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ABSTRACT. For the Laplace operator with Dirichlet boundary conditions on con-
vex domains in H", n > 2, we prove that the product of the fundamental gap with
the square of the diameter can be arbitrarily small for domains of any diameter.

1. INTRODUCTION

We consider the low eigenvalues of the Laplace operator —A with Dirichlet bound-
ary conditions on a convex, compact domain ) of H". This operator has a discrete
spectrum with oo as its accumulation point. If the sequence of eigenvalues is ar-
ranged in increasing order \; < Ay < A3 < -- -, the fundamental gap is the difference
between the first two eigenvalues

)\2—/\1>0.

In 1983, while investigating the thermodynamic functions of a free boson gas, van
den Berg observed that for many convex domains in Euclidean space, the funda-
mental gap has a lower bound Xy — A\; > 37%/D? where D is the diameter of the
domain [17]; the lower bound was conjectured to hold for all convex domains by
Yau, and Ashbaugh and Benguria [3,/18]. It is known that for non-convex domains
the fundamental gap has no such lower bound; for non-connected domains, the gap
may vanish.

In 2011, Andrews and Clutterbuck showed that the conjecture holds [1]. The result
is sharp, with the limiting case being rectangles that collapse to a line. We refer to
this paper for history and earlier work on this important subject, see also the survey
article [§].

The question of a lower bound on the fundamental gap in other spaces of constant
curvature is well defined, but more difficult to investigate. Recently, Dai, He, Seto,
Wang, and Wei (in various subsets) [7,/11,/15] generalized the estimate to convex
domains in S, showing that the same bound holds: Ay — \; > 372/ D?.
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Not much was known in the case of hyperbolic spaces. In a previous paper [5], the
authors found a convex domain in H? in which the above lower bound is breached,
thereby raising the question of estimating the fundamental gap for convex domains
with small diameter. It is reasonable to believe that, as the diameters get smaller,
the distortion from the metric becomes negligible and one would get a lower bound
for the fundamental gap in terms of the diameter approaching 37%/D? the bound
for Euclidean space, from below. The main result of this paper is the construction
of explicit examples showing that, on the contrary, for any diameter, there is no
lower bound on the gap.

Theorem 1.1. In hyperbolic spaces H", n > 2, for any constants € > 0, D > 0, there
is a convex domain () with diameter D whose fundamental gap satisfies

2
Aa(Q) — M (Q) < %.
From the discussion above, Theorem shows that the behavior of the fundamental
gap in hyperbolic spaces is drastically different from R"™ and sphere cases. We explain
the intuition behind the phenomenon in Section We further remark that the
quantity D?(\y — A1) is invariant under the scaling of the metric. Hence the same
result also holds for any simply connected negative constant curvature space forms.

For hyperbolic spaces, many explicit estimates on the upper and lower bounds of the
first eigenvalue exist [2,/10}13}[14]. For the fundamental gap, Benguria and Linde [4]
obtained a beautiful upper bound for any open bounded domain 2 C H". Namely,
the gap A2(2) — A1 (2) < Aa(Bgq) — Mi(Bgq), where Bq is a ball in H" such that
A (Bq) = M(Q).

Our work here draws strongly on work of Shih [16], who constructed a domain
in H? with a first eigenfunction that is not log-concave. Shih’s result highlights
another difference from the situation in Euclidean cases, where the first Dirichlet
eigenfunction is always log-concave [6]. Log-concavity implies that the superlevel
sets of the eigenfunction are convex. We use domains similar to the ones in [16]
and find that the first eigenfunction has two distinct maxima. This means that the
superlevel sets are very far from being convex: they are not even connected. Thus,
this article also gives a simpler proof of the existence of domains where the first
eigenfunction is not log-concave.

The organization of this paper is as follows. We begin in dimension 2 for simplicity
and because most of the insight can be garnered here. In Section [2, we give a
heuristic explanation for the phenomenon with reference to a simple case in R2.
In Section [3] we explicitly construct the domain for the example, and describe its
shape and diameter. In Section [} we sketch the main strategy. In Section [f], we
make estimates on the first eigenvalue of the domain. In Section [6] we describe
precisely the way in which the first eigenfunction is very small in the middle of the
domain. In Section [7, we show that the gap goes to zero. The generalization to
higher dimensions is left until Section [8
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2. HEURISTIC ARGUMENT

For a bounded, connected domain, the first eigenvalue is simple, and so the funda-
mental gap is always positive. In order to understand our example, we begin by
describing a simple situation in R? where the first eigenvalue is not simple.

Let U be the disjoint union of two unit balls; this domain is not convex and not
connected. The Dirichlet eigenfunctions of U are given by combinations of the
eigenfunctions on each ball, which are given by Bessel functions. Let u; be the !
eigenfunction on the ball. Let u;(B) be the i*® eigenvalue on the ball. Then the first
eigenfunction for U is given by two copies of uy, translated to each ball. The first
eigenvalue of U is u1(B). The second eigenfunction is given by a copy of u; on one
ball, and a copy of —u; on the other ball. We can see this is orthogonal to the first
eigenfunction, but has the same eigenvalue: the fundamental gap is zero.

The eigenvalues are continuous under perturbations of the domain. Specifically,
if we join the two components of U by a small tube of width € to create a new
domain U, then \(U) — A (U) as € — 0 |12, Th 2.3.20]. On such a domain,
the second eigenfunction is very close to u; on the first ball and —u; on the second
ball. In the neck joining the balls, the first and second eigenfunctions are very small,
and thus contribute very little to the Rayleigh quotient for either the first or second
eigenvalue. Therefore the eigenvalues are e-close to those on U, and the fundamental
gap is close to zero.

F1GURE 1. The fundamental gap can be small if the domain has a neck.

In the case of convex domains in R" and in S”, such dumbbell-shaped domains are
excluded: they are not convex. However, in hyperbolic space, geodesics diverge,
and thus we can find a convex domain with a narrow region separating regions of
relatively large area. These domains support eigenfunctions similar to that on the
dumbbell domain described above, and therefore have very small gap.
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The picture of the two balls is not
entirely accurate in our case because
the size of the neck of our domains is
not arbitrarily small compared to the
distance from R to S as seen in (2).
Nevertheless, the presence of a neck of
shrinking width allows for the vanish-
ing fundamental gap.

Our domain in the Poincaré disc model
of H2.

3. THE DOMAIN

Let H? be the hyperbolic space modeled by the Poincaré half-plane {(z,y) | y >
0} ={(r,¢)|r>0,p € (—7/2,7/2)} with the metric g = ds* = d:c2y+dy2. Note that
the coordinates (r, ) are not standard polar coordinates and are related to (x,y)
by = rsinp, y = rcos ¢.

Let our domain be given by
Qe ={(rp) :1<r< eVE L < ¢ <L},

where we start with an arbitrary fixed L < 7/2, but will choose a suitable (large)
positive u later. The boundaries 7 = 1 and r = e™/V# are geodesics, but the other
two boundaries are not.

For easier reference, we label some points of our domains (see Figure
P = (sinL,cos L), Q=¢"/VE(sinL,cos L), R=¢e™"VE(—sinL,cosL),
S =(—sinL,cosL), T =(0,1), U = (0,e™vVm).

FIGURE 2. Domain Q 5, = {(r,¢) |1 <r <e™”/VF —L < <L}.

In an earlier paper studying the fundamental gap [5], the authors considered a similar
domain .4, ¢, that may not be symmetric with respect to the geodesic ¢ = 0. The
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domains of the two papers differ by a slight change of coordinates in which the new
variables are: . .
:__87 L:——Q*, :LL:C27
2 2

where 0, = min{fy, 7 — 6, }.

Lemmas 3.3 and 4.3 in our earlier paper [5] showed that the gap of {2 Ji.L goes to

SDij when g is fixed and L goes to zero. Those convex domains are thin strips along
a segment of y-axis. In this paper we will focus on the convex domains with L fixed

and p — oo, namely thin strips along part of the upper unit circle as in Figure [2]

3.1. The diameter. From Proposition 4.1 of [5], the diameter D ;1 of Q s 1 is
given by

Dz = max{dist(P, Q),dist(P, R), dist(R, )}
Since this domain is symmetric with respect to ¢ = 0, we have dist(R,S) =
dist(P, Q). Hence we conclude that:

Lemma 3.1. On a domain € s 1, the diameter is realized on the diagonal geodesic
joining P and R.

Proof. We recall that distances in hyperbolic half-plane Poincaré model are given
by

(1) dist ((x1,v1), (22, y2)) = arcosh (

(x3 + 1) + (23 +43) — 2331952)

2y1Y2
Thus,
| 1 4 e27/vVi — 2¢™/Vi(sin L)?
dist(R, S) = arcosh ( 2e™/Vi(cos L)?
1+ 6271'/\/;7 + 26”/W(Sin L)2
dist(P, R) = h
ist(P, R) = arcos ( 2e™/Vi(cos L)?

and, since the argument of the latter is strictly greater than the argument of the

former, and arcosh is increasing, the diameter must be realized on the geodesic
joining P and R. U

We emphasize that Figure [2] may be deceiving as in H?, the distance from T to U
is smaller than the distance from P to @ (or that from R to S). Indeed, using the
formula for distance (), the inequalities |sinhz| > |z| and arcosh(z? + 1) > v/2z,

we get
| - (e"/VE—1)2 1
dist(R, S) = arcosh ( 2e7/Vi (cos L)? +1

2 1
= arcosh (2 (Sinh (ﬁ)) (—L)2 + 1)
COS

I |
- COSL\/[_L_ cos L

dist (T, U).
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Finally, we remark that, for all u larger than a fixed constant py, we can bound the
diameter in terms of L.

Proposition 3.2. Given any positive constant pg, for all u > pi, the diameter D s 1,
of Q s 1. is bounded by

(3) arcosh(1 4 2(tan L)?) < D 1, < arcosh(1 + 2(tan L)?) + 7 //pz.

Proof. The diameter is bounded below by dist(S, P):

1+ (sin L)?
(cos L)?

For the bound from above, the distance formula (1f) gives that dist(U, R) = dist(7, S),
so we have

D /z1 > dist(S, P) = arcosh ( ) = arcosh (1 + 2 (tan L)Z) .

D sz < dist(P,T) + dist (T, U) + dist (U, R)
= dist(P, S) + dist(7, U)
= arcosh(1 + 2(tan L)?) + 7/+/p. O

4. SKETCH OF THE PROOF OF THEOREM [L.1] FOR n = 2

With the upper and lower bounds on the diameter from Proposition to prove
Theorem it suffices to show that given L € (0, §), the fundamental gap Ao (€2 /z,1)—
M(Q L) — 0as p— oo.

The domains 2 sz 1, were chosen because they allow for separation of variables [5},16].
The eigenfunctions for the Laplace operator can be obtained by wu(r, ¢) = h(p)f(r),
with
7“2fr7~ +rf,=—pufonre (1,6”/\/ﬁ)

(4) Ry + A(sec ©)?h = ph on ¢ € (=L, L),

where A\, f, and h all depend on p and where f and h satisfy Dirichlet boundary
conditions. As pointed out in our earlier paper |5, Section 2.3], the first eigenvalue
Ap of is equal to A\1(€2 /z,1), and the second eigenvalue Ay of is not necessarily

equal to Ag(£2 VB L)H, the second eigenvalue of the Laplace operator on our domain
Q .1, but it is certainly true that

)\Q(Q\/E7L) S )\2.

As a consequence, A»(Q2 ) — M(2mr) < A2 — A1 Therefore it suffices to show
that Ay — Ay — 0 as u — oo. A large part of this paper is concerned with studying
eigenvalues and eigenfunctions of .

t is the case that Ay = A2(Q z,1) for p large. Lemma and Proposition show that for
n € (0,L) and p > g, we have A\7* > (cos L)24p > (cosn)?p > Mo, where A1* is the first eigenvalue
of hyy + A(sec@)?h = 4ph.



FUNDAMENTAL GAP OF CONVEX DOMAINS IN H" 7

The first eigenvalue. Note that \; is not bounded as p — oo. If it were, we would
have that h,, = h (1 — Ai(sec p)?) > 0 for p large when h is the first (nonnegative)
eigenfunction, which contradicts the fact that h; vanishes at the boundary. The first
step is to capture how fast A\; grows as u — oco. This is done in Section

Rayleigh quotients. The first eigenvalue is a minimum of the Rayleigh quotient

L
/L(hso)2 + ph? dy

L 9
/ h?(sec ¢)? dy

—L

(5) R[h] =

over the Sobolev space H = {h € W2 ((=L,L)) | h(=L) = h(L) = 0}.

—L —0 ©o L ¢

FiGUurE 3. Expected graph of h;. The maxima move towards —L
and L and hy(0) — 0 as p — oco. The constant ¢, € (0, L/2) is fixed
and used in Section [6l

The first eigenfunction h;. A good grasp of h; is needed for estimating the
Rayleigh quotient so in Section [0, we make precise the characteristics of the first
eigenfunction: it has two maxima points as expected; as ;1 — oo, the points where
the maxima occur move towards —L and L respectively; the value hy(0) decays to
zero and the first eigenfunction becomes more flat near ¢ = 0.

Upper bound on the fundamental gap with Rayleigh quotients. For the
first eigenvalue, we just take \; = R[h1]. The second eigenvalue A, is not computed
directly, but bounded above by the Rayleigh quotient of an appropriate test function.
The simplest way to obtain such a function is to multiply h; by the following odd
function: let ¢(s) be the continuous piecewise linear function

1 for p < —py,
= q —p/e1 for [p] <,
—1 for ¢ > ¢,

where ¢, = % (see Figure . The function th, is odd and matches hy on (—L —p1)
and —h; on (¢, L).
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Y=1

—S0I1I<P1 p=-1

FiGUure 4. Graph of .

As mentioned above, we infer that
(6) A2 — A1 < R[Yhi] — R[]

Hence for estimating the fundamental gap from above, it suffices to find an upper
bound on the right-hand side of the inequality consisting of the quotients’ difference.
The difference is concentrated on the interval (—p1, ¢1), where we have that h; and
its derivatives are small. The computation is done in Section [7] using estimates on
hy from Section [6]

5. THE FIRST EIGENVALUE

Before we can prove that the first eigenfunction has the shape given in Figure [3| we
need estimates on the first eigenvalue.

Recall the equation for the eigenfunctions

(1) hep 4 (Alsec p)* = ph =0.

We emphasize that the first eigenvalue A\ = A\] and the corresponding nonnegative
eigenfunction hy = hf both depend on p, even though it will not always be showcased
in the notation.

The bound from below is a straightforward application of Wirtinger inequality. We
will use the weaker A\; > (cos L)?u in the rest of the article but include the stronger
estimate for completeness. Note that Lemma [5.1] gives us that \; — oo as yu — oo.

Lemma 5.1 (Bound from below). A; > (cos L)? <% + u) :

Proof. From the characterization of the first eigenvalue through the Rayleigh quo-
tient on the Sobolev space H = {h € W' ((—L,L)) | h(—L) = h(L) = 0}, we
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have
L L
/ (hy)? + ph? dy / (&) h? + ph? de
N = inf ==L > inf “=E
heH ) ) heM ) )
/ h=(sec ) dy / h*(sec p)*dy
-L )

(@ e

T heH L 9
(secL)Q/ h* dy

L

= (cos L)* ()" + ). O

We now control the rate of growth A\; = A} from above.

Proposition 5.2. For every n € (0, L), there exists a p5 such that p > uy implies
(7) (cosn)? > Ay,

Proof. We argue by contradiction and assume that there is an n € (0,L) and a
sequence (i — 00 so that
AL

> (cosn 2,
ok ( )

For those p’s and corresponding \’s,
N (sce 9)? — ju > M ((secp)? — (secn)?)

For ¢ € (—L, —L—'QHZ), the coefficient of \{* is positive, bounded away from zero.
Taking py and therefore \i* large enough, we can make the right-hand side larger

than ﬁ. For these large py’s, Sturm’s Comparison Theorem applied to and

2

Ppp + 4(;7)2]1 = 0 would imply that h{* has a zero in (—L, —%) This contradicts

the fact that the first eigenfunction is positive in (=L, L). 0

Combining Lemmalp.I]and Proposition[5.2] we get the following asymptotic behavior
for the ratio of A\; and u:

Corollary 5.3. % N (cos L)? as p — oo.

6. THE SHAPE OF Iy

In this section, we show that the first eigenfunction behaves as claimed in Figure
and obtain estimates for the rate at which h;(0) tends to zero. This is done first by
an integral estimate, then a pointwise estimate, then an improved integral estimate,
then finally an integral estimate on the derivative.

The first eigenfunction of is even because all the coefficients of are even. We
also assume that hy > 0 on (—L, L) and is normalized so that f_LL h?(sec p)?dp = 1.
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The first eigenfunction has two inflection points +prp situated where (cos prp)? =
A1/p.  From Corollary , we know that those inflection points exist (i.e. the
equation is satisfied in (—L, L)) and that pp — L as yu — oco. Going to Proposition
5.2, we can describe the behavior a little better:

Corollary 6.1. For any n € (0, L), there is a positive constant z5 so that the inflection
points for hf are outside of the interval (—n,n) whenever u > us. Therefore the
maxima of h; are at points outside of the interval (—n,n) and the function h; is
increasing on (0, 7).

The last property is a consequence of the concavity of h; and the fact that A} (0) = 0.
If we seek integral bounds on some fixed interval (—pg, @), we can take n € (¢o, L).
With the corresponding po from Proposition , we have that hf is increasing on

(0, ¢0) for all p > ps.

6.1. A uniform integral bound on a subinterval.

Lemma 6.2. Given ¢y € (0, L), there exists a function b(ju, po) with b(u, ¢o) — 0 as
[ — 00 so that

®) / " R2(sec p)dp < by, po),

®o

where the first eigenfunction is normalized so that ffL h3(sec )?dp = 1.

Proof. We first give an estimate of A; from below. By and the normalization of
hy, we have

L
A\ = R[hy] > u/ hidyp

—L

L %0
> 2u(cos L)? / R} (sec )*dyp + 2u(cos ¢g)? / hi(sec @)?dyp
0
©0 o
= pi(cos L) + pu ((cos pg)* — (cos L)?) / hi(sec @)?dp.
—%o
Hence
/\1 »0
— — (cos L)* > ((cos o) — (cos L)?) / hi(sec @)*dp.
K —¢0
Simply set b(u, po) = % The fact that b(u, o) — 0 as p — oo follows
from Corollary 5.3 O

6.2. A pointwise lower and upper bound on /; near 0. From now on, ¢ is a
constant in (0, L/2).

We use the following Sturm comparison for Jacobi equations to obtain a lower bound
for the first eigenfunction h; near 0.



FUNDAMENTAL GAP OF CONVEX DOMAINS IN H" 11

Theorem 6.3 (Sturm Comparison Theorem). For i = 1,2, let f; satisfy
fi” + bzfz =0on (07l)7

and f1(0) = f2(0) > 0, f/(0) = 0. Suppose that by > by and f; > 0 on (0,). Then
f1 < fg on (O, l) If f1 = f2 at t; € (O, l), then b; = by, on (O,t1>

Proof. The theorem is well known. For example, it is stated in |9, Page 238-239] for
the initial conditions f1(0) = f2(0) = 0, f1(0) = f5(0) > 0. Clearly, the same proof
works for the above dual initial conditions. 0

Recall once again that h; satisfies the Jacobi equation:

(1) hep + (A(sec )? — p)h = 0.

with £}(0) = 0. Since, by Proposition 5.2, A1 < ji(cos(2¢))? for all p sufficiently
large, and on (—py, ©o), (secp)? < (sec pp)?, we have

Ai(secp)? — p < plsec po)?(cos(2p0))? — p = —crp,
where we set ¢; = 1 — (sec @y cos(2pg))?. Remark that ¢; > 0.
Let h(¢) = h1(0) cosh(,/fcip). Then h satisfies the Jacobi equation
hepp — cipph =0
with /(0) = 0 and h(0) = hy(0).

By the Sturm Comparison Theorem above, we have hy () > h(p) on [0, o), thereby
on (—o, ¥o) because both functions are even.

We formulate this as a lemma below.

Lemma 6.4. Fix ¢y € (0, L/2). Then for all u sufficiently large,

(9) hi() = ha(0) cosh(y/uer @),
for all |¢| < ¢o. Here ¢; = 1 — (sec g cos(2pp))°.

Similarly, using the lower bound for A\; (Lemma and (secp)? > 1, we have

2
Mi(see)? — 1 > (cos L)’ (g ¥ u) > g [(cos L)? — 1] = —(sin L)%,

therefore

(10) hi(¢) < hy(0) cosh(y/psin L ¢).

This last estimate is used to improve the integral bound. In the meantime, @
allows us to estimate hy(0).

Lemma 6.5. Fix ¢y € (0,L/2). Then for all p sufficiently large depending on ¢
and L, we have that

(11) B (0)2 < 4b(1, o) exp(— /e p0/2) < C exp(—/ficro/2),
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2
where ¢; = 1 — <M> , b(, ¢o) is the function from Lemma and C is a

€Oos @0
positive constant independent of ¢y and p.

From the explicit form of b(p, o) in the proof of Lemma[6.2] we see that b(u, o) is
bounded above uniformly for ¢y € (0, L/2).

Proof. Inserting @ into , we obtain a rough estimate on h(0) for p large as
follows

%o Yo ¥o
o) = [ BisecpPdp 22 [ hdp 2 [ (0 (cosh(ime) P
0 0

—%o
L[ 1 exp(2y/fic1po) — 1

> Z 2 2 _ 2

>3 /O h1(0)” exp(2y/ucip)dy 4h1(0) e

> 1h1<0>2—exp( HCWO);

4 v/ C1

where we have used, in the first line, the even property of h;.

The smaller coefficient for ¢y in the exponential in (11]) is to compensate for the
powers of p outside of the exponential. 0

6.3. An improved integral bound.

Lemma 6.6. For ¢ := g/, we have

®1
(12) lim ,u2/ hidp = 0.

HU—>00 —1

Proof. Now, using the upper bound on h1(0) in ([10)), we obtain for |p| < ¢4
h2(p) < Cexp(—/ic1po/2) cosh?(\/fsin Lp).

Then
®1 ®1 9
uz/ hidy < 2uzCexp(—,/,uclg00/2)/ cosh”(y/psin Ly)de
—1 0
2sin L2 —2sin L22
Yo € VE—e Ve
= Cp® exp(— 2) | =
p1” exp(—+/pcipo/2) n T T L
Since C' is independent of yu, the last term goes to zero as u — oc. OJ

6.4. An integral estimate on the derivative of h;. Using the bound for the
first eigenvalue in Lemma we obtain a bound on A} for ¢ small.

Lemma 6.7. For 1 := @o/u, we have
o1

(13) lim (R))?dy = 0.

oo —P1
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Proof. Choose ps large such that h; is increasing and convex on (0, ¢g) for g > o
(see Corollary [6.1]). We first estimate &} (¢) for ¢ € (0,¢1). From equation and
the fact that A} (0) = 0, we have

W () = /O W)t = /0 " (1= M (sect)?) hu(t)dt
< /Oso (1t — pu(cos L)?(sect)?) hy(t)dt < p(sin L)? /OSO ha(t)dt,

where we used the lower bound on A; from Lemma [5.1] Since h} is increasing on
(0, 1), the Cauchy-Schwarz inequality then implies

1
(Hy (1)) < 12(sin L) n / Rdy.

And the right-hand side goes to zero as u — oo by .

7. ESTIMATING THE RAYLEIGH QUOTIENT DIFFERENCE

In the beginning of Section [ we argued that Theorem is a corollary of the
bounds on the diameter and the following proposition.

Theorem 7.1. Given the equation
" h<P<P + ()\(SGC QO)Z - :u)h = 07 Y e <_L7 L)
with zero Dirichlet boundary conditions, the difference between the first and second

eigenvalues satisfies

Ay — A — 0, as p — 0.

Proof. From inequality (6]) in Section [4] it suffices to show that R[¢hi] — R[hi] — 0
as jt — oo where 1 is defined in Section[d] The difference between |¢ph;] and |k is
supported on the interval (—p1, 1) (see Figure [5).

Before we start, we set the notation for the denominator of R[ih,]

/ Lwhl)?(sew)?dw — 1= [ () (W) e = 1 - A

L
where A = [7) ((71)? = (¥h1)?) (secp)*dyp.

The difference of the Rayleigh quotients is then

RIph] = Rl] = 1 {(1 ~ A)R[gi] — R[] + RIhi]A)
1
A

B+ C+D)
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) Al Ly
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FIGURE 5. Graphs of h; and ¥h,.

where
»1

13=y[_[@%ﬂ”——%ﬂdw=:/: [(6ha)? — 02 do,

L

L 1
C= [ nlwn) ko= [ nlwn) k] dp
D = MA,

because R[h;] = A;. Recall that ¢y € (0,L/2) and ¢1 = ¢o/p. We finish the proof
by showing that A, B, C, and D all go to zero as u goes to infinity. Note that

0 < A <D so we can skip A.

We have
©

SDI 1
|mg/<mwww¥w+/ W2dp
—¥1 —¥1

©

$1 1
<2 " gy wn) do+ [ it
—¢ —p1

®1

1
Iu2 ©1
32—2/ h§d¢+3/ (W) 2de.
%o —p1

—p1

Both terms go to zero as . — oo by and respectively.

For C, note that
1
IQSM/ hidg

%1
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which tends to zero by .

Finally, \; < p(cos(L/2))? for p sufficiently large by Proposition For such p’s,

we have

P1 ©

0<D < plcos(L/2)) / B2 (sec o)*dip < g / Rdg,

-1 —p1

which tends to zero for u — oo by . This completes the proof. O

8. HIGHER DIMENSIONS

In this section we generalise the above result to higher dimensions. It is a computa-
tion in coordinates. We have included minute details for ease of understanding. The
coordinates are standard spherical coordinates (unlike the nonstandard coordinates
(r, ) in the rest of the article).

8.1. Coordinates and the Laplace operator in coordinates. Let us recall the
n-dimensional spherical coordinates (r,wq,ws, ..., wy):

T1 = T COS Wo
To = T SiN W9 COS W3

T3 = 7 Sin Ws SiN W3 COS Wy

Tp—1 = TSN Wy SIN W3 * - - SN W,;,_1 COS W),
Ty, = TSI Wy SIN W3« - - SN W,y,—1 SiN W,,.

The metric g;; in these coordinates is given by ¢;; = 0 for ¢ # j and

gn =1

g =1"

g33 = r?(sinwy)?

gii = r*(sinwy)?- -+ (sinw;_1)?, fori=4,...,n

The determinant of the matrix g;; is g = det(g;;) = r*"(sinwy)?*~*- - - (sinw,_1)*.

The Laplacian (in R™) in these coordinates is (where w; =)

1 & 0 - Ou "L g% 0 ou
A n = — _— v_— = _
Rt NG} Z Ow, (\/Eg &ui) — /9 Ow; ( gawi) ’

ij=1

because g;; is diagonal and the entry g;; does not depend on w;. Replacing the values
of the metric and its inverse in the equation above, we get

1 0 ( ,,0u - g" 0 i O
(14)  Apeu= <r 87‘) i 2:: (sin w;)"~ Ow; ((Smwl) 5%')
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8.2. The domains. In order to have a well-defined and computation-suited metric,
we center our domain around w; = 7/2. The only coordinate that is not close to
zero is x, and should be the one used for the weight in the hyperbolic half-space
model.

The natural generalization of our domains € 1, is

Q ibardn, L = L we, .. wn) [ 1T <7 < eIV,
lw; — /2| < 0jy |wn — /2| < Lfori=2,...,n—1}

for L and §; € (0,7/2), i =2,...,n— 1. The §;’s don’t necessarily have to be small
but it is easier to picture the domains and convince oneself that the diameter is
bounded independently of .

As in the two-dimension case, we will study the fundamental gap for u — oc.
The metric on H" we take is dsf, = 2> dsin.

Under a conformal change of metric given by § = €%/ g for a smooth function f, the

Laplacian changes as A; = e”'A, — (n — 2)6_2fg"7§7’;%. In our case f = —Inz,
P 9 ; .
and a—{ = —%, au’; = —% The Laplacian is given by

ror  r?sinw, Qwy 4= sin w; Ow;

10 1 3, S ;0
AanfiARnJr(”—?)xi( + COSW2—+ZQ”ﬂ )

An eigenvalue-eigenfunction pair A\, u for € in hyperbolic space satisfies —Au =
Apgnu, which is written in coordinates as

—A 1 0 ( ,.,0u 1 0u

(15) r2(sinwy)? - - - (Sinwn)zu Tl or (T E) +n- Q)FE
1 1 0 _ _, Ou 1 coswy Ou
- n—2 27 —9)— =
+ 2 (sinwy)™ 2 Ows ((Sm wo) &ug) +(n )7"2 sin wy Ows

n

1 1 0 . nei OU cosw; Ou
+Z r2(sinwsy)? -« - (sinw;_1)? ((Sinwi)”—i Ow; ((Smwi) 3%') +(n—2) sin w; &ui) '

8.3. Separation of variables. As in the two-dimensional case, let us separate
variables. We write

u = f(r)fa(wa) - - - fr(wy)
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then divide both sides of equation by u/7? to obtain

—A = ! 8 n—1 af . r af

(16) (sinwsy)? - -+ (sinwy,)? - Frn=3 Oy (r 37’) + (n Z)f 5
! 4 i n—2 Of cosws  Ofy
fz(sinw2)n—2 D ((SIDWQ) a_w) + (n — 2)f2(s1T2)3_w2

= 1 1 0 - Of; cos w; Of;
Y . : n—i Ylu _9 : i i
+; fi(sinwy)? - -+ (sinw;_1)? ((sin w; )" Ow; ((smw ) &ui) +(n )sm W; &ui)

First, we get that the only piece depending on r has to be a constant, say —x;. We

rewrite this fact as

(17) r"‘lg (r”_lg) + (n — 2)r"? (T”_lﬁ) = —pry frinTd

or or or
For n > 3, to solve the ode we change to the variable ¢ so that % = "1 e
t=r*"/(n—2) and becomes t202 f — tO,f = —ﬁ/ﬁf. Now let s = logt,
we have
1

18 Pf—20,f=——""

( ) ssf f (TL _ 2>2 "flfa
where s € (—(n — 2)\% —log(n —2), —log(n —2)).

This is a linear second ordinary differential equation whose characteristic polynomial
has the roots 1o = 1+ ,/1 — =5, For f to satisfy the Dirichlet boundary

(n—2)2
conditions, we must have two complex conjugate roots, thus —t —1 = K >0,

2
(n—2)° (n—2)
for k non-zero integers. Furthermore, as the first eigenfunction f has to be positive

and satisfy the Dirichlet boundary conditions,
K1 H
19 ——1=—=>0.
) 27T oy

VH
n—2

f(r), but it is not important for the rest of the argument.

so f(s) = —e®sin ( (s + log(n — 2)> From here, one can get an explicit solution

Let us continue with our separation of variables.
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Using , we replace the first two terms on the right-hand side of by —kq,
then multiply by (sinws)? to get
—A
(sinwsg)?- - (sinwy,)?
1 0

fo(sin wy )4 Owy

" 1 1 0 - Of; cos w; Of;
- — inw;)" " —2)— .
+; fi(sinws)? - - - (sinw;_1)? ((Siﬂwi)"Z Ow; ((Smw) 9%’) tn )Slnwi &uz')

The only piece depending on ws has to be constant, so

= —K1(sinwy)?

: _, Of. (cosws)(sinwy) Ofy
n—2 2 . 2
<(s1n wo) s > + (n —2) f2 B

W2

(20)
. 1 8 . _ 8f2 (COS WQ)<SiH CUQ) 8f2
_ 2 n—2 -9 —
& (Sln w2) +f2(SiIl WQ)TZ_4 (9&)2 ((Sln W2> au)g ) +<n ) fg &ug "
Fori:=3,...,n— 1, we repeat to get
(21)
, 1 0 . _,; Of; (cosw;)(sinw;) Of;
2 n—i 7 7 % %
—HKi— 3 e v S i -2 = —HKi,
i 1<Sln WZ) +fl(sm wi)"_l—z 8(4}1‘ ((Slnw ) &ul) +(n ) fz &ui "
where each k; is a constant. Until the equation (16)) becomes
)\ 1 (0%, cosw, Of,
22 s = —FKp_1+ — —2)—
(22) (sinwy, )? Fn-1+ f, (80.),% +(n )smwn awn)

which looks very close to equation , except for the extra first degree term. Because

wy, is centered at /2, sin w,, should be thought of as cos ¢. Also note that equations

and are contained in the formulation of so it suffices to study .

8.4. Solving the ODEs. Equation (22)) can be transformed in such a way that the
first-order term is eliminated. It will then be similar to equation .

The first step is to multiply by f;, move the term with x;_; to the right side

and expand the derivative of the product to get
2 £
(23) (sin wi)Qg 5+ (2n — 2 — i) (cos w;)(sin wz)g -

7 [

= —/iifi + /fi,l(sin wi)zfz-

We look at and want to combine all the derivatives as aa—u;((sin w;)f;). In
order to do so, the exponent «; should be half of the constant in front of the term
(cosw;)(sinw;) 2 and therefore oy = n — 1 — £. We multiply by (sinw;)® 2

Ow;
and obtain
(24)
: a; a2f’l : a;—1 afl : oa;—2 : asg
(sinw;) lw + 2a;(cos w;) (sin w; ) o —Ri(sinw;) " + K1 (sinw;)*2f;.
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The left-hand side is equal to
0? ) o 0? , o 0?h; h;
a—w? ((smwi) Zfl) — fla—w? ((smwi) 1) = 8%2 — CYZ'(CW — 1)W + Oé?hi,
where h; = f;(sinw;)*. Putting all of this into (24]), we get
82hl- 4 R; — ai(ai — 1)
Ow; (sinw;)?

(25) hz = (/437;_1 - a?)hZ

Note that has the form of under the change of variable ¢ = 7/2 — w;. For

t = n, the change of variables transforms into

0h, N —ay(a, —1
LA alan—1),

(26) Owy, (sinwy,)?

n — (/fnfl - Oéi)hn,

where a;, = § — 1.

8.5. The proof in dimension n > 3. The first eigenvalue of the Laplace operator
on a domain €2 SHisb2,bn_1,L CATL be found in the following way. First, one computes
the smallest x; that is an eigenvalue of . Then one repeats the process for
t=2,...,n— 1: given k;_1, one takes k; to be the first eigenvalue of . Finally,
with the knowledge of k,_1, the first eigenvalue for the Laplacian on the domain
second eigenvalue of is an eigenvalue of the Laplacian on the domain, but
not necessarily the second one. Nevertheless, one can use this value as an upper
bound for A\2(2 5 s,,...6,_1,0)- Therefore, as in the two-dimension case, to prove that
Ao assbn1,n) — ML ss,.8,_1,L) — 0, it suffices to show that the difference
between the first two eigenvalues of go to zero. Using Theorem , one just
needs the fact that x,_1 — oo when p — oo.

As p — oo, the first constant x; goes to infinity by equation . Then for each
i=2,...,n—1, ([25) and Lemma [5.1| gives that
ki — ai(a; — 1) > (cos §;) (ki_y — i),

where the a; are constant. Consequently, x; — oo for each i and applying Theorem
finishes the proof in higher dimensions.
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