B11) directly leads to a contact value of gd(z) as

gd(z = 0) = −be. (B12)

In order to apply the nonlocal contact theorem for gd(z), an
analytical expression for gs(z) is required. Define t(z) ≡ βqs

dϕ(z)
dz .

The Gaussian field theory with a DH response function leads to
t(z) = −bekDe−kDz for z ≥ 0 and t(z = 0) = −bekD. In the limit of low
particle number density ns → 0, the osmotic coefficient a = βP/ns

= 1. One may construct gs(z) as gs(z) = 1 + b2
e e−2kDz

/2, inspired
by the linearized Gouy–Chapman result, so that the exact contact
theorem gs(z = 0) = a + b2

e/245,46 is fulfilled. Then, Eqs. (B8) and
(B10) lead to another expression for the contact value of gd(z)

gd(z = 0) = ∫
∞

0
[1 + b2

e e−2kDz
/2]t(z)dz = −be(1 + b2

e/6). (B13)

Comparing Eqs. (B12) and (B13), one can check that the contact
theorems for gd(z) can only be satisfied in the low surface charge
density limit be → 0.

APPENDIX C: MODIFIED RESPONSE FUNCTION
χ(m )(z ,z ′; Q ) FOR AN ELECTROLYTE SOLUTION
WITH A DH RESPONSE FUNCTION

Consider a planar electrode immersed in an electrolyte solu-
tion. Due to the planar symmetry, any function F(r, r′) can be
expanded with its Bessel–Fourier component F(z, z′; Q) via Eq. (3).
The function Δχ(z, z′; Q) defined in the Gaussian field theory reads

Δχ(z, z′; Q) = ∫
0

−∞
dz′′∫

0

−∞
dz′′′χ(z − z′′; Q)χ−1

in (z
′′, z′′′; Q)

× χ(z′′′ − z′; Q), z > 0 and z′ > 0. (C1)

The functional inverse χ−1
in (z, z′; Q) is defined via

∫

0

−∞
χ−1

in (z, z′′; Q)χ(z′′ − z′; Q)dz′′ = δ(z − z′), z < 0 and z′ < 0.
(C2)

For the DH response function χ(r − r′) = − k2
Dεs
4π

[δ(3)(r − r′) − k2
D

4π
e−kD ∣r−r′ ∣

∣r−r′ ∣ ], its Bessel–Fourier component reads

χ(z − z′; Q) = −
k2

Dεs

4π
[δ(z − z′) −

k2
D

2Γ
e−Γ∣z−z′ ∣

], (C3)

with Γ =
√

k2
D +Q2. The functional inverse of χ(z − z′; Q) in the

region z, z′ < 0 reads41

χ−1
in (z, z′; Q) = −

4π
k2

Dεs
[δ(z − z′) +

k2
D

2g
e−g∣z−z′ ∣

−
(g − Γ)2

2g
eg(z+z′)

], z < 0 and z′ < 0, (C4)

with g = Q. When z, z′ > 0 and z′′, z′′′ < 0, it is found that
δ(z − z′′) = 0, δ(z′ − z′′′) = 0, z − z′′ > 0, and z′ − z′′′ > 0. So
Eq. (C1) with z > 0 and z′ > 0 can be rewritten as

Δχ(z, z′; Q) = −
k2

Dεs

4π
k4

D

4Γ2∫

0

−∞
dz′′∫

0

−∞
dz′′′e−Γ(z−z′′)−Γ(z′−z′′′)

× [δ(z′′ − z′′′) +
k2

D

2g
e−g∣z′′−z′′′ ∣ )

−
(g − Γ)2

2g
eg(z′′+z′′′)

]. (C5)

Equation (C5) can be evaluated as

Δχ(z, z′; Q) = −
k2

Dεs

4π
(Γ − g)2

2Γ
e−Γ(z+z′). (C6)

So, finally, we have

χ(m)(z, z′; Q) = χ(z, z′; Q) + Δχ(z, z′; Q),

= −
k2

Dεs

4π
[δ(z − z′) −

k2
D

2Γ
e−Γ∣z−z′ ∣

−
(Γ − g)2

2Γ
e−Γ(z+z′)

]. (C7)

As discussed in Appendix A, a different way to derive
the modified response function is to evaluate the functional
inverse t−1

out(z, z′; Q) of the new response function t(z, z′; Q).

For the DH response function χ(k) = k2
Dεs
4π (1 − k2

D
k2
+k2

D
), the

new response function t(k) ≡ 1/χ(k) = − 4π
k2

Dεs
(1 + k2

D
k2 ). In

the r-space, the new response function reads t(r − r′)

= − 4π
k2

Dεs
[δ(3)(r − r′) + k2

D
4π

1
∣r−r′ ∣]. The Bessel–Fourier component

t(z, z′′; Q) of t(r − r′) is t(z − z′; Q) = − 4π
k2

Dεs
[δ(z − z′) + k2

D
2g e−g∣z−z′ ∣

]

with g = Q. Denote t−1
out(z, z′; Q) as the functional inver-

sion of t(z, z′′; Q), such that ∫
∞

0 t(z, z′′; Q)t−1
out(z′′, z′; Q)dz′′

= δ(z − z′), with z, z′ > 0. It is found that t−1
out(z, z′; Q)

= −
k2

Dεs
4π [δ(z − z′) − k2

D
2Γ e−Γ∣z−z′ ∣

−
(Γ−g)2

2Γ e−Γ(z+z′)
] = χ(m)(z, z′; Q).

The function f (z; Q) ≡ ∫
∞

0 dz′χ(m)(z, z′; Q)(z′ + b) reduces to

f (z; Q) = −
k2

Dεs

4π
[(1 −

k2
D

Γ2 )(z + b)

−
k2

D(1 − Γb) + (Γ − g)2
(1 + Γb)

2Γ3 e−Γz
]. (C8)
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Setting Q = 0, the f (z; 0) function reduces to

f (z; 0) = −
k2

Dεs

4π
(0 −

1
kD

e−kDz
) =

kDεs

4π
e−kDz. (C9)

APPENDIX D: DETAILS FOR χ(m )(z ,z ′; Q )
WITH A TWO-YUKAWA RESPONSE FUNCTION

Here are some observations about the bulk response function of
the RPM electrolyte solutions. As noted by Chandler, the Gaussian
field theory of a solvent is equivalent to an integral equation theory
with a suitable closure relation, so that χ(k) is related to the total
correlation function hij(r) = gij(r) − 1 and direct correlation func-
tion cij(r) between the solvent species i and j.37 The exact response
function χ(k) is related to the bulk longitudinal dielectric function
εl(k) via χ(k) = − k2εs

4π [1 −
εs

εl(k)
].40 Denote fij(k) = ∫ fij(r)e−ik⋅rdr as

the three-dimensional Fourier transform of a function fij(r). Due
to the symmetry of the system, it is found that f11(r) = f22(r)
and f12(r) = f21(r) for fij(r) = hij(r), cij(r). One can introduce
fD(r) = [ f11(r) − f12(r)]/2 as the asymmetric part of the function
fij. The Ornstein–Zernike equation leads to [1 + nshD(k)][1 − ns
cD(k)] = 1.62 The function M(k) ≡ 1 − εs/εl(k) can be evaluated
as M(k) = k2

D
k2 [1 + nshD(k)],31,40 so that χ(k) = − k2

Dεs
4π [1 + nshD(k)]

= −
k2

Dεs
4π

1
[1−nscD(k)]

. The mean spherical approximation has been rec-
ognized as the closure relation in Ref. 37 for the Gaussian field
model. However, other closure relations may also be used to build
approximated response functions. The random phase approxima-
tion (RPA) closure assumes cD(r) = −

βq2
s

εsr
= −

k2
D

4πnsr
40 and leads to a

DH response function χ(k)DH = −
εs
4π

k2k2
D

k2
+k2

D
. A modified RPA closure

with cD(r) = −
βq2

s
εsr
− C3e−k3 r

4πnsr
leads to χ(k) = − k2

Dεs
4π

1
[1+k2

D/k
2
+C3/(k2

+k2
3)]

,

which can be rewritten as χ(k) = − k2
Dεs
4π [1 −

C1k2
1

k2
+k2

1
−

C2k2
2

k2
+k2

2
] and is

related to the two-Yukawa response function defined in Eq. (8).
In the context of the generalized mean spherical approximation
of RPM electrolyte solutions, the modified RPA has also been
adopted to build an integral equation theory with thermodynamic
consistency.63,64 Therefore, our approach developed in this work can
also be used to develop a self-consistent theory of pure electrolyte
solutions.

Consider an electrolyte solution with a two-Yukawa response
function, with

χ(k) = −
κ2εs

4π
[1 −

C1k2
1

k2
+ k2

1
−

C2k2
2

k2
+ k2

2
], (D1)

with C1 + C2 = 1 the charge neutrality condition and
κ2
= k2

1k2
2/(C2k2

1 + C1k2
2) the Stillinger–Lovett second moment

condition.44 The new response function, defined as t(k) ≡ 1/χ(k),
can be rewritten as

t(k) = −
4π
κ2εs
[1 +

C3

k2
+ k2

3
+

C4

k2
+ k2

4
], (D2)

with

k3 =

√

C2k2
1 + C1k2

2, k4 = 0,

C3 =
k2

3(C1k2
1 + C2k2

2) − (C1 + C2)k2
1k2

2

k2
3 − k2

4
,

and

C4 =
k2

4(C1k2
1 + C2k2

2) − (C1 + C2)k2
1k2

2

k2
4 − k2

3
= κ2.

The response function and the new response function in
r-space reads

χ(r − r′) = −
κ2εs

4π

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) −

C1k2
1

4π
e−k1 ∣r−r′ ∣

∣r − r′∣
−

C2k2
2

4π
e−k2 ∣r−r′ ∣

∣r − r′∣

⎤
⎥
⎥
⎥
⎦

.

t(r − r′) = −
4π
κ2εs

⎡
⎢
⎢
⎢
⎣
δ(3)(r − r′) +

C3

4π
e−k3 ∣r−r′ ∣

∣r − r′∣
+

C4

4π
1

∣r − r′∣

⎤
⎥
⎥
⎥
⎦

.

(D3)

The relation t(k)χ(k) ≡ 1 leads to ∫ dr′′t(r − r′′)χ(r′′ − r′)
= δ(r − r′). So, the new response function t(r − r′) is just the
inverse function of χ(r − r′) in the whole space 0 < r, r′ <∞.

The Bessel–Fourier component of χ(r − r′) and t(r − r′) reads

χ(z − z′; Q) = −
κ2εs

4π
[δ(z − z′) −

C1k2
1

2Γ1
e−Γ1 ∣z−z′ ∣

−
C2k2

2

2Γ2
e−Γ2 ∣z−z′ ∣

],

t(z − z′; Q) = −
4π
κ2εs
[δ(z − z′) +

C3

2Γ3
e−Γ3 ∣z−z′ ∣

+
C4

2Γ4
e−Γ4 ∣z−z′ ∣

],

(D4)
where

Γi =

√

k2
i +Q2i = 1, 2, 3, 4.

The finite space functional inverse χ−1
in (z, z′; Q) of χ(z − z′; Q)

is defined via

∫

0

−∞
χ−1

in (z, z′′; Q)χ(z′′ − z′; Q)dz′′ = δ(z − z′), z < 0 and z′ < 0.
(D5)

Note that t(z − z′; Q) is the functional inverse of χ(z − z′; Q)
in the whole space; the following trial solution of χ−1

in (z, z′; Q) can be
constructed by adding terms proportional to eΓ j z+Γlz′ to t(z − z′; Q):

χ−1
in (z, z′; Q) = −

4π
κ2εs

⎡
⎢
⎢
⎢
⎢
⎣

δ(z − z′) +
C3

2Γ3
e−Γ3 ∣z−z′ ∣

+
C4

2Γ4
e−Γ4 ∣z−z′ ∣

+ ∑
j,l=3,4

α jle
Γ j z+Γlz′

⎤
⎥
⎥
⎥
⎥
⎦

, z < 0 and z′ < 0. (D6)

One may note that the functional inverse of a two-Yukawa
response function has been discussed by Kornyshev and co-
workers,41 where a similar trial solution has been introduced. How-
ever, the expression in Ref. 33 is incorrect, but did inspire our trial
solution, where the cross terms such as eΓ3z+Γ4z′ and eΓ4z+Γ3z′ are
neglected. When the trial solution is inserted into Eq. (D5), one
can find an equation for which the left hand side and right hand
side can be rearranged as a linear combination of exponential terms.
By matching the coefficients of exponential terms eΓ j z+Γlz′ , the con-
straints for the parameters {αjl} are derived. After some lengthy
calculations, it is found that
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α33 =
C3

2Γ3
(
Γ4 − Γ1

Γ3 + Γ1
−
Γ4 − Γ2

Γ3 + Γ2
)/(

Γ4 − Γ1

Γ3 − Γ1
−
Γ4 − Γ2

Γ3 − Γ2
),

α34 =
C3

2Γ3
(
Γ3 − Γ1

Γ3 + Γ1
−
Γ3 − Γ2

Γ3 + Γ2
)/(

Γ3 − Γ1

Γ4 − Γ1
−
Γ3 − Γ2

Γ4 − Γ2
),

α43 =
C4

2Γ4
(
Γ4 − Γ1

Γ4 + Γ1
−
Γ4 − Γ2

Γ4 + Γ2
)/(

Γ4 − Γ1

Γ3 − Γ1
−
Γ4 − Γ2

Γ3 − Γ2
),

α44 =
C4

2Γ3
(
Γ3 − Γ1

Γ4 + Γ1
−
Γ3 − Γ2

Γ4 + Γ2
)/(

Γ3 − Γ1

Γ4 − Γ1
−
Γ3 − Γ2

Γ4 − Γ2
).

(D7)

One can check that α34 = α43 so that the symmetry condition
χ−1

in (z, z′; Q) = χ−1
in (z

′, z; Q) is fulfilled.
The modified response function can also be derived analyt-

ically. When z, z′ > 0 and z′′, z′′′ < 0, it is found that δ(z − z′′)
= 0, δ(z′ − z′′′) = 0, z − z′′ > 0, and z′− z′′′ > 0. Using the analytical
form of χ−1

in (z, z′; Q), Δχ(z, z′; Q), defined in the out region, reads

Δχ(z, z′; Q) = −
κ2εs

4π ∑i, j

Cik2
i

2Γi

C jk2
j

2Γ j
ai je−Γiz−Γ j z′ , (D8)

with ai j = {
1

Γi+Γ j
+∑k

Ck
2Γk
[ 1
(Γ j−Γk)

( 1
(Γi+Γk)

− 1
(Γi+Γ j)

)] +∑k,l
αkl

(Γi+Γk)(Γ j+Γl)
}. The modified response function reads

χ(m)in (z, z′; Q) = −
4π
κ2εs

⎡
⎢
⎢
⎢
⎢
⎣

δ(z − z′) −∑
i=1,2

Cik2
i

2Γi
e−Γi ∣z−z′ ∣

− ∑
i, j=1,2

Cik2
i

2Γi

C jk2
j

2Γ j
ai je−Γiz−Γ j z′

⎤
⎥
⎥
⎥
⎥
⎦

. (D9)

As noted in Appendix A, the modified response function can
also be evaluated from the functional inverse of the new response
function t(z, z′; Q) in the right half plane. The functional inverse of
t(z − z′; Q) in the right half plane is defined as

∫

∞

0
t−1
out(z, z′′; Q)t(z′′ − z′; Q)dz′′ = δ(z − z′), z > 0 and z′ > 0.

(D10)
Note that both t(z − z′; Q) and χ(z − z′; Q) are of two-Yukawa
function form; the procedure to solve χ−1

in (z, z′; Q) can be used to
solve t−1

out(z, z′; Q). The final solution reads

t−1
out(z, z′; Q) = −

4π
κ2εs

⎡
⎢
⎢
⎢
⎢
⎣

δ(z − z′) −∑
i=1,2

Cik2
i

2Γi
e−Γi ∣z−z′ ∣

− ∑
i, j=1,2

αi je−Γiz−Γ j z′
⎤
⎥
⎥
⎥
⎥
⎦

, (D11)

with

α11 =
C1k2

1

2Γ1
(
Γ2 − Γ4

Γ1 + Γ4
−
Γ2 − Γ3

Γ1 + Γ3
)/(

Γ2 − Γ4

Γ1 − Γ4
−
Γ2 − Γ3

Γ1 − Γ3
),

α12 =
C1k2

1

2Γ1
(
Γ1 − Γ4

Γ1 + Γ4
−
Γ1 − Γ3

Γ1 + Γ3
)/(

Γ1 − Γ4

Γ2 − Γ4
−
Γ1 − Γ3

Γ2 − Γ3
),

α21 =
C2k2

2

2Γ2
(
Γ2 − Γ4

Γ2 + Γ4
−
Γ2 − Γ3

Γ2 + Γ3
)/(

Γ2 − Γ4

Γ1 − Γ4
−
Γ2 − Γ3

Γ1 − Γ3
),

α22 =
C2k2

2

2Γ1
(
Γ1 − Γ4

Γ2 + Γ4
−
Γ1 − Γ3

Γ2 + Γ3
)/(

Γ1 − Γ4

Γ2 − Γ4
−
Γ1 − Γ3

Γ2 − Γ3
).

(D12)

One can check that Cik2
i

2Γi

C j k2
j

2Γ j
ai j = αi j (i, j = 1, 2) are always fulfilled,

so it is found that χ(m)(z, z′; Q) = t−1
out(z, z′; Q) given z, z′ > 0. Note

that the expressions of αij are a bit simpler than Cik2
i

2Γi

C j k2
j

2Γ j
ai j ; hence, in

Sec. II, we use the expression t−1
out(z, z′; Q) instead of χ(m)

(z, z′; Q)TY
with z, z′ > 0.

Using the modified response function, now we can evaluate the
induced charge density. The function f (z; Q) introduced in Eq. (5)
reads

f (z; Q) =
εsκ2

4π

⎡
⎢
⎢
⎢
⎢
⎣

(1 −
C1k2

1

Γ2
1
−

C2k2
2

Γ2
2
)(z + b)

− ∑
i=1,2

e−Γiz⎛

⎝

Cik2
i (1 − Γib)

2Γ3
i

+ ∑
j=1,2

αi j(1 + Γ jb)
Γ2

j

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

(D13)

Denote α0
i j = limQ→0 αi j and δi =

Ci
2ki
+∑ j

α0
i j

k2
j
. In the small Q

limit, it is found that limQ→0(1 −
C1k2

1
Γ2

1
−

C2k2
2

Γ2
2
) = 0, limQ→0(−

Cik2
i Γi

2Γ3
i

+∑ j=1,2
αi jΓ j

Γ2
j
) = 0 for i = 1, 2. Then f (z; 0) is independent of the

parameter b

f (z; 0) =
εsκ2

4π
(δ1e−k1z

+ δ2e−k2z
). (D14)
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