COMPLETE EMBEDDED SELF-TRANSLATING SURFACES
UNDER MEAN CURVATURE FLOW.

XUAN HIEN NGUYEN

ABSTRACT. We describe a construction of complete embedded self-translating
surfaces under mean curvature flow by desingularizing the intersection of a
finite family of grim reapers in general position.

1. INTRODUCTION

Let X(-,t) : M? — R*! be a one-parameter family of immersions of smooth
hypersurfaces into R%*!. The family of hypersurfaces M; = X (M¢9,t) is a solution
to the mean curvature flow if

9 X(pt) = Hip,t), peM,t>0,

(1) ot
X(p,0) = Xo(p),

where H(p,t) is the mean curvature vector of the hypersurface M; at the point
X (p,t) for some initial data given by the immersion Xy. By the local existence
theorem for parabolic equations, the flow can be continued past any time ¢ as long
as the norm of the second fundamental form |A(p,t)| stays bounded on M;. A
singularity at time T is classified according to the rate at which maxye s, |A(p,t)|
blows up: if max,en, |A(p,t)[vVT —t < C, we say the singularity is fast forming,
otherwise we say the singularity is slow forming. The behavior of the flow near fast
forming singularities is modeled by self-similar surfaces, which are surfaces that
are rescaled by the flow, while their shape is left unchanged [6]. The study of slow
forming singularities is more complex because of the lack of control on the geometry
of the solution.

In the present article, we work in dimension d = 2 and focus on surfaces that
are translated by the mean curvature flow at constant speed. These surfaces are
called self-translating surfaces (STS) and can give some insight in slow forming
singularities. For example, if the initial hypersurface has nonnegative mean cur-
vature and the blow up is slow, then the surfaces {M;} tend asymptotically to a
strictly convex STS or R4™* x S, where S? is a lower dimensional strictly convex
STS [7]. Detailed examples of asymptotic convergence are given in Angenent [2] and
Angenent-Veldzquez [3][4]. Although the study of STS and singularities of the mean
curvature flow are linked, few examples are available. Besides the classic examples
of a plane, a grim reaper cylinder, and a rotationally symmetric soliton, Altschuler
and Wu [1] showed the existence of paraboloid type self-translating surfaces that
are graphs over convex domains in R? having a prescribed angle of contact with the
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boundary cylinder. In [14], we constructed STS by desingularizing the intersection
of a grim reaper and a plane. We present here a more general result with a family
of grim reapers as the initial configuration.

To find an equation for STS, we set %X = H = a+ V, where a is the constant
velocity of the translation and V is a vector field tangent to the surface M; to
account for possible reparametrizations of the surface. Without loss of generality,
we can fix a = €, to be the second coordinate unit vector in R?, and taking the
inner product with the normal vector, we get

(2) H-¢é,-v=0,

where H is the mean curvature of the surface considered and v is the unit normal
vector such that H = Hv. It is well known that a grim reaper is a self-translating
curve, so the cylinder over a grim reaper shifted by (b, ¢),

I'={(z,y,2) € (—g—l—l;,g—i—l;) x R? | (y — &) = —logcos(z — b)}

is an example in dimension d = 2. With a slight abuse of language, we will also
call T a grim reaper throughout the article.

1.1. Main result. Let us consider a finite family of grim reapers, {T',}\C,. Such
a family is said to be in general position if no three I’s intersect on the same line,
and no two I's have the same asymptotic plane. For a family in general position,
let us denote by ¢ the minimum distance between two intersection lines and by dr
the minimum of the measure of the angles formed by the I'’s with the yz-plane at
the intersection lines. Note that both § and ér are positive.

To each intersection line [, we associate a positive integer my. The my’s allow
us to take different scales at different intersection lines, making the construction as
general as possible.

FIGURE 1. A self-translating surface va
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Theorem 1. Suppose {fn}ﬁ;l 1s a finite family of grim reapers in general position.
There is a one parameter family of surfaces {Mz}z¢(0,5.), with 67 depending on
maxg(myg), Nr, 0 and or only, satisfying the following properties:

(i)

(i)

(iii) is singly periodic of period 2wT in the z-direction.

(iv) If U is a neighborhood in R? such that U x R contains no intersection

M is a complete embedded surface satisfying (2).
Mz is invariant under reflection with respect to the xy-plane.
M-

line, then /T/l/; N (U x R) converges uniformly in C7 norm, for any j < oo,
to (UM, T,) N (U xR) as 7 — 0.

(v) If Ty, is the translation parallel to the xy-plane that moves the kth intersec-
tion line to the z-axis, then 7"_1T;€(/T/l;) converges uniformly in C7 norm,
for any j < oo, on any compact set of R® to a Scherk surface with my,

periods between z =0 and z = 2w as T — 0.

We call a Scherk surface any singly periodic minimal surface with four ends
asymptotic to planes.

= ] b‘

FIGURE 2. Two Scherk surfaces.

1.2. Sketch of the proof. We use a version of (2) rescaled by a factor 1/7, where
7 is a small constant to be determined:

(3) H-7é,-v=0.

Our result and its proof are inspired by Kapouleas’ construction of minimal
surfaces by desingularizing a family of coaxial catenoids [9]. Throughout the article,
we treat equation (3) as a perturbation of H = 0 and show that the term —7é, - v
can be controlled at every step. Since the intersections we desingularize are lines, as
opposed to circles, the construction of the initial approximate solution is simplified.
We can therefore give explicit computations and more details in the proof overall.
Kapouleas mapped the catenoids conformally to cylinders to estimate and control
the asymptotic behavior of the minimal surfaces. This step is not necessary in our
case since our surfaces are singly periodic and asymptotic to planes. The study of
the linear operator is not simpler however (but not more difficult either). As in
[9], we have to handle the presence of small eigenvalues for the linear operator and
ensure exponential decay asymptotically.
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The construction presented here can be easily adapted to desingularize the in-
tersection of vertical planes to obtain minimal surfaces, provided no three planes
intersect on the same line, and no two planes are parallel. Borrowing the idea from
Kapouleas [9], we allow different scales at different intersections, so our result is
a generalization of the construction of singly periodic minimal surfaces by Traizet
[15].

Let us fix 7 > 0 and denote the rescaled grim reapers by I';, = 7’-‘1fn.

In a first attempt to construct an initial surface, we replace the intersection lines
with Scherk surfaces with asymptotic planes parallel to the tangent planes at the
intersection, then use cut-off functions to obtain a smooth surface. The surface
obtained is a crude first approximation, and the discussion below explains why the
actual construction has to be more subtle.

The initial surface is denoted by M, its position vector by X and the unit
normal vector with positive €, component by v. We are looking for a solution to
(3) among graphs of small functions v with exponential decay over M, so we define
X, = X +wvv, and denote by M, the graph of v over M, by H, its mean curvature
and by v, its unit normal vector. We have

H,—71é, vy =H—718, v+ Av+|APv+ 71, - Vv + Q.,

where Q, is at least quadratic in v, Vv and V?v, and A is the second fundamental
form on M. The surface M, is a STS if

(4) Lv=—-H+71¢ -v—Qy,

where Lv = Av + |A]*v + 7€, - Vu. An important part of the proof is dedicated
to solving the differential equation Lv = E on M. Once we can invert the linear
operator £, we expect the quadratic term to be small so the solution v to (4) could
be obtained by iteration. Since M is a complicated surface, we study £ on different
pieces first.

On a vertical ribbon joining two desingularizing surfaces, the Dirichlet problem
Lv = E with vanishing boundary conditions has a unique solution by the standard
elliptic theory.

On a desingularizing piece of Scherk surface (X, gs), where gs is the metric
induced by the embedding into R3, £ is a perturbation of the linear operator
L = A+]A|? associated to normal perturbations of the mean curvature. The mean
curvature is invariant under translations, so the kernel of L contains the functions
€y -V, € - v and €, - v, where €, €, and €, are the three coordinate vectors. By
imposing the symmetry with respect to the zy-plane, we can eliminate €, - v. The
remaining functions &, - v and €, - ¥ do not have the required exponential decay,
nonetheless, they indicate the possible presence of small eigenvalues of L. The
approximate kernel of L is defined to be the span of all the eigenfunctions of L
corresponding to eigenvalues in [—1,1]. We introduce two linearly independent
functions w; and wy that have the important property of not being perpendicular
to the approximate kernel (with respect to the inner product of L?(%, gs2)). Given
a function F, one can find constants 6; and 6, for which E + 61w; + Osws is
perpendicular to the approximate kernel and a function v satisfying Lv = E +
01wy + Oowsy. Since L is a perturbation of L, a similar result is true for £. For
an exact solution, we must cancel any linear combination of w; and ws within
the construction. This process is called unbalancing and consists in dislocating
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the original Scherk surface so that the angles formed by its asymptotic planes are
changed.

On a grim reaper end, we consider functions with exponential decay so that the
asymptotic behavior of our solution matches our initial grim reaper closely. The
difficulties do not arise from finding a solution to Lv = E on the end per se, but
from the fact that, if we hope to find a global solution with exponential decay, the
solutions on the desingularizing surfaces ¥ need to have exponential decay as well.

Let us call wings of ¥ the four connected components obtained after removing a
large enough cylinder from YX. We can illustrate the behavior of a solution to the
Dirichlet problem Lv = F in ¥, v = 0 on 9% on a wing by considering the case
of the Laplace operator on a cylinder. The surface is periodic in the z variable, so
the behavior can be reduced to one coordinate, say s. Suppose we have a function
E with exponential decay and a solution v to v”(s) = E(s) that vanishes at the
boundary s = sg. Explicitly, the function v is given by

v(s) = /6/ E(r)drdt +v'(s0)(s — s0), s,t < so.

The first term on the right hand side has the right decay, but the second term is
linear. From the point of view of the construction, we can cancel the term v’(sq)(s—
s0) by modifying the slope of ¥ at the boundary of each wing. This involves bending
each wing separately by an amount {¢;}?_; to generate new functions {w;}?_; to
achieve exponential decay along the wings.

We construct a global solution for Lv = E on M by partitioning the support of
the inhomogeneous term and solving on each piece inductively. The error gener-
ated is small thanks to the exponential decay, and a contraction principle gives us
convergence. Finally, we use a fixed point theorem to find a self-translating surface.

1.3. Outline of the article. In Section 2, we study families of grim reapers and
how the unbalancing at the intersection affects the initial configuration.

In Section 3, we turn our attention to Scherk surfaces and construct the desin-
gularizing surfaces. We carefully study the interaction between the bending of the
wings and the unbalancing, then introduce the functions w and w and establish key
estimates in Section 4.

In Section 5, we describe how to replace the lines of intersection by the desingu-
larizing surfaces and construct smooth initial surfaces.

Section 6 is dedicated to the study of the linear operator, on each piece separately,
then globally. In Sections 7 and 8, we finish the proof by estimating the quadratic
term and applying the Schauder Fixed Point Theorem.

Some sections of this article follow the exposition of Kapouleas in [9], and we
try to use the same notations, whenever possible.

1.4. Notations.

E3 is the Euclidean three space equipped with the usual metric.

€z, €, and €, are the three coordinate vectors of E3.

S? refers to the standard unit sphere of dimension 2.

Throughout this article, a surface with a tilde S is a surface in the original
scale, with curvature comparable to 1. We use a notation without tilde for
its rescaling S = 15 = {(2,y,2) € E® | (rw,7y,72) € S}, with curvature
comparable to 7.
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e We fix once and for all a smooth cut-off function ¥ which is increasing, van-
ishes on (—o0,1/3) and is equal to 1 on (2/3,00). We define the functions
¥[a,b] : R — [0, 1] which transition from 0 at a to 1 at b by

vlatie) = (322

e We often have a function s defined on the surfaces with values in RU{c0}.
If V is a subset of such a surface, we use the notations

(5) Veo :={peV:s(p) <a}, Vsq:={peV:s(p)>a}l

e v. g, A, and H denote respectively the oriented unit normal vector, the
induced metric, the second fundamental form, and the mean curvature
of an immersed surface in the Euclidean space E®. When we want to
emphasize the surface S, we write these quantities with a subscript, for
example gg denotes the metric of S.

e Given a surface S in E®, which is immersed by X : § — E3, and a C!
function o : S — R, we call the graph of o over S the surface given by
the immersion X + ov and denote it by S,. We often use X + ov and its
inverse to define projections from S to S, or from S, to S respectively.
When we refer to projections from S to S, or from S, to S, we always
mean these projections.

e We work with the following weighted Holder norms:

(6) lg - C*(Q, 9, )| == Slelgf(m)_lﬂfb :Ch QN B(x), 9)ll,

where () is a domain, ¢ is the metric with respect to which we take the
C* norm, f is the weight function, and B(z) is the geodesic ball centered
at x of radius 1.

1.5. Thanks. The author would like to thank Sigurd Angenent for his encourage-
ment.

2. GRIM REAPERS AND INITIAL CONFIGURATION

We discuss dislocations at the intersection of the grim reapers, and how these
affect the tangent vectors and the position of the grim reapers.

2.1. Grim reapers. A grim reaper fn is a self-translating solution to the mean
curvature flow given by the equation

y = —log(cos(x — by)) + én, |z — bn| < 7/2,
or, in arc length parametrization,
() (71(8) + bn,Y2(s) + &) == (arctan(sinh s) + b,,, In(cosh s) + é&,,), s € R.

Since we will be using the word vertex in another context below, we call the point
(l;n,én) the center of the grim reaper to avoid confusion. With a slight abuse of
language, we call any surface that is a rescaling of f, or a cylinder over f, a grim
reaper also. The cylinders I', X R (', x R) will be denoted T, (T, resp.) as well
in this article. In this section however, we work in the zy-plane exclusively since
the z-coordinate does not play any role.
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Definition 2. We say that a finite family of grim reapers {l:n}flvil is in general
position if it satisfies the following conditions

(i) For some e >0, |by — by, — kn| > & for n # m and for all integers k.
(ii) No three grim reapers intersect in one point.

The first condition ensures that two grim reapers do not share the same asymp-
tote, therefore any two grim reapers that intersect do so transversally. Moreover,
we have a lower and upper bound on the angle of intersection.

Since the result would be trivial otherwise, we assume that at least two grim
reapers intersect. The two conditions (i) and (ii) above imply the following prop-
erties:

Lemma 3. Suppose {fn}i\’£1 is a family of grim reapers in general position. There
are two real numbers or > 0 and § > 0 such that

(i) the measure of the smallest of the two angles at the intersection of any two
grim reapers is between 300r and w/2 — 300r.
(ii) Any tangent vector to a grim reaper at an intersection forms an angle
greater than 300r with é,.
(iii) the arc length or distance on the grim reapers between any two intersection
points is greater than 20.

Proof. The first result is immediate from the explicit formula for the grim reaper
and Definition 2. We have the second and third properties since the number of
grim reapers and therefore the number of intersection points is finite. (Il

We now work on a larger scale: we fix 7 a small positive constant and consider
T, = %IN“,L with center (b, cp) := %(l;n,&n) Let G be the graph of Ug; T, and
e V(@) the set of vertices of G (intersections of two grim reapers),
e E(G) the set of edges of G (pieces of grim reapers connecting two inter-
sections),
R(G) the set of rays of G (ends of grim reapers starting at an intersection),
e R;(G) the set of “left” rays of G (rays that start at an intersection and
move toward the negative z-coordinate).

In what follows, we will also use G to keep track of the tangent unit vectors at the
vertices. With this extra information, G is not just a graph; but we will call it such
nonetheless for lack of a better word.

Unless otherwise specified, p denotes a vertex, e an edge and r a ray. For each
vertex p, there are exactly four unit tangent vectors emanating from p, denoted by
Up1, Up2, Up3, Upa, Where the number refers to the order in which they appear as we
rotate from €, counterclockwise. We say a graph is balanced if the four directing
vectors cancel, Z?Zl vpi = 0, at every vertex p. Note that the graph G is balanced.

2.2. Construction of the initial configuration G. Our goal is to perturb G
into a graph G for which the sum of the directing vectors at each vertex p is given

—

by a small vector {(p),
4

> i =), peV(@)

i=1
The process is called unbalancing and is necessary for tackling the approximate
kernel of the linear operator L = A + |A|? on each desingularizing surface.
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The equation (3) we set out to solve is a perturbation of H = 0. The mean
curvature is invariant under translations, therefore the functions €, - v, €, - v and
€, - v are in the kernel of the linear operator L associated to normal perturbations
of H. Imposing a symmetry (invariance of our surfaces with respect to reflection
across the xy-plane), we can rule out €, - v. The remaining functions &, - v and
€y, - v do not have the required exponential decay, however, they indicate that L has
small eigenvalues. We call the span of eigenfunctions of L corresponding to these
small eigenvalues the approzimate kernel of L. One can only solve the differential
equation Lv = FE with a reasonable estimate on v if E is perpendicular to the
approximate kernel. We do not have such control over the inhomogeneous term,
so we introduce two functions w; and ws to cancel any component parallel to the
approximate kernel. Roughly speaking, w; has to be in the direction of €}, - v, in
the sense that [w (€, - v) # 0, and similarly, [wa(€, - v) # 0.

Let S be one period of the desingularizing surface 3. According to the balancing
formula from [12] (see also Lemma 28), the mean curvature of S satisfies

4 4
/Hé’w~ung:27eri-é'x, /Hé'y~udgs:27TZvi-é'y,
S i=1 § i=1

where each vector v; is the direction of the half-plane asymptotic to the ith end of X.
The idea is to define w; and ws as derivatives of H and use dislocations that move
v1 and v3, or vy and v4, away from being parallel to generate linear combinations of
wy and wy. The role of the new graph G is to determine the position of the vertices
of the initial surface depending on an imposed unbalancing.

We define the notion of a tetrad to keep track of the different vectors and angles
at the vertices. We use the notations

(8) elf] = cosbé, + sinbé,, €'[0] = —sinde, + coshé,.

Definition 4. An acceptable tetrad of vectors, or “tetrad” for short, is defined to
be a tetrad of vectors T = (v1,v2,v3,v4) such that v; = €|B;] for some B; € R
satisfying

0<P2—pP1<PB3—P1<Bs—pP1<2m.
Moreover, for such a tetrad T we define

G(T)::ﬂ1—52+[13—54+2ﬂ, 91(T)::B3_§1_7T,
gr(T)::ﬂ1+52+[Z3+54—47T, 92(T)::B4_§2_7T,
and require
(9) 0(T) € (205, g —2085), 61(T),0(T) € [~259, 254,

with &g to be determined at the end of the section.

We characterize the unbalancing of a tetrad (v1,ve,vs,v4) with the angles 6;,
j = 1,2, which measure how much the vectors v; and v;o fail to point in opposite
directions, instead of using the vector ¢ = Z?:l v;. The angles 0(T") and 6,.(T") will
not be used here but will come into play in Section 3.
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F1GURE 3. The angles #; and 65.

Let N1 be the number of intersection points, and recall that Nr is the number of
grim reapers. The unbalancing restrictions do not determine G completely, and we
have enough degrees of freedom to impose a slight shift of each left ray. The graph
G constructed below is therefore a perturbation of G depending on {(6 1, ak,z)}fj;l
for the unbalancing and on {(b,,¢,)}2T, for the position of the left rays.

The general construction does not depend on the first simpler two cases, but we
describe them so the reader can understand the general case more easily.

1) We first consider the case of the intersection of two grim reapers I'y and
I'z, where I'y is the grim reaper that has a tangent at p in the v,; direction. We
translate I'; to a grim reaper whose center is at (by + b, ¢1 + ¢}) and similarly, we
translate I'y to one centered at (by + b}, ca + ¢5). We denote by P the intersection
of the two perturbed grim reapers, and the four directing vectors {vg;} by v1,ve, v3
and vy, where the number refers to the order in which they appear as we rotate
from €, counterclockwise. We fix v; = v; and ¥y = v2, and we find v3 and 94 so
that

91(7) = 9171, and QQ(T) = 91’2, for T = (771,172,1737174)

We now join at p two pieces of grim reapers with tangent vectors v3 and vy re-
spectively. Note that this joining is possible since by equation (7), the tangent
unit vectors to a grim reaper map onto the set of unit vectors in R? with positive
z-coordinate. This completes the construction of an initial configuration for the
simplest case.

2) The second case consists of three grim reapers intersecting in three points
Pk = (g, Yk), k = 1,2,3. We number the points so that z; < zj, for j < k, and we
number the grim reapers so that I'; has tangent at p; in the v, direction, I'y is
the other grim reaper through p;, and I's is the last grim reaper.

As in the previous case, we translate I'; and I'y by (b}, ¢}) and (b, c}) respec-
tively. We denote the intersection of the perturbed curves by p; and the four direct-
ing vectors by vp, 1, Vp, 2, V5,3 and vp, 4 in the same order as before. We impose 911 =
vp,1 and T12 = vp,2, and find 713 and T14 such that 6, (T) =011, and 05(T) = 0y 2,
for T = (1711, U192, V13, 1714).

At the point p;, we consider the two rays (which are pieces of grim reapers)
emanating from p; with tangent directions v13 and v14 respectively. Both of these
rays intersect the translation of the third grim reaper by (b4, ¢4); P2 is the leftmost
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FIGURE 4. Construction of G for two intersecting grim reapers.

intersection point. We impose 21 = vp,1 and U2 = vp,2. The two other directions
U9z and Ugq are determined by (021, 62,2).

We now take the two rays emanating from p» with tangent directions vs3 and
Va4 respectively. One of these intersects one of the rays from p; and we denote the
intersection by ps.

We fix the two left directions v3; = vp,1 and U3z = vp,2 and the two other
directions 733 and T34 are determined by (631,632). We now take the two rays
emanating from p3 with tangent directions v33 and v34 to complete the construction.

3) For the general case, let us denote the intersection points pr = (zg,yx),
k=1,...,N; where x; <z for j <k and if x; =z, y; > yi for j < k. In other
words, we number our intersection points from left to right, and if two points have
the same abscissa, we take the one with higher ordinate first.

We now number the grim reapers. I'; is the grim reaper through p; with tangent
direction vp,1, and I'y is the grim reaper through p; with tangent in the vy,
direction. Note that the abscissa of the center of I'y is greater than the abscissa
of the center of I's, in other words, by > bs. We then proceed with the p’s by
increasing k. If pp is on an as yet unnumbered grim reaper, we just give the
grim reaper the next available number. In the case py is on two unnumbered grim
reapers, we number the one with the rightmost center first.

We translate I'y by (b7, ¢}) and I's by (b, ¢4) respectively, and denote the inter-
section by p1. We impose U117 = vp,1 and ¥12 = vp,2 and determine the directions
U13 and 714 using (011, 61,2). We now modify the edges or rays on the right of p;
so that they have unit tangent vectors 13 and v14 respectively.

We suppose the point pj_1 and the vectors {5(1@71)1‘}?:1 are constructed and give
a procedure for the kth intersection. Consider the two edges or rays on the left of
pr and intersecting at pr. If both of the pieces on the left of p, are edges, they
have been modified already and their intersection gives us pi. If we have one edge
and one ray, or two rays, then we modify the ray(s) in the following way. Each
ray is supported on a grim reaper I',,. We translate each T'), by (b, ¢c},) to obtain
a modified ray. The intersection of the edge and the modified ray, or of the two
modified rays, gives us py. We impose the two left vectors Uy1 = vp,1 and Vo = vp,2
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and determine T3 and Uk from (6k.1,60k,2). We now modify the edges or rays on

the right of pj so that their unit tangent vectors are vz and x4 respectively
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FIGURE 5. Construction of G for three grim reapers, with

(b3, ¢3) = (0,0).
Let us fix some notations for the new graph G. To each vertex pj of G corre-
sponds the tetrad (Ux1, g2, Uks, Ura) of unit tangent vectors of rays or edges emanat-

ing from py. Similarly, we have the tetrad (vg1, vge, Vks, Uka) at each vertex py of the

original graph G. When we want to emphasize the dependence of G on its parame-
7];];1, d= {C’/I’L}nNil’ 0 = {0k, 9k72}1]<\21’

ters, we write G(b', ¢, 8, 7), where b’ = {b/,}

and 7 is related to the scaling.
Proposition 5. There ezxist a 0, > 0 and a constant C depending only on or,d

and Nr with the following property: if max(7|(b', )|, 10]) < 8,, the vertices py and
the directing vectors vy; of the graph G(b',c,0,7) satisfy
Tlpk — ol < CTI, )+ ClO],  [£(vei, Bro)| < CTI(, )] + Cle,

fori=1,...;4andk=1,...,Ny.
Proof. We start by studying how the location of the intersection changes as two
grim reapers are translated by different vectors. Without loss of generality, we can

assume that one of them stays centered at the origin.
Let 'y and I'; be two grim reapers given by the position vectors

rols) = = (1(r8), 72(75)).

ri(t) = ;(71(Tt) +71(780) = 71(751),72(7t) + 72(750) — V2(751)),

where
~2(s) = In(cosh s),

(10) ~1(s) = arctan(sinh s),
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Note that the functions 7, and ~2 were already given implicitly in (7). The two
grim reapers intersect at ro(sg) = r1(s1) and the tangent vectors at the intersection
are

(11) I“/i(Sz') = <C()Shlw

The coordinates of the center of I'; are

,tanh(Tsi)) , 1=0,1.

(12) b=1""(n(rs0) —m(7s1)), c=7""(72(rs0) —72(7s1)).

If the angles between the tangent vectors r}(s;) and €, are larger than 20dr, then
|7s0] + |Ts1] < C, with C depending on ér. Therefore cosh(7sg) and cosh(7sy)
are bounded above by a constant. In addition, if |7b| = |y1(7s0) — 11 (751)| > €/2,
where ¢ is given in Definition 2, we have

€ 1
2 < cosh(7s)
where 3 is the number in (sg, $1) given by the Mean Value Theorem.

We define the function F: R* — R?, F(sq,s1) = (b,c) using (12). According to
the Inverse Function Theorem, F' has an inverse if the determinant of its Jacobian
does not vanish. Indeed,

(rsg —781)| < 7lsg — s1],

| sinh(7s1) — sinh(7sg)] T|s1 — o] €
det[DF|| = > > ——=>0.
| det [ DF]] cosh(7sg) cosh(rs1) — cosh(rsp) cosh(rsy) — 2C2 ”

F~! has bounded derivatives and the quantities 759 and 7s; are bounded, therefore,
if p and p are the intersections of I'y and grim reapers centered at (b, c) and (b, ¢)
respectively, we have

(13) lp—pl < Cl(b—b,c—2)

for (b, c) close enough to (b, c).

Let us now fix the intersection point 771(v;(7s0),72(7s0)) and study how a
change in the tangent vector r(s1) at the intersection moves the center (b, c). The
angle a between r}(s1) and €, satisfies

(14) tan a = sinh(7s1).
From an earlier discussion, |7sg| + |7s1| is bounded, so |sinh(7s1)| is bounded.
Hence,

da
dSl

T

(15) clr <

<Crt

cosh(7s1)

for some constant C.

Starting with our initial configuration where all the angles are bounded below
by 30dr, the change of position of an intersection point and the changes in the
tangent vectors are propagated to the next intersection points, but for 7|1, )|
and |@] small enough depending on Nr, § and dor, the perturbed configuration still
has the properties of Lemma 3, with 200r instead of 30dr in (i) and (ii), and ¢
instead on of 26 in (iii). The result follows from (13) and (15) for 7|(b',¢’)| and ||
small enough. O

Definition 6. We fiz 69 = min(Cdj,or) for the rest of the article, where C' and 0,
are as in the previous proposition.
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3. DESINGULARIZING SURFACES

We now construct the surfaces that will replace the lines of intersection of the
grim reapers. As mentioned in the introduction, we have to allow some flexibility
so that opposite wings can fail to have opposite directions (unbalancing) and for
each wing to be bent independently further along (bending).

3.1. Scherk surfaces. The one parameter family of Scherk surfaces 3(0) is a fam-
ily of singly periodic minimal surfaces. Only the most symmetric of them, ¥(7/4),
is due to Scherk and the rest of the family was discovered by Karcher [11]. They
are often called Scherk’s fifth surfaces or Scherk’s (saddle) towers but we will refer
to them as Scherk surfaces for simplicity. 3(#) is given by the equation
cos? 0 cosh —— — sin? @ cosh L = COS 2.
cos sin 0

The surfaces X(0) become degenerate as § — 0 or § — 7/2 so we will restrict
ourselves to 6 € [1069, 5 — 10dg] for dp as in Definition 6.

Intersection with {z =0}
......................... Intersection with {z = 7t}
_________ Asymptotic planes

FIGURE 6. Sections of the Scherk surface 3(9).

Notations. The Scherk surface enjoys many symmetries. In order to refer to them
easily in the future, we define the following isometries of the Euclidean space:

R is the identity

R is the reflection with respect to the yz-plane.

R3 is the reflection with respect to the z-axis.

e R, is the reflection with respect to the zz-plane.

We denote by HT the closed half-plane H = {(s,z) € R? | s > 0}. The vectors
€lf] and €[] are defined in equation (8).
We quote Proposition 2.4 from [9] for some properties of the Scherk surfaces.
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Proposition 7. X(0) is a singly periodic embedded complete minimal surface which
depends smoothly on 6 and has the following properties:

(i) X(0) is invariant under the R;’s above and also under reflection with re-
spect to the planes {z = kn} (k € Z).

(ii) For given € € (0,1073), there is a constant a = a(dp,€) > 0 and smooth
functions fo : HY — R,A¢ : Ht — E3, and Fy : HY — E3, such that
Wy = FQ(HJr) C 2(9) and

Ag(s,2) = (a+ s)eld] + zé, + bye '[0],
Fy(s,2) = Ao(s, 2) + fo(s, 2)e[0],

where by = sin(20) log(cot§). Moreover fy and Fy depend smoothly on
0 € [10dp, m/2 — 1069] and (iii)-(vi) are satisfied.

(iil) 3(9) \ U?Zl R;(Wy) is connected and lies within distance a + 1 from the
Z-aris.

(iv) Wo C {(rcos,rsing,z) :r > a,d € [999,7/2 — 9p]}.

(V) Ifo : C3(HT,e®)|| < € and ||dfs/d0 : CO(HT, e *)|| < &, where the
weighted norms were defined in (6).

(vi) |bg| + |dbg/df)| < ea.

For the rest of the article, ¢ is a fixed small constant so that a is fixed also.

Wy is called the first wing of the Scherk surface, and the image of Wy under R;
is called the ith wing.

We consider as standard coordinates on the ith wing the coordinates (s, z) de-
fined by (s, 2) = (R; o Fyp)~1(s,2) and extend the function s to be zero on the rest
of ¥(#). Using the notation (5), we call ¥<o(6) the core of the Scherk surface. Note
that the boundary of the core has four connected components, each of which is the
boundary of a wing. The numbering of the wings can be reconciled with the num-
bering of the vectors vy, v2,v3 and vy in Section 2.2 by taking (; from Definition 4
to be in the second quadrant.

3.2. Construction of the core. The goal of this section is to unbalance a Scherk
surface so that its wings are tangent to asymptotic planes determined by a pos-
sibly unbalanced tetrad 7. The dislocations are necessary for dealing with the
approximate kernel, as discussed in Section 2.2.

Let us examine more closely the angles in Definition 4 when the tetrad is formed
of the directing vectors of the planes asymptotic to X(6), rotated by an angle £,
around the z-axis. We have 8y = 0+ 08,, o = 1 —0+ 3., B3 = 7+ 60 + 3,,
Ba=2r—0+0,,0(T)=6,0,=0,0,=0, and 6, = 3, is the angle of rotation.

Given a tetrad T for which #; = 0 and 6 = 0, we can find a Scherk surface that
has the vectors of T' as directing vectors: it suffices to take 3(6(7")) rotated around
the z-axis by an angle 6,.. In general however, it is not enough to rotate one of the
original Scherk surfaces 3(f), we need transformations Z; and Zs to change the
respective directions of the vectors.

Definition 8. We define a family of diffeomorphisms Z1(¢) : E> — E3 parametrized
by ¢ € [—2dp,20p] such that:
(i) Z1 is the identity on the second and fourth quadrants {(x,y,z) | xy < 0}
and in the unit ball.
(ii) on {(rcos®,rsind z) : r > 2,0 € [999,7/2 — 90¢|}, Z1 is a rotation of
angle ¢ clockwise around the z-axis.
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(ili) on {(rcos®’,rsind’, z):r>2,0" € [r+90,37/2— 9]}, Z1 is a rotation
of angle ¢ counterclockwise around the z-axis.

Definition 9. The family of diffeomorphisms Z(¢) : E> — E® parametrized by
@ € [—269,20¢] is defined by Zo(d) = Ra o Z1(—@) o Rs.

The transformation Z; rotates points in the first and third quadrants by ¢ toward
the fourth quadrant, and Z5 rotates points in the second and fourth quadrants by
¢ toward the first quadrant.

For a tetrad T, we define

Z|T) =R o Z1(01) o Z(02),

where R denotes the rotation around the z-axis with angle 6,.(T') counterclockwise.
We define the surface

S[T):= Z[T)(2(6(T)))-
By construction, each plane asymptotic to the surface X[T] is parallel to a vector
in T. We will not touch the core £<o[T] in the rest of the construction.

3.3. Construction of the wings. With dislocations, we can solve the linear oper-
ator on the desingularizing surface, but we do not control the asymptotic behavior
of the solutions as we move away from the z-axis. The additional bending of each
wing independently will help us achieve exponential decay. In addition, we use
the bending to fit the wings smoothly in the construction of the initial surface in
Section 5.

Let 7 > 0 be a small constant, {p;}?_, four real numbers such that |p;| < dg,
and T a tetrad as in the previous section. We describe the construction of the ith
wing, with a bending of angle ¢; below.

Definition 10. We call the line Z[T] o R; o Ag(r) (OHT) the ith pivot and denote
its intersection with the xy-plane by (x;,y;). The ith pivot is the boundary of the
core projected perpendicularly onto the ith asymptotic plane.

We define the map &[7, z;, y;, 8] : HY — E3 by
(16) &[T, @i, ys, Sil(s, 2)
1
= ;(71(7(5 +53)) = 71(78:) + T2i, Y2 (T(5 + 53)) — Y2(T8:) + TYi, T2),

where v, and -y, were defined in (10). Note that the line x[r, z;, y;, s;](OH ™) is the
ith pivot and the graph of k is a piece of grim reaper. The constant s; is chosen so
that the conormal tangent vector to k|7, z;, y;, s;] at s = 0 is v; = €[8;] rotated by
an angle ; counterclockwise around the z-axis, i. e. tan(B; + ¢;) = sinh(rs;) by
(11). We define the immersion of the asymptotic grim reaper to the ith wing by

Al[Ta (pia’r] = K’[Ta Ty Yi, Sz]

and define v;[T, ¢;,7](s, ) to be the normal unit vector to A;[T, i, 7|(H") at the
point A;[T, ¢;,7](s, 2) oriented such that v;[T, ¢;,7](0,0) = (=1)""1&"[8; + ¢i].

Roughly speaking, the bent wing is the graph of fy(r) over the asymptotic grim
reaper. For a smooth transition, we need to cut off fy(7 far enough so that the error
generated is not too big while keeping the desingularizing surface small enough in
the scale of the grim reapers. For this reason, we introduce a small constant d4 that
will be determined later. The function F;[T, ¢;, 7| defined below is the immersion
of the ith wing.
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Definition 11. For given T and @; € [—8y, 6], we define F;[T, ;7] : HY — E3
by
FZ[T7 Pis T}(Su Z) = w[lu 0](S)Z[T] o Rl o FQ(T) (S, Z)
+ (1 - w[la O}(S)) (AZ [T> Pis T](Sv Z) + ws(s)fG(T) (87 Z)Vi [Tv Pis T}(S’ Z))
where V5 is defined by s(s) = ¥[4ds/T,305/7](s).

X Pivot
z

............. Asymptotic grim reaper

ox
——————— Asymptotic plane to £[T] 5 = 48,/ /

s =38/

s =158;/t

Transition region

Transition region

X is the graph of fy(7)

over the asymptotic grim reaper
Yoo

FicURE 7. Construction of a wing.

3.4. The desingularizing surfaces X[T, , 7].

Definition 12. For a tetrad T and ¢ = {@;}i_, such that |p| < &p, we define a
map Z[T,p, 7] : S(O(T)) — E® to be Z[T] on the core, and Fi[T, ¢;, 7|0 Fy ' o R,
on the ith wing of X(0(T')). The desingularizing surface X[T', @, 7] is given by

Y= E[Tv L 7—] = Z[T’ 2 TKESS&/T(G(T)))'

The coordinates (s, z) on X(6(T')) are pushed forward by Z[T, ¢, 7] to coordinates
on Y. The desingularizing surface is divided in five regions:

e When s < 0, we are on the core of ¥. The surface is dislocated here but
the bending related to ¢ does not affect this region.

e s [0,1] is a transition region.

e For s € [1,30,/7], the wings are graphs of fyr) on the asymptotic grim
reapers; the ith asymptotic grim reaper makes an angle ; with the plane
asymptotic to the ith wing of X[T7.

® 5€[30,/7,405/7] is a second transition region where the function fy(r) is
cut off.

e For s € [405/7,505/7], the wings are just asymptotic grim reapers.

Note that the desingularizing surfaces are truncated at s = 5d,/7. The next
proposition collects the properties of [T, ¢, 7].
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Proposition 13. There is a constant 0, = 6..(dg) > 0 such that for T satisfying
9), l¢| < 0o, and T € (0,0'(7)), the function Z[T,p,T] satisfies the following
properties: B
(i) Z[T,p, 7] is a smooth embedding depending smoothly on its parameters.
(ii) For each n € Z, the map Z|T, ¢, 7] is invariant under reflections of the
domain and range with respect to the plane {z = n}.

4. ESTIMATES ON THE DESINGULARIZING SURFACES

In the previous section, the dislocations and the bending are constructed inde-
pendently. It is in our interest to keep the dislocations and the bending small to
control the error generated in the core and the first transition region. If a dislo-
cation is moving a wing in one direction, and the bending moves it back by some
amount, we can let the bending cancel part of the dislocation by changing our an-
gles from the onset. This process is called straightening and is studied in Lemma
14.

The main part of this section is dedicated to estimating H — 7€, - v on the
desingularizing surface and studying the impact of the dislocations, bending and
straightening. For this, we define functions {w; }?:1 generated by the dislocations,
and functions {w;}}_; generated by the straightening. In Lemma 27, we describe
how the functions {w; }?:1 can be used to cancel any linear combination of eigen-
functions €, -v and €y -v. Finally, we approximate H —7¢&, v by a linear combination
of the w’s and the w’s with an error of second order in 67, 62 and ¢ in Proposi-
tion 29. We follow the exposition of [9] and adapt all the proofs to our case, in
particular, we show that the term —7€, - v can be controlled throughout.

4.1. Straightening.

Lemma 14. There are constants d, = 0,(d¢) € (0,09) and 6, = §-(d9) € (0,0.)
such that for a given tetrad T' as in Definition 4, ¢ € R, and 7 € (0,6,] satisfying

O(T) € (3039, 5 — 3080],  61(T), 0a(T) € [05.05], || < b,

we have for each @' = {@}}i_, with |¢'| < 6., a tetrad T which depends smoothly
onT,p, 7 and ¢', and is characterized by the following properties:

(i) (T',¢ — ¢',7) satisfies the conditions of Proposition 13.

(ii) 7" =T when ¢" = 0.

(iii) T" = {€|B/]}i=, where each ] depends smoothly on ¢’ and
9B;
‘awg —(Sij S Cr.

(iv) There is a smooth function fy on [T, p, 7] which depends smoothly on
T,p,7 and ¢, satisfies fer =0 on OX[T, p, 7], and whose graph over
[T, ¢, 7] is contained in the image of Z[T',p — ¢', 7].

Proof. We fix T', ¢ and 7. Without loss of generality, we can assume that 6,.(7) =
0, otherwise we rotate the whole configuration by —6,(T). For small variations
|Bi — Bi| < dg and |¢'| < dg, the image of Z[T"', ¢ — ¢, 7] is the graph of a function

J over X[T, ¢, 7]. On the component of OX[T, o, 7] on the ith wing, the function
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(#1,91)
JZ[T,0,T]

Pivot of Z[T”, @

79/:‘5]
(xllvyll) ,':

.

.
.

A"

‘.

(x1,1)
€[B]  Pivot of X[T, ¢, 7]

FIGURE 8. The image of Z[T", ¢ — ¢, 7| passes through O%[T, p, T].

f is a constant, which we denote by f;(¢’,T"). Clearly, if 7" = T and ¢’ = 0,
(f1, f2, f3, f4) = 0. The Implicit Function Theorem on (f1, fa, f3, f1)(¢',T') = 0
will give us 7" as a function of ¢’ for ¢ small enough, provided we show the matrix
[afi/aﬁﬂi it invertible.

We study how changes in the tetrad and in the bending affect the first wing in
detail. The variation of the three other wings can be obtained similarly. Given 7" =
{elBi]}i_; and ¢’ with B8] — 3;| and |¢'| small, the asymptotic grim reapers to the
first wings of [T, p, 7] and X[T", ¢ — ¢, 7] are parametrized by [7, 21,91, 51](s, 2)
and k[r,2},1},5,](s, z) respectively, where k[r,z1,y1,51](s,z) is as in (16), which
is the version of the equation below without the primes,

H/[Ta xlla yi: 8/1](8’ Z)

1
= —n(7(s +51)) = 1 (7s1) + 727, 72(7(s + 51)) = 22(7s1) + 791, 72)

with 71 and 7, as in (10), and

(w1,y1) = (acos B1,asin B1) 4 by (—sin By, cos B1),
(1, 91) = (acos By, asin B1) 4 by(rr (—sin By, cos ),
(17) sinh(7rs1) = tan(B; + 1), sinh(7s]) = tan(B] + 1 — ¥}).

As in the proof of Proposition 5, the angles (51 + 1) and (81 + ¢1 — ¢}) stay
away from 7/2 + km, k € Z, by a fixed amount, so |rs1| and |7s}| are bounded.
Using Proposition 7, we bound the derivatives of 2/, v}, and s} with respect to j;
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by
Oy 9y,
< <
- 5= [ol=e
0s' 0s' 1 C
1 51 A= - = 6| €
(19) crt = apl ‘ dgl | |Tcosh(rs)) | T 7!

To simplify notations, let us work in the zy-plane. The boundary 0X[T, ¢, 7] is
at the point (Z1,91) := k[T, z1,¥1,51](505/7). The line orthogonal to X[T', ¢, 7] at
the point (Z1,%1) intersects the surface X[1”,p — ¢', 7] at a distance

Yo(7(s +51)) —y2(7s) + 741 — T
Y1 (505 + 751)

)

(20) Al T) =t =

where ] and 72 are the derivatives of v, and -5 respectively, and s is the coordinate
on X[T",¢ — ¢',7] of the intersection point. Note that since |7s;| is bounded,
v1(5ds + 7s1) is bounded away from 0. The value of s is given implicitly by the
equation

(21)  (n(rsh) — 72 + 721) 11(50s 4+ 751) + (72(751) — Ty + 791) V2(50s + 751)
=n(7(s+ 1)) (50 + 781) +72(7(s + 51))72(505 + 751).
Hence, given ¢' and 7", we can find 1, y1,s; and z7,y],s]. Solving the system
of equations (20) (21) above, we get s and t. We first study the dependence of s
on z1,y}, s and estimate its derivatives with respect to each of the z7,y] and s}.

Consider z},y],s] as independent variables and define the function F below
related to (21),

F(zh, 1,51, 0)
= (n1(7s)) — 2] 4+ T721) 71 (505 + T51) + (Y2(T8)) — TYy + T1) 12(50s + T51)
—71(70)71 (505 + T51) — Y2 (T70) V5 (55 + T51).
Note that F(z1,y1,51,50s/T + s1) = 0. Its derivative with respect to o satisfies
OF
do
Let us denote by B,.(x1,y1,s1) the ball of radius r centered at (x1,y1,s1). By the
Implicit Function Theorem, there are constants r > 0, 7 > 0 and a function A :

B.(x1,y1,81) = (50s+781—T, 5ds+781+7) such that F (], y], s}, h(x],y1,s})) = 0.
Since s = h — s,

(m17y17517568/7— + 81) = _7712(565 + 7—51) - T752(56s + 7'81) =

0s
(22) k| se et <c
L Y1
(23) s _ Y1(T8)71(50s + 751) + 75(781)73(50s + T51) 3
9s1  Y(1(s+ 1)1 (505 + 7s1) +75(7(s + 81))72(50s + 751)
‘We now show that the determinant of [%'] does not vanish. Since the
Jdi,j=1,.

functions {f;}%_; play a similar role, it suffices to study one of them, say fi, in

detail. We have
0s 0s 0xy  O0s Oy ~ Os 0s)

a8, ~ o4 0B, ' 0y 0B, " 05, 0B
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and, from (20),

0N =I+1,

(24) 71 (55 + 7s1) i

where

1= (birts+50) (7 +1) =00 ) 5o

0s 0x, 05 0y . oy
II .= ~5(7(s + s7)) <(9.T’1 B! + oy aﬂ;) aB;

From a previous discussion, v (505 +7s1) is bounded away from 0, so it is enough
to estimate I and II. The bounds (18) and (22) imply |II| < C. For I, we use the
explicit formula (23),

(505 + 751) (1 (751)75(7(s + 51)) = i (7(s + 51))5(781)) Dsl
Y(7(s + 81))7 (505 + 751) + 75(7(s + 57))75(50s + 751) 0B
We can assume without loss of generality that 7 < §, so the denominator is close to

1 since 7(s+s}) = 70 € (405 + 751,605 + 751). The second factor of the numerator
is equal to

(25) 1=

sinh(7(s + s7)) —sinh(7s}) cosh(73) s
(26) cosh(7(s + s})) cosh(rs}) ~ cosh(7(s + s})) cosh(rs})

for some 5 € (8], s] + s1) given by the Mean Value Theorem. Combining (19), (25)
and (26), we have

1 C
(27) —— (405 + 1(s1 — 81))0i1 < |I| < ?(655 +7(s1 — 81))di1.

Cr

Choosing ¢, small enough, we can ensure that 465 — 7|s; — s7| > 0 by (17). From
(24), (27), the fact that |II| < C, and similar estimates for fo, f3 and f4, we have
for 7 small enough,

& w([55]) > -

therefore 0f/08 has an inverse with norm bounded by C7. By the Implicit
Function Theorem, for every ¢’ small enough, there is a tetrad 7" such that

(1, f2, f3, fa)(T", ") = 0. To get the estimate (iii), we write g, o8 4 8f =0, or

equivalently,

(29) of (86’ _ Id) __of of

B \og' o 0B’

To estimate 0f/08" 4+ df /¢, note that the contribution of order 7= in df /0’
comes from the derivative ds}/08;. Adding the derivative with respect to ¢, we
get 0} /0B, + 05} /0¢; = 0, by (17). Therefore ‘é)ﬁ’ + —‘ < C, and the result (iii)
follows from (28) and (29). O

We may need the values of 6, and J, to be smaller than the ones given in Lemma
14 for later estimates. When we write “for 7 small enough” in the rest of the article,
we mean that the value of ¢, has to be adjusted accordingly, and similarly for d,.
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4.2. Graphs of functions on a surface. The wings are the graphs of small
functions over the asymptotic grim reapers. In order to estimate the mean curvature
and the second fundamental form, we take a brief detour and discuss some standard
facts about normal perturbations of surfaces (see Appendix C of [8], or Appendix
B of [9]).

Suppose we have a surface M in E3, immersed by a C? map X : M — E3. We
write g, A, H and v for the first and second fundamental forms, the mean curvature
and the Gauss map of M respectively. For a C? function o on M, we define
X,: M —= R?®by X, = X 4+ ov. When X, is an immersion, we denote by M, the
graph of ¢ over M and by g,, Ay, H,, and v, the first and second fundamental
forms, the mean curvature, and the Gauss map of X, (M) pulled back to M.

We use @ to denote a term which can be either 0 A or Vo. We use an * to denote
a contraction with respect to g. Also, all the G’s below stand for linear combinations
with universal coefficients of terms which are contractions with respect to g of at
least two ®’s. The (s denote linear combinations (with universal coefficients) of
terms which are contractions of a number of - possibly none - ®’s with one of the
following:

(i) AxDx P,
(ii) oVA* D,
(iii) 0A * V?0,
(iv) V2o @« ®.

Let e1, ea, v be a local orthonormal frame of E? whose restriction to M has e;
and e tangent to M. If |cA| < 1, then X, is an immersion and we have

(30) 9oij = Gij — 20 Aij + Gij,
(31) ve =v—Vo+Q,
where Q% = Gie1 + Gaea + Gav + —ijthiGe%igZ”

(32) Hy = H + (Ao +|A]?0) + Qo
where Q, = G + Go . Therefore

1+Gs 1+Gs+v1+Gs
(33) H,— 7€, vy=H—78, v+ Ajo+|APc+ 1, Vo +Q, +71¢, - QY.

o

4.3. Notations. We will use the same notation for functions, tensors, and op-
erators on the asymptotic grim reaper and their pushforwards by F; o A L %o
Y>1[T, ¢, 7], and vice versa. To avoid confusion, we use symbols without sub-
scripts for the geometric quantities considered on the asymptotic grim reapers; we
use symbols with subscripts ¥ for their counterparts on ¥>;. For example, g de-
notes the metric on the asymptotic grim reaper (induced by its immersion in E?)
and it also denotes the pushforward of this metric to ¥>;, while g5, denotes the
metric on ¥>; induced by the metric in E® or its pullback to the asymptotic grim
reaper.

For ¢’ as in Lemma 14 and a fixed ¢ € {1,...,4}, we use a dot " to denote the
differentiation 0/0¢}|,—o.

4.4. Estimates on the desingularizing surface X[T, o, 7].

Lemma 15. [(§(T"))| < C and the following are valid on X51[T, @, T]:
@) [Is: C*(g)ll < C,
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(ii) [|4: C*(g)| < C,
(iii) [|A: C*(g)]l < C72,
(iv) |lv: C*(g)ll < C,

(v) [l7: C¥(g)| < C,
where k is as in (16), A and v are as in Section 1.4 and Notations 4.3, and all the
constants C depend only on k.

Proof. From (16), x is an isometry of HT to an asymptotic grim reaper. Keeping
in mind that f = 24 of 98, + 89({,‘ |o/=0 for any function f(7”,¢’), the lemma

j=10p; dp, T B
follows immediately from the explicit formula for the position x and the estimates
(18) and (iii) of Lemma 14. O

Corollary 16. The following estimates are valid on ¥>1[T, ¢, 7|, where | = 50,/7:
ng —9g: 03(2217976_3)” S 057
[[As|* = |A]? : C%(S31,9.¢7%)] < Ce,
[[As|? : C¥(£21, 9,67 +17%)| < Ce + C42.

In particular, g and gs. are uniformly equivalent on X>1[T, , 7] by assuming without
loss of generality that the constant € from Proposition 7 is small enough.

Proof. The variation of a metric under a normal perturbation o = 1 fo(r) is given
by (30). The first estimate follows from (ii) in Lemma 15 and Proposition 7.
Similarly, we prove the bound on |||Ax|> — |A]?|| using the fact that the pertur-
bation of |A|? is at least linear in o, and the second fundamental form is controlled
by the previous lemma.
For the last estimate, we write

1Az ]? : C%(g,e™ + 172 < 1A% — |A] : CP(g,e™*) [ +172[|JA]* - C2(g)]l.

The first term on the right hand side is controlled by Ce, while the second term is
bounded by C§2 using Lemma 15. ]

Lemma 17. Given v € (0,1), we have
HHE - Tgy ‘Us 02(221[T7£a 7]7976_75)H S CTv
where Hy; is the mean curvature of X[T, p, T].

The proof is the same as the proof of Lemma 10 in [14]. We reproduce it here
for the reader’s convenience.

Proof. First, note that the estimate is true for s > 46,/7. Let us now work in the
region s € [3d,/7,465/7]. We have H—7€,-v = 0 on the grim reaper cylinder, so by
the variation formulas in Section 4.2 , Hy, —T€,-vs; has terms at least linear involving
cA;j, Vo and ija (with o = 9 fo(ry). We are on the support of the derivative
of the cut-off function v, so these terms, their first and second derivatives behave
like (g—g)kefs, 0 <k <4. For s > 30s/7, we can arrange (i)ke’s <e s < Te 8
to be true by taking 7 small enough in terms of ~. ‘

In the region s < 36,/7, we have 1)s = 1 and 0 = fyr). The plane and the

original Scherk surface are minimal surfaces, so

0 = A9R2U -+ QI,
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where @’ is the @, defined by equation (32), and every geometric quantity and
tensor in @’ is taken with respect to the flat metric on the asymptotic plane (to the
original Scherk surface). Since H — 7€), - v vanishes on the grim reaper cylinder,

Hy — 1€, -vs = Ayjo + |AP0 + Q + 7€, - Vo + 7€, - Q7
where @ is @, from equation (32) and where every geometric quantity and tensor
in @ is taken with respect to the metric on the asymptotic grim reaper. The term

Q" is an expression at least quadratic in Vo and oA given by (31). Since the
asymptotic grim reaper is isometric to a plane with flat metric,

Hy — 716, -vs = —Q +|A*P0c +Q + 7€, - Vo + 1, - Q".

By Lemma 15, the fact that ||o : C%(X>1,g,e7%)|| < e and equation (31), we have
||A]2o + 7€, - Vo + 7, - Q" : C*(¥51,9,e )| < CT.
We are left with
Q _ Q/ _ GA(II _ CA;(l + éé . GQ .
VI+G, VI+Gs 1+Gi+/1+G, 1+Gs+V1+Gs

We can reduce the fractions to the same denominator and expand the numerators
and the square roots in Taylor series. The expressions for G’s, G"’s, G’s and G'’s
comprise terms involving o, Vo, V20, A, 0A and 0V?A and at least quadratic
in 0. If a term in the expansion of the numerators has either A, ¢ A or cV2A, it
can be bounded by C7 thanks to Lemma 15. We now claim that there is no term
involving only Vo and V20. The grim reaper is isometric to a flat plane, so G
only differs from G by terms involving the second fundamental form A. In other
words, setting A = 0 in the expression for G gives us G}. The same property
is true for any G (G) and its corresponding G’ (G’ respectively). Therefore, they
contain exactly the same terms involving only Vo and V20, and these terms can

be paired and cancelled. (I
Lemma 18.
a — —Ss
‘ ay|  (Hs =78, w): O (ST e, )e )| < O
[ £/:0

Proof. From equation (33), we have

Hs, — 7€, -vs = Ago + \A|20—i—Q—|—7'é’y-VU—l—Té’y-Q”7
where o = 1, fy. Therefore
5g OT)) +Q+7¢s8y —=
and we have the result from the estimates in Proposition 7, Lemma 15 and the
definitions of Q" and QY given in Section 4.2. (]

(Hs =76, vn) = (|A]") o+] A", (6(T")) +7¢,-Q"

4.5. The functions u; and w;.

Definition 19. Let Y be the variation vector field on ¥>1[T, ¢, 7| due to changing
@ that is on the component contained in the jth wing,

Y = (FJ[T/7£ 7£,7TD.7
and let Y| :=Y — (Y -vs)vs be the tangential component of Y.
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Lemma 20. [|Y) : Cl(Ezl[T,f, N <C and ||Y -vs : Cl(Ezl[T,f, N < C.
Proof. We have

o 0 . ,
Y = (5 + for) = h bt QT + oo
and the result follows from Proposition 7 and Lemma 15. (]

Definition 21. We define the functions u; fori=1,...,4 on X[T,p,T] by
3]
—/ —

where f, is as in Lemma 14.

Definition 22. Given any smooth surface S in E3, we define the linear differential
operators

Ls = Ag + |As]?,
Ls:=Ag+ |A5|2 +T€y -V,

where gg, |As|?, and Ag denote the first fundamental form of S, the square norm
of the second fundamental form of S, and the Laplacian with respect to gs on S.

Lemma 23. On X51[T, ¢, 7], @' =Y -vs and
(HZ — Tgy . 1/2)' = YVH (HZ — Tgy . VE) + ﬁz’a;

Proof. As ¢' changes, one can see the change in the surface as a reparamatrization
of the surface followed by X + f vs;. The derivative = of the variation of the surface
is Y = Y| + @;vx. Using the fact that differentiation is linear, we get

(HZ — Tgy . Vz;)' = YH(HZ — Té'y . VE) +Y, (Hy — Tgy . V2)7
and the derivative of the normal variation is Lx@', from Section 4.2. d
Corollary 24. ||Lsu, : CY(Sx1[T, ¢, 7],e77%)|| < CT.

Proof. By Lemma 23, Lt = Y, (Hs — 7€, - vx), so the estimate follows from
Lemmas 17 and 20. O

We correct @) to 4; so that Lyx@; = 0 on X>5 by solving a differential equation
on each asymptotic grim reaper IV = A;[T, p;,7](H"), j = 1,...,4. The region
', is isometric to a cylinder Q = [1,50,/7]/G’, where G’ is the group generated
by (s,z) — (s,z + 2m). We consider the linear operator Ly on the asymptotic
grim reaper, where gs; and Ay, are the metric and the second fundamental form
on X pulled back to the asymptotic grim reaper, following the Notations 4.3. By
Corollary 16, we can choose € and &, small enough so that Proposition 37 applies
to Lx. Hence, we obtain a solution v; to the linear equation Lxv; = —Lxu, that
vanishes on s = 5d5/7, is given up to a constant on s = 1, and has exponential
decay on each asymptotic grim reaper.

We fix now once and for all a € (0,1), and take v; to be the solution described
above pushed forward to . More precisely, v; := R(0,—Lxu}), with R as in
Proposition 37, on each component of £>1[T, ¢, 7]. We define

U; = a; + (¢[1, 2] o S)via w; = £Zai-
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Lemma 25. The functions @; and w; satisfy the following properties:
(i) They depend continuously on (T, p,T).
(ii) w; is supported on L<a, ||w; : CO*()| < C, and ||w; : C¥*(L51)|| < CT.
(iii) |lu; : C**(D)| < C.
(iv) Lsu; =0 on X>o[T, p, 7], 4; = 0 on 0¥ and |u; — (a + 2)d;;| < Cae on
the component of 0¥ <o contained in the ith wing.

Proof. By definition of @; and w;, it is immediate that w; is supported on X <9, and
(i) follows from the construction. From Corollary 24 and Proposition 37, we have
v; 1 C*%(B>1[T, @, 7], 9, < C'. Since the metrics g and gx, are equivalent,

C? (81T, p 7%)|| < C7. Since the metri d ivalent

(34) 1([1,2] 0 s)v; = C** (8 [T o, 7], 9=, e 77| < O

Corollary 24 and w; = Lxu}; + Lx((¢[1,2] o s)v;) imply |lw; : CO*(E1)|| < Cr.

The function 4, =Y - vx is bounded in C! norm from Lemma 20. The rest of
part (ii) and part (iii) follow from (34).

The function %; vanishes on the boundary % because both 4 and v; are zero
on the boundary by Lemma 14 and by the definition of v; respectively, so the first
assertion of (iv) is proved.

Finally, we estimate |t; — (a +2)d;;| at s = 2. The function (¢[1, 2] o s)v; brings
at most a contribution of order 7, which can be chosen to be smaller than ¢, so we
only need to study |a — (a + 2)d;;| at s = 2. The curvature of the grim reaper is
of order 7, therefore, it suffices to approximate the behavior of @, up to first order,
which means we can consider planes instead of grim reapers. Given (T”,¢’, ), the
position of the point on the asymptotic plane corresponding to s = 2 is given by
(2}, y;) = ((a+2) cos B}, (a+2) sin B7) + by(r) (— sin B}, cos f}). Differentiating with
respect to ¢}, using (iii) in Lemma 14 and (vi) from Proposition 7, we get

0
09
We can approximate the position Fj(T",¢ — ¢, 7) [s=2 by (27,%}) and the normal
vs by (—sin 3}, cos 87) committing an error of order € so we have the desired result
for 7 small enough. O

(%, 95) — (a+2)(—sin B, cos 8})di;| < CT 4 Cea.

4.6. The functions w; and ws. In this section, we describe how the unbalancing
generates functions w; and ws close to being in the approximate kernel of Ly .

Definition 26. Let Hy be the mean curvature on the surface Z1[¢|(X(0(T))) and
let wy : 2(0(T)) — R be defined by

y ._d’
1! d¢¢:0

We also denote by w; the pushforward to X[T, ¢, 7] by Z[T, ¢, 7] of the function

Hy 0 Z1[¢].

above. Similarly, we define wy to be %‘(ﬁ H, o Zy[¢] and its pushforward by
=0
Z[T, e, 7] to B[T, ¢, 7].
Lemma 27. The functions wi and wy depend continuously on (T, ¢, 7). They are
supported on Y<o and ||w; : CO(Z)|| < C, for j =1,2.
Let V' be the span of the pushforwards by Z[T, ¢, 7] of the functions &, -v and €,-v

on 3(0(T)) and let us define P : L*(S[T, ¢, 7], |As|*gs/2) — V to be the orthogonal
projection of functions onto V. FEwvery function in V is the projection of a linear
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combination of wy/|As|? and wy/|As|?. More precisely, for every (ui,p2) € R2,
there is a pair (n1,m2) € R? such that

P((mwy + mow2) /| As|?) = €y - v + poéy - v,
with [(1n1,n2)] < C(|(p1, p2)l)-

Proof. The assertions about the continuous dependence and the supports of wy, ws
are easily derived from the definitions of Zy, Z5, wy and ws.

To prove the second part, we recall the following balancing formula from [12]
and sketch its proof.

Lemma 28. If S is a surface with four Scherk ends, then fs Hvdu = fas i1, where
7 18 the unit outward conormal vector at the boundary 05S.

If S is a surface with boundary embedded in E® and Y is a vector field that
perturbs S, the change in area of S is given by

d(area(S)) z/sdisz/Sdiv(Y”)—i—div(YL),

:/ ﬁ-Y—/Hy-Y
a8

where Y+ =Y -v and Yl =Y — YL are the orthogonal and parallel components
of Y, and 7 is the unit outward conormal at 0S. If Y = &, €,, or €, the area of S
does not change, so [ Hv = [,417

If the surface S is one period of ¥ <(, we have fas =2 E?:l v;, where the v;’s
are the vectors of the tetrad 7T'. Differentiating the balancing formula, we obtain

0
— Hy o Zy[¢lvd f27r— Vj.
96 ).y 1 1[¢lvdp Z

Under Z1(¢), the first and third wings rotate by an angle ¢ towards the fourth
quadrant, so 8% Z?zl v; = (2sin0(T), —2cosH(T)). Similarly, the rate of change
of the sum of the conormals under Z3[¢] is (2sin0(T"),2cos0(T")). The two vectors
(2sin0(T'), £2cosO(T)) are linearly independent since 8(T) € (20dq, w/2 — 20dp) in
(9), hence the norm of P~! is bounded by a constant C' depending on . g

4.7. The decomposition of Hy — 7¢, - vs.

Proposition 29. For T, p,T as in Lemma 14,

2

|Hs, =76, -vs =) 6jsw; — Z«pzwz. S, gs, e )| < C(r + 1852 + |o]?),
j=1

where 05, = (01(T) + 5+ — 5,6:(T) + 5 — F).

Proof. Without loss of generality, we can assume that 6, (T) = 0. On >4, wy,ws =
0 and the result follows from Lemmas 17 and 25.

Let T” be the tetrad given by Lemma 14 when ¢’ = ¢, T = {€(Bi+ i) 4,1, and
let Ty be the balanced tetrad of the directing vectors of the Scherk surface 3(0(T)).
We have

Hyr o) — T€y - Vs p,7) = 1 + 1T + 111,
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with
I:=Hyr o7 — T€y Vs[T 0] — (Hsr 07) — T€y - Vs[17,0,7]);
II :==Hy7: 0,7) = T€y - Vs[17,0,7] — (HE[T,Q,T] —TEy - VE[T,Q,T])v

T ::HE[T,Q,T} — TEy - Vsid.0,1]-

On X<i, w; = Lyu}, so I — 2;1 @;w; is of order |p|? by definition of @,. For II,
Lemma 14 implies 8] ~ B;+;, with an error of order 7. The smooth dependence of
the construction on T gives || I : C%%(X<1)|| < Cr. For III, note that 0, v = 0;(7T),
j =1,2 and, by the definition of w1, ws,

2
|Hygtgm — Hioom — . 0155 1 C¥ ()] < Clff?.
j=1
Using the facts that Hirp, o, =0 and [|7€) - vsyp 6 4 CY*(X<41)|| < Cr, we finish
the proof. - O

5. INITIAL SURFACES

We construct smooth initial surfaces by fitting the desingularizing surfaces at
the vertices of the flexible graph G from Section 2. The ends of the grim reapers
have to be slightly adjusted, and the wings of the desingularizing surfaces bent to
attach them smoothly; we keep track of these variations with the variables (é, [9)
and @ respectively.

Let {T',})T, be a finite family of grim reapers in general position as in Section
2.1 and recall that N; is the number of intersection points. To each intersection

point pg, kK =1,..., Ny, we assign a positive integer m; and define
,7-
(35) Thi= ——,  mi= {mg bt
my,

The parameter 7 controls the overall scaling for the surface and the my’s allow
for different scalings at different intersection points: the desingularizing surface for
the kth intersection will have a period of 27w /my in the z-direction. We choose
7 € (0,4,) small enough so that Proposition 13 applies and the desingularizing
surfaces are embedded. Unless otherwise stated, our constants C' will depend on
or, Nr, § from Lemma 3.

To each intersection point corresponds some unbalancing and bending of the
wings measured by 0y, 1,0 2 and {¢; }i_; respectively. We collect all of the angles
for each intersection, along with the perturbations of the left rays for an initial
configuration in the next definition.

Definition 30. Let V, := (RHYN1, Vy = RHN, V. = (RPN, and V =
Vo X Voo X V. We fix ¢ > 0, which will be determined later in the proof of
Theorem 48 and define

Zy = {E€V: g < 7.
We fix now ¢ = (6, 7b', 7', ¢) € Ey, where

o 0 =1{0k1, Gk,g},ivzfl and (0,1, 0k,2) determines the dislocation of the tetrad
at the kth intersection.

o b :={b,}" and ¢ := {¢/,}]T,. The point (b, +b,, ¢, +¢,) is the center
of the grim reaper on which the nth left ray of G lies (see Proposition 5).
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o v = {{oni Y 31, relates to the bending of the wings at each intersec-
tion.

Given 7 small and extracting § and (&', ¢') from &, we construct the initial con-
figuration G(b', ¢, 0,7) as in Section 2.

Let us recall that {: }1_, are the directing vectors of the edges or rays emanating
from the kth vertex of G. We define the angles fi; by the relation o; = €[S;] and
the tetrad Ty (&) by

(36) T3s(€) = {€lBri + Pri)}iz1.

We take the mapping Hj to be the scaling by 1 Lmk followed by the translation
that sends the origin to P, the kth vertex of G. The surface Si(7,§), which
desingularizes the kth intersection, is defined by

Si(7,€) = Hi(E[Tk(8), @, T])

with @, to be determined later and 7 as in (35). The pivots of Sy, are defined to
be the image under H; of the pivots given in Definition 10. Note that they do not
depend on @ I’

Let us now construct the edges and the rays of the initial surface. For an edge in
G connecting the two vertices py, and D}, we consider the pivots of S and Sy on the
appropriate wings, say the ith wing of Sy and the i'th wing of Sy/. There is a unique
grim reaper I'yys passing through the two pivots. We choose ¢, ; so that the grim
reaper asymptotic to the ith wing of Sy matches I'y, and define @+ similarly;
in other words, @ ; is the angle formed by I'y;s with the grim reaper asymptotic
to the ith wing of Hy(X[T%(£),0,7%]) at the pivot. Now that the relevant ¢’s are
fixed, let us denote the piece of 'y between the two pivots by £’ and the piece
between the boundaries Sy, and Sy by £”. We do not assign any index to the
notation & or £” to differentiate the various edges because it is not important for
what follows.

If we have a ray emanating from py and corresponding to the ith wing of Sk, we
just translate the ray so that its boundary matches the corresponding pivot. @y ;
is taken so that the asymptotic grim reaper to the ith wing matches the translated
ray. We denote the translated ray by A" and the piece of the ray starting at Sy

by N".

Definition 31. We define the initial surface Mz, the union of the asymptotic
surfaces M~, and the union of the desingularizing pieces Sz:

M = M- M U Sk UUgll UUN”’
M =M, = M’TS U5'UUN/
S=8=8(1,¢) = U Sk(7,8)-

The metric ga; on M is the metric induced by the immersion of M- in E3.
Definition 32. We push forward the function s from Section 3.4 by Hy to each
Si. and extend it to M in the following way:

e s = maxy (5, /1) on E".
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e The coordinate s of a point p € N is d(p, ON") + 585 /1%, where d denotes
the distance measured with respect to arclength on N, and k is such that

S NN #0.

The function s is continuous at Sz N A" but may be discontinuous at S N E”.
To keep track of the unbalancing of M, the displacement of the asymptotic grim
reapers, and the bending of M, we define
° Q = {ek’l,ek’g}i\gl S V@ where 6‘]6’1 = 91(Tk(§)) and ek’g = 92(Tk(§)),
. @, ¢) € Vy . where (b, + 0], + Bn, ¢n + ¢, + ¢,) is the position of the center
of the grim reaper supporting the nth left ray.
e p €V, as described earlier.

The proposition below follows from the construction and Proposition 5.

Proposition 33. The surface M: constructed above is well defined and has the
following properties:

(i) Mz is a complete smooth surface which depends smoothly on &.

(ii) M is periodic in z; more precisely, it is invariant under the group gener-
ated by the translation z — z + 2.

(iil) M is invariant under reflections across the xy-plane.

(iv) There is a large ball B C R? such that M; \ (B x R) is the union of grim
reaper ends that are in one-to-one correspondence with the ends of our
rescaled initial family {Fn}ﬁfil and such that corresponding centers of the
left rays differ by (b, + by, ¢, + ).

(v) We have Oy ; = 0y ; + (¢r,j+2 — r,j)/2 fork=1,..., N and j =1,2.

(vi) |(b,8)| < C and |p +¢| < CT.

(vil) H; ' (M;) converges uniformly in C9 norm, for any j < oo, on any compact
subset of E3 to a Scherk surface as T — 0, for k=1,..., Nj.

Corollary 34. For T small enough so that (T < dg, the parameters ofE[T;ﬁ@k7 Ti] =
H;l(Sk) satisfy the following estimates,
(i) 2500 < O(Tk) < 5 — 259.
(i) [On] = 10;(T0)] < 3¢7, j = 1,2.
(i) @, < (C+O)T.

Proof. This corollary follows from the construction, Definition 6, Definition 30, and
the proof of Proposition 5. O

As mentioned in the introduction, we divide the study of the linear operator to
various pieces of the initial surface, then use cut-off functions and an iteration to
solve the equation Lv = f on the whole surface M:. In the definition of M;, the
Si’s, £"’s, and N""’s intersect only on the boundary of the Sp’s. In order to use
cut-off functions, we define neighborhoods £ and N of £” and N to have some
overlap with Sy.

Definition 35. Let a := 8|log7|. We consider

e N to be the connected component of M(T,&)>, that contains N”.
o & to be the connected component of M(T,&)>, that contains E".

There are 2Nt grim reaper ends, and we denote each of them by N7, without
any index to differentiate them because they are treated in the same manner in the
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rest of the article. Therefore, N/ is a generic end and N is a neighborhood of N/”.
The same remark applies to an edge £” and its neighborhood £ as well.

6. LINEAR OPERATOR

We study the linear operator £ = Ly := A,,, + |Am|? + 7€, - V associated to
normal perturbations of H — 7€y - v. The strategy is to first solve the Dirichlet
problem associated to £ with vanishing boundary conditions on the various pieces
Sk, £ and NV. Since £ and NV are close to being flat, standard theory for the Laplace
operator gives us insight into the Dirichlet problems on £ and A'. On a desingu-
larizing surface 3, Proposition 40 shows the existence of an exponentially decaying
solution to Lv = E with vanishing boundary conditions if E is exponentially decay-
ing. We use the functions w; and wsy to handle the approximate kernel in Lemma
43, then the functions {w;}}_; for the asymptotic decay.

We are then ready to solve the equation Lv = FE on the whole surface M.
We first restrict the support of E to the desingularizing surfaces using a cut-off
function ¢ and find a solution u to Lu = ¥ E on each S;. Extending u by zero
to the rest of M may not produce a smooth function, therefore we need to cut off
u also. We then solve the Dirichlet problem Lu” = E — L(¢)u) on N and & with
appropriate boundary conditions. Adding Yu to a cut-off version of u” gives us
a first approximate solution. The error created by the cut-off functions is small
compared to the inhomogeneous term therefore we can iterate to obtain a sequence
of functions converging to an exact solution. The exponential decay of the solutions
on the desingularizing surfaces plays an essential role in controlling the error.

6.1. Linear operator on £ and N. The domains £ and N are graphs of small
functions over grim reapers. The grim reapers are isometric to planes, so £ and
N are close to being isometric to planes with an error controlled by Corollary
16. Moreover, £/G’ is bounded, where G’ is the group generated by (s,z) —
(s,z + 2m), so the existence of a unique solution to the Dirichlet problem with
vanishing boundary conditions on 9€/G’ is a standard result from elliptic theory.

The operator £ on N is a perturbation of the Laplace operator on flat cylinders,
which has been well studied. Any result for £ on A follows directly from a similar
one for the Laplace operator on cylinders.

Definition 36. We define (2, g0) to be the cylinder Q = H;/G’ equipped with

the standard metric go = ds?® + dz?, where G’ is the group generated by (s,z) —
(s,242m), and l € (10, 00) is called the length of the cylinder. We have 0Q = 9yUd,
where Oy and ) are the boundary circles {s = 0} and {s =1} respectively.

Let £ denote an operator on 2 of the form
Lyv=Aw+ V- -Vu+dv,

where y is a C? Riemannian metric, V a C! vector field, and d a C! function on
Q. For ¢ > 0, we define

N(L) = |[x=g0 : C*(Q, go, e ) [ +IIV : CH(Q, 90,17 |+l = (R, go, e +I72)].

If the inhomogeneous term E is exponentially decaying, there is an exponentially
decaying solution to the Dirichlet problem Lv = E in Q, v = 0 on J;, and given up
to a constant on dy. The following result is a generalization of Proposition A.3 in
[9], with an added term V - V. Its proof is postponed to the Appendix A.
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Proposition 37. Given v € (0,1) and € > 0, if N(L) is small enough in terms of
¢, a, v and € (but independently of 1), there is a bounded linear map

R . CQ’O‘(aOu gO) X CO’Q(Q7 g0, e—’ys) — CQ’Q(Q7 490, e—"/s)

such that for (f,E) in R’s domain and v = R(f, E), the following properties are
true, where the constants C depend only on o and ~y:
(i) Lv=FE on Q.
(ii) v = f —avegy, f + B(f, E) on 0y, where B(f, E) is a constant on 0y and
avgy, f denotes the average of f over 0.
(iii) v =0 on 9.
() lo: €22 (0, go, )|
< C||f — avep, f : (3o, g0) | + CI[E : CO(9, go, e~ 7)].
(V) [BU.E)| < €llf — aven, f : C22 (00, go) | + CILE : CO(, go, )]
(vi) If v’ € C?(Q) satisfies L' = E on Q, and v = v" on 99Q, then v' = v on
Q. Moreover, if E vanishes, then

lv - CO@)II < 2l|v : C°(Bo)l-

A similar result is true for infinite cylinders, once the terms involving /=1 and
=2 are removed from the definition of N(L).

Proposition 38. Given vy € (0,1) and € > 0, if N(L) is small enough in terms of
¢, a, v and € (but independently of 1), there is a bounded linear map

R : C%*(Q, go,e %) = CH*(Q, go, e %)

such that for E in R’s domain and v = R(E), the following properties are true,
where the constants C depend only on « and ~y:

(i) Lv=FE on L.

(ii) v = B(E) on 09, where B(E) is a constant.

(iii) Jlv: C**(Q, g0,e77°)|| < ClIE: C¥*(2, g0, 7).
Corollary 39. Given E € C%*(N, g, e %), there is a unique function v €
C?*(N, gur, e %) such that Lv = E, v is a constant on ON and

llv: CQ’Q(N; g e )< OB CO@(Nﬂ gur,e” )|

Proof. By Corollary 16, we can apply Proposition 38 to £ = L3; on N if € and
J, are small enough. The uniqueness of the solution v € C%%(N, gar, e~ 7*) follows
from (iii) in Proposition 38. O

6.2. Linear operator on S;. We now prove that we can solve a Dirichlet problem
with vanishing boundary data on Sk, modulo linear combinations of w’s and w’s.
Let us fix Sk, 7 = 7%, and consider the surface ¥ = X[T}, ¢, , 7] = H, ' (Sk), the
parameters of which are controlled by Corollary 34. In this section, the linear
operator is Ly 1= Ay + |As|? + 7€, - V, where 7 replaces 7.
Proposition 40. Given E € C%*(X), there are 0 = {0 ;};_, € R?, ¢, =
{pr.i}i, € R and vy € C*%(X) such that:

(i) QE,gE and vg are uniquely determined by the construction below.

(ii) Lyvg =E+ Z?:l Op jw; + Z?:l ¢E,iW; on¥ and vg =0 on 0%.

(iil) 05| < C||E|l, where |[E : C%*(%, g, e~ 75/™x)|.

(iv) legl < ClIE].
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(V) [lvg : C*>*(S, g5, e /™) < C||E|.
We first reduce to the case when E is supported on X<s.

Lemma 41. If Proposition 40 is valid when E is supported on Y<a, it is valid in
general.

Proof. We start on the first wing. Let Q = [1,5d,/7] x R/G’, where G’ is the group
generated by (s,z) — (s,z + 27). By equation (16), the asymptotic grim reaper
k(HZ,) is isometric to 2. We consider the operator Lx, = Ay, + |As|? + 76, - V
on k(HZ,), where gs and Ay are as in Notations 4.3.

By Corollary 16, we can apply Proposition 37 to Ly, to obtain v; = R(0, E) and
extend vy, possibly discontinuously, by 0 on the rest of 3. The functions vg,vs
and vy are defined similarly for the three other wings. With the usual abuse of
notation, we denote their pushforwards on ¥ by v; as well. Using the estimates of
Proposition 37 and the fact that g and gy, are equivalent metrics, we get

(37) [v; : C>*(S, gss, 77/ ™) | < C| E|l.
On X, we define
E' =FE — Ls(4[1,2] 0 s(v1 + va + v3 + v4)).
Clearly, E' is supported on Y<2. We can apply Proposition 40 with E’ to obtain
vgr,0p and ¢, then define O = 0p., ¢, = ¢, and vep = vp + (P[1,2] 0 s)(v1 +

vg + v3 + v4). The required estimates are valid thanks to (37). O

In the definition below, the sole purpose of the small constant ¢ is to ensure
that the metric & is non degenerate.

Definition 42. Let us define a metric h := (3|Ax|* +¢,)gs, where e, > 0 is small
depending on T and 0y, and will be determined in the proof of Lemma 43. We also
define the c-approzimate kernel of Ly, := Ay + 2|Ax|?/(|As|? + 2¢1,) to be the span
of the eigenfunctions of Ly with corresponding eigenvalues in [—c, c].

Lemma 43. There are positive constants C' and ¢ such that given E € L*(X/G’, h),
there is 0y = (0p.1,0p,2) such that (E—3"5_, 0p jw;)/(|As|>+2es) is L2(S/G', h)-
orthogonal to the c-approximate kernel and

05| < CIE/(|As]* +2e5) : L*(Z/G", D).

The reader familiar with the reference can see that this is Lemma 7.4 from [9].
We sketch the main ideas, paraphrasing the proof from [9] in Appendix B for the
sake of completeness.

Proof of Proposition 40. We can assume that E has support in ¥<, and, by the
smooth dependence on the parameters in Proposition 13, we have uniform control
over the geometry of ¥ <5, hence

1E/(|As]* + 2en) : LX(2/G" B)|| < C| E].
We apply Lemma 43 to obtain ¢ and (6, 65) = (0g,1,0g,2). The Dirichlet problem

2
(38) Ly = (E =Y 0w;)/(|As*/2+en) in B, vj =0 on 93,
j=1
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can be solved by using the Lax-Milgram Theorem [5]. Equation (38) is equivalent
to

2
"o " 2,11 __ /o
Lyvy = Ayvyg + |As| v = E — E 0 w;.
Jj=1

The non-homogeneous term is C%%, so elliptic regularity, Lemma 43 and the control
of the geometry of ¥ <o imply that the solution v, is unique and satisfies

[vg : C**(S<2,95)|| < C|IE|.
The operator Ly is a perturbation of Ly, so we can use an iteration process
similar to the one in Section 4.1 [14] to obtain vy and 05 = {0 ; }?:1 satisfying

2
EEUIE =F - ZGEij,

Jj=1

v : C**(S<2,95)l < CIEI,  10g] < ClE].

The solutions vf; and @5 are unique by construction.
We now arrange the exponential decay of vf;. Define

4
/ -
Vg =V + E PE,ili,
i=1

where the %;’s are as in Section 4.4 and the constants g ;’s will be chosen below.
We set up exactly as in Lemma 41 and consider the restrictions of v and 4;’s to
the component of ¥>5 on the jth wing pulled back to the asymptotic grim reaper.
Let Q be a cylinder of length (505/7 — 2). For i,j =1,...,4, we define

aj = avgy vy — B(vy,0), a;; = avgy @; — B(1;,0),
where 0y, B, and avgy are as in Proposition 37. From the uniqueness of the
solution in (vi) of Proposition 37, we have vy = R(vg,0) if and only if

4
aj+ZsoE,iai,j:0, j=1,...,4.

i=1

By (v) in Proposition 37 and (iv) in Lemma 25, we can solve the above system
and find unique solutions ¢ g ;’s. With such a choice of ¢ ;’s, the function vy has
exponential decay and

gl < Cllvi : C**(2<a, g5)|l < OB,
lve : C** (S, gs,e”7*/™)| < C| E]|. O

6.3. Linear operator on M. Let us recall that we defined M = M5 in the larger
scale, where the mean curvature of the asymptotic grim reapers is of order 7.

Definition 44. Given v € C™*(M), r = 0,2, we define the norms
[ollr := [lv s C™*(M, gar,e™ %),

where s is the coordinate given in Definition 32.
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As in Section 5, we denote the scaling used to fit the desingularizing surface in
place of the kth intersection by

(39) Hi: :Z[Tk,gk,ﬂc] — Sg.

Note that Hign = #gg. Moreover, for any function v € C™*(M) supported on
k
Sk, we have

1 * T, i —ys/m
Sllvlle < IHi - C™(S[T, @, 7l g, 77| < Cllolly,

where the constant C' depends only on r, @ and my. Since {mk}gil is a finite set,
we will stop mentioning the explicit dependence in my and incorporate it in the
constants C' in the rest of the article.

Let us fix k € {1,...,N;}. Given a function £ on M with support in Sk, we
define £’ = m%‘E o Hy. By Proposition 40, there exist a function v’ and constants
{QE/7j}§:1’ {pp i} for which Ay v +|As |20 +74€, Vv = E/+Z?:1 Op jw;+
Z?:l pE iw;. The function v = m%@v’ o 7—[,:1 = i%k*v' therefore satisfies

2 4
Law = Dgy v+ [An v+ 78, - Vo v = E+myHy | D Op jw;+ Y op

j=1 i=1

To simplify notations, we define the linear map © : Vg x V,, = C*°(M) by
Nt 2 4
0, ¢) =D miHye | D 0hjwi+ Y kit |
k=1 j=1 i=1

where ¢’ = {{0%; ?:1}1&1 € Vg and ' = {{¢}; ?:1}1&1 €Ve.

Theorem 45. Given E € C%*(M) with finite norm || E||o, there existv € C**(M),
0p € Vy, and Yg € V., uniquely determined by the construction below, such that

Law=E+0(05,¢,),

and
vz < CllElo,  0p] < ClElo: eyl < CIEo-

Proof. The proof uses an iteration: at the nth step, we define the functions v,, and
E,; u,u, and u” are just intermediate functions and are reset after every step.

We define two cut-off functions on M by ¢ = ¢[5d5/7,505/7 — 1] o s and by
' =la,a+ 1] o s, where a = 8|log 7| as in Definition 35.

We take Ey := E and proceed by induction. Given E,,_1, we define F,,, v,, 8
and @, in the following way.

For each k = 1,..., Ny, we consider the function Ej = mik(il)Enfl) o Hy on

Yy = H;'(Sk) and apply Proposition 40 to get vgy, O and ¢, . We take
) 7k

T

0, = {{9E;,j}?:1};g\[:117 and p = {{epi}iz 1. From the construction, u =
Z,Icvzll m%ch*(Uk) satisfies on S
EMU = 1/)En—1 + @(Qnafn)a
[u: C**(S,ga,e7°)|| < ClEntllo-
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Note that Ly (vu) = Y2 E,_1 + [L,Y]u+ ©(0,. ¢, ), where we used the notation
[Lar, Plu = L (P)u — Y(Lagu).

From the discussion in Section 6.1, on every edge &, there exists a solution o’
to the Dirichlet problem Lyu' = E,_1 — ¥*E,_1 — [£,9¥]u with zero boundary
conditions. The function E,_; — ¢?E,_1 — [£,9¥]u is supported on s > 53“ -1,
therefore

[u" = C**(E)| < CllBp—1 = *En1 — [£,¢]u: CO(E)],

(40) < Cve—'y(t’)éS man(mk)/f_l)”EnleO < 06_26“/%|‘En,1”0.

We will also denote by u’ the sum of the solutions u'’s on all the edges extended
by zero to the rest of M.

On every end N, there is a solution u” to Lyu” = E,_1 —?E,_1—[L£,}]u with
exponential decay and given up to a constant on ON by Corollary 39. As before,
we also denote by u” the sum of the solutions on the ends, extended by zero to the
rest of M. Since E € CO%(N,g,e~7%/2), u" satisfies

Hu// : C2VQ(N’97 6_7‘9/2)” < CHEn—l - '(/)2En—1 - ['va]u : CO?Q(Nvg)e_’YS/%Hv
(41) < Qe O%ITURIE, g < Cem T Enio-

We choose to focus on the decay of order e=7%/2, as opposed to e~ 7, for the
iteration process. The function u” does have a decay of order ¢e~7* and the esti-
mate [u” : C2(N, g, )| < [ Bn1 — 02 Ep_1 — £, ¥Jullo < C|[Bu_1]o is true,
although it does not help us with the iteration.

We define v,, = u-+1’ (v’ +u”). Since the supports of ¢’ and 1—1? are disjoint,
as well as the supports of ¥ and [L, )], we have

£1}n = Lp_1 + [E, ¢/](u' + u”) + Q(vafn)
Define E,, = —[£,¢'](v'+u"). By (40), (41), and the fact that [£, ¢'] is supported
on [a,a + 1], we have, for 7 small enough,
1Enllo < C VL, 4 ](u +u") : C¥ (M, gur) |
< CON '+ CPEN| 4 [+ O (W)
< CeV@H (1 4 @)= /T B
(42) < T B o

We define vp == 32,7 vy, O := 3507, 0,, and ¢, == 377, ¢ . The three
series converge and we have the desired estimates from (42) and Proposition 40.
The function vg is uniquely determined from the construction and satisfies Lyjvg =
E+ 085, % E) O

Corollary 46. There are vy € C**(M) and O, such that
Lyog = Hy — 7€y v + 00y, ¢,,),
61— 0] < O, lp,, — ¢l < O, Jou]z < C7,
where M = M(7,€&) = M(7,0, %b’j—g',f).

Proof. From the smooth dependence of M on its parameters, the uniform control
of the geometry of M<s = S<o, and || < (T, we have

HHM - ’7_'5y VUM CO’Q(SSQ,QM)” < CT.
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On the regions &” and N, Hy —7¢€,-vp = 0. We use Proposition 29 and Corollary
34 on S>; to get
|Hpy — 7€y - var + 00+ 8, 9)llo < C7,

where @ is as in Section 5 and §' = {05 ; i N, with 0r; = (Prj+2 — Prj +

Ok, i+2 — Pk,;)/2. We apply Theorem 45 with E = Hy; — 7€, - vasr + @(Q—!—Q/,Q) to
obtain vg, 05 and Cp and define vy = vg, 0 = 0+ 6 + 05, and Py = £+EE'
The estimates follow from Theorem 45, Propositon 33 (vi) and Corollary 34. O

7. QUADRATIC TERM

Proposition 47. Given v € C**(M) with |[v||2 smaller than a suitable constant,
the graph M, of v over M is a smooth immersion, moreover

|\H, — 7€, vy — (H — 7€, - v) — Lavllo < Clv||3,

where H and H, are the mean curvature of M and M, pulled back to M respectively,
and similarly, v and v, are the oriented unit normal of M and M, pulled back to
M.

Proof. The result follows immediately from equation (33) since we have uniform
control of the second fundamental form A;;. O

8. FIXED POINT ARGUMENT

We are now ready to prove the main result of this paper. Theorem 1 in the
introduction is a rescaled version of the theorem below, where M = 7M,. The
larger scale avoids singularities when 7 — 0.

Theorem 48. Given a finite family of grim reapers {fn}nNil in general position
as in Section 2, let us denote the rescaled family by {T, )0, where T, = 77IT,.
There is a §= depending only on maxp{my}, Nr, d§, and dr from Lemma 3 such
that for every T € (0,07), there is a & € V and a smooth function v on the smooth
initial surface M = M (T, &) with the following properties:
(i) The graph M, of v over M is a complete embedded surface in R? that is
self-translating under mean curvature flow.
) M, is invariant under reflection with respect to the xy-plane.
il) M, is singly periodic with period 27 in the z-direction.

) There is a large ball B C R? such that M, \ (B x R) is the union of ends
in one-to-one correspondence with the ends of {Fn}gil The left ends of
M, are exponentially decaying to grim reaper ends in {T,} T, (without
any change in the position of the grim reapers). For the right ends of
M, the difference between the center of a grim reaper asymptotic to M,
and the center of its corresponding end in {Fn}gil is at most a constant
C(NF, (5, 6F, maxk(mk)).

(v) IfT7 is the translation that moves the kth intersection line of {T',}2T, to
the z-axis, then T} (M,) converges uniformly in C7 norm, for any j < oo,
on any compact set of E3 to a Scherk surface of period 2w /my as 7 — 0.

Proof. Let us fix o’ € (0, ), and define the Banach space
X = > (M(7,0)).
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Denote by Dz ¢ : M(7,0) — M(7,€) a family of smooth diffeomorphisms which de-
pend smoothly on ¢ and satisfy the following conditions: for every f € C%*(M (7,0))
and f' € C%*(M(7,£)), we have

If o DZellz < Cllfllzs I 0 Drgllz < ClLf -
The diffeomorphisms Ds ¢ are used to pull back functions and norms from M (7, §)
to M(7,0).
We fix T for now and omit the dependence in 7 in our notations of maps and
surfaces from now on. Let

E={(u) e Vxx: g <7 [lull2 < (7},

where ( is a large constant to be determined below. The map Z : = — V x x is
defined as follows. Given (§,u) € E, let v = ungl, M = M(§) and let M, be the
graph of v over M. We define the function F : V x C*%(M, gpr,e~7%) — R by

]:(ga U) =H, - 716‘3} * Uy,

where H, and v, are the mean curvature and the oriented unit normal of M,
respectively pulled back to M. Proposition 47 asserts that

H]:(gvv) - ]:(570) - ‘CMUHO < CCQ?Q'
Applying Theorem 45 with E = F(&,v) — F(£,0) — Lyv, we obtain vg, 85, and
Pp such that
Lyve =E+ 005 ¢,),
lvglls < CC?72, 05| < CC7%, o, | < CC*72
Hence,
]:(5,11) = f(f,O) + Lyv+ Lyve — @(QEafE)
Corollary 46 gives us vy, 05 and ¢ satisfying Lyyvg = F(£,0) + O (0, ¢,,), so
J—'(ﬁ,v) =Lyv+ Lyvg + Lyvg — @(QE +QH’£E -‘er)
We define the map Z : = — V X x by
I(é-au) = ((Q_QE _QHa _77—67 _%Euf_ fE' - EH)’ (_UE - UH) o Dg)
Note that we arrange for Z(Z) C = since
| —vg —vnl2 < C(7 + 7%,
0 — 05 — 0yl < C(F+ (72,
o —¢p — eyl < CET+372),

and choosing ¢ > 2C and 7 < (72, we get C(7 + (?72) < (7.

The set = is clearly convex. It is a compact set of ¥V x X from the choice
of the Holder exponent o/ < « and the imposed exponential decay. The map Z
is continuous by construction, therefore we can apply the Schauder Fixed Point
Theorem (p. 279 in [5]) to obtain a fixed point (£7,uz) of Z for every 7 € (0, d7)
with d; small enough. The graph of v = u- o D;é over the surface M(7,¢;) is then
a self-translating surface. It is a smooth surface by the regularity theory for elliptic
equations. The properties (ii) and (iii) follow from the construction. O
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Part (iv) of the theorem quantifies how much the asymptotic grim reapers are
perturbed. The construction is slightly more general than advertised since we can
impose the position of the left asymptotic grim reapers to be any slight perturbation
of the initial family, although we have to surrender precise control of the ones on
the right (see also Kapouleas [9]).

APPENDIX A. LINEAR OPERATOR ON LONG CYLINDERS

We give here the proof of Proposition 37 from Section 6. Kapouleas has a similar
result, without the gradient term V -V in Appendix A of [9]. His reasoning applies
readily here as well, except we have to work a little more for the uniqueness in (vi),
as shown below.

Let us recall that £ denotes an operator on the cylinder (€2, go) of the form

Lyv=Aw+ V- -Vv+dv,

where x is a C? Riemannian metric, V a C! vector field, and d a C! function on
Q. For ¢ > 0, we define

N(L) == [[x—g0 : C*(2, g0, ™ )|[+[IV : CH (2, go, 1) [ +]|d = CH(2, g0, e +?)],
where [ is the length of the cylinder (see Definition 36).

Proposition 37. Given v € (0,1) and € > 0, if N(L) is small enough in terms of
¢, a, v and € (but independently of 1), there is a bounded linear map

R : CZ,a(ao’ gO) X Oo’a(Qv 9o, 6775) - 02’(1(97 go, eirys)

such that for (f, E) in R’s domain and v = R(f, E), the following properties are
true, where the constants C' depend only on o and ~y:

(i) Lv=FE on S

(ii) v = f —avgy, f + B(f, E) on 0y, where B(f, E) is a constant on 0y and
avgy, f denotes the average of f over 0.

(iii) v =0 on ;.

(iv) Jlo : C2%(2, go, &)
< C|lf —avgy, f : C** (0, go) | + CIIE : CO%(, go, 7).

(v) IBU, B)| < ellf — aveg, f - C2%(@o,g0) ]| + CILE - CO°(, go, e~ 7).

(vi) Ifv' € C?(Q) satisfies Lv' = E on Q, and v = v’ on 9%, then v' = v on
Q. Moreover, if E vanishes, then

lv = CO@)II < 2l|v : C*(Bo)ll-

Proof. The proposition is valid for the standard Laplacian with respect to the flat
metric, with a vanishing € in (v). One can prove this fact by separating variables,
and using Fourier series with coefficients depending on s € (0,1). In the case of van-
ishing boundary conditions, the operator £ : C*%(£, go,e~7%) — C%*(Q, go,e™7*)
is a perturbation of A, therefore the statements (i)-(v) follow. If the boundary
conditions are not zero, we can find the solution u to the Laplace equation with the
given boundary conditions, then solve Lv = E — Lu with vanishing boundary data.

We now prove uniqueness of the solution by showing that the smallest eigenvalue
of £ is bounded away from 0. Let ¢ be a C?® function that vanishes on 9.
We denote the average of ¢ by ¢(s) = (2m)~* fozﬂ ¢(s,0)df. From the Poincaré
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inequality fOQW |p(5,0) — p(s)2df < 47 027r |09 (s,0)|2dl, we get

- </0 &’(t)dt)z < s/o |§/ (1) 2dt < s/()z%r |Vo|>dodt
(43) <s /0 l/o% Vo dbdt.

Since fO% (¢ — $)%do = 027T ¢%df — 2 ¢?, we have

l p27 l p27 l
// |¢|2d9ds:/ (¢—g5)2d0ds+27r/ |p|2ds
0J0 0J0 0
l p27
< (47r2+7rl2)// |Vp|*dbds.
0J0

The inequality above proves uniqueness for A. For £, we write

27 2m l
// —e542(s, 0) deds—// (p— ) d9d3+27r/ e 2ds = [+ 11,
0

where ¢ is as in the definition of N(L£). I can be estimated using Poincaré’s in-
equality,

l2ﬂe_§s(¢—q3)2d9ds§0 l 27r|v¢>|2de e %ds
1 f (] were)

l p27 I p2m
< Clle e // |V¢|2d0ds:C// |Vé|2dods.
0/0 0/0
II is estimated using (43),

I < 2r (/ )//2W|v¢|2d9ds Z/Ol/jw|v¢|2d0ds.

Hence, we have [, e *¢* < C(c) [, |Vo|*, a

- [(eoro == [ Apro— [ as- /Q OV V0

+ /Q (Do — Axd)b + /Q OV - (V06 — V)

> [ wor-enw ([ @ +vwer+ [ )

1
>+ 2
—2(4n? + 7wl?) /Q¢ ’

if N(L£) is small enough depending on C(c), but independently of [. Therefore, if
L¢ =0 and ¢ vanishes on the boundary of 2, ¢ = 0.

For the estimate in (iv), we quote Kapouleas (Appendix A of [9]): The desired
estimate reduces to the case where v = f = 1 on 0y, because otherwise we can
produce a subdomain of 2 with a vanishing eigenvalue. If £ = A, the solution is
v = (I —s)/l. This can be corrected to the solution to £ of the form A+ V-V +d
with [V : CYH(Q,171)| and ||d : C*(,172)|| appropriately small, by scaling the
length of the cylinder to unit, while leaving the meridian unchanged. We thus can
have the estimate for v with a constant 3/2 for example instead of 2. By using now
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the earlier proven parts of the proposition we can correct this v to a v for a general
L while establishing the estimate at the same time. ([

Proposition 38 is proved by treating £ as a perturbation of the Laplace operator
A, for which the results are standard.

APPENDIX B. PROOF OF LEMMA 43

Let us recall that h := (3|As|* 4 €1,)gs, where €, > 0 is small depending on 7
and dg. The c-approximate kernel of Ly, := Ay, + 2|Ax|?/(|As|? + 2¢3,) is the span
of the eigenfunctions of Lj with corresponding eigenvalues in [—c¢, ¢|, and G’ is the
group generated by (s, z) — (s,z + 27).

Lemma 43. There are positive constants C and ¢ such that given E € L?(3/G’, h)
there is 8 = (0p.1,0E,2) such that (E723:1 0r jw;)/(|As|*+2¢4) is L*(X/G', h)-

orthogonal to the c-approximate kernel and
05| < CIIE/(|As|* + 2en) : L*(2/G", h)].

Proof. First, we prove that all eigenfunctions f of Lj on X corresponding to low
eigenvalues, say less than 10, satisfy
(44) If - CO®) < Cllf - L2(2/E, Wl
Indeed, we control the geometry of X <o uniformly so we can use standard elliptic
theory to bound || f : C%(X<2)|| in terms of || f : L?(X<2/G’, h)||. In the region s > 1,
we consider f as a solution to the equation Ax,f + |As|?f + 3(|Ax|? + 2e1)f = 0.
Using Corollary 16 and the fact that ep, is small, we can apply the result (vi) of
Proposition 37 to obtain || f : C°(X>1)|| < 2||f : C°(0%<1)]|, which establishes (44).
Since 3(0(T)) is minimal without umbilical points, the Gauss map is conformal.
It maps 3(0(T))/G’ to a sphere minus the four points (+sin6(7"), £ cos 0(T),0). By
the Weierstrass-Ennerper representation of Scherk surfaces from [11], the standard
metric on the sphere pulled back to X(6(T)) is ho = | A2 gs(o(1))-
Let p : S?2 — R denote the distance from {(&sin@(T), 4 cosd(T),0)}. We define
a logarithmic function g2 : S% — [0,1] by

sz (p) = ¥[2,1](log p(p)/ log dn),
where ¢, is a small positive constant to be determined in the course of the proof.
Notice that gz vanishes at distance < 47 from these points, and ¥g2 = 1 at
distance > d,.

For a function f on X(6(T))/G’, we define F;(f) to be the pushforward to /G’
by Z = Z[T, ¢, 7] of the function fig2 o v. Similarly, for a function f’ on X/G’,
Fa(f") is a function on X(6(7")) /G’ defined by Fa(f’) = (f'0Z)(1ps20v). The region
on X(0(T))/G" where 1% ov # 1 is contained in four disks of radius 4y, therefore
its h-area is small for §; small. On X/G’, the region where 93 o v # 1 has small
area also. Indeed, the points at distance d;, of (£sin6(T), £ cosé(T),0) all have to
same s-coordinate on X(6(7")) (see [13] Section 4.3). Let use call this value so. We
use Lemma 15 and Corollary 16 to bound the area by

1
[ =g [ (asPrzeav,
(E>s0)/G (E>50)/G’

!
< C’/ (e + 72 +ep)ds < Cle ™ + (1% 4+ &) (I — s0)),

S0
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where dV; is the volume form associated to the metric g and ! = 56,/7. Taking ¢y,
small with respect to /7 so that Ay is not singular, and taking &, small enough so
that sq is large, we obtain a small h-area for the region where w% ov#1onX.

Using Rayleigh quotients, one can prove that if two manifolds (Mj,hy) and
(Mas, hy) are close to being isometric, except on a set of small area, and if there
exist €1 > 0 and maps Fy : C§°(My) — C§°(Ms) and Fp : C§°(Mz) — C§°(My)
such that for all f,g € C§°(M;), i,5 =1,2, j # 1,

[Fiflloe < 2[I.flloos
[(f,9) = (Fi(f), Fi(9))] < e1ll flloollglloc,
IV(F (D2 < A+ e)[[VE Lz + el flloo,
If = Fj o Fi(Hllez < erllflloo

where (-,-) stands for the L? inner product and || - ||« is the L norm, then the
eigenvalues of the operator Ly, on M; and Ly, on My are close. Moreover, if f is
an eigenfunction of Ly, on M; with corresponding eigenvalue A, F;(f) is close to a
linear combination of eigenfunctions of corresponding eigenvalues close to A on M;.
All the “closeness” depends on 1 and can be estimated. The reader can find more
detail in Appendix B of [8] and note that the first condition in B.1.6 was corrected
by Kapouleas (see [10] page 281) and should be replaced by the one given here.
One can generate functions close the approximate kernel of Lj, on X by cutting
off functions in the approximate kernel of Ay, + 2 on X(6(7T')). The eigenfunctions
corresponding to eigenvalues less than 1 of the operator Ay, + 2 on X(6(T')) are
exactly €, - v and €, - v. In Lemma 27, we proved that we can generate any
combination of € - v and €} - v with a linear combination of w; and ws. The bound
on |@ | follows from the fact that P~! in Lemma 27 is bounded. O
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