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My main research interests lie in the field of geometric analysis. Specifically, I study the
mean curvature flow and gluing constructions for elliptic and parabolic equations. More
recently, I have become interested in free boundary problems and I enjoy problems involving
partial differential equations and differential geometry in general.

In the first section of this research statement, I discuss some classic and current results
regarding the mean curvature flow. The reader interested in going directly to my recent
results and current research projects can jump to Sections 2 and 3.

1. Introduction

A family of surfaces {Mt} in R3 evolves by mean curvature flow (MCF) if each point moves
perpendicularly to the surface at a speed equal to the mean curvature at the point. One of
the reasons why this flow is so important is because it is the flow that decreases the surface
area the fastest, among all flows with the same norm. Since curvature can be considered as
a second derivative of position, the MCF is a parabolic flow. In the same way that solutions
to the heat equation are smooth, solutions to the MCF are smooth for almost all positive
times.

Figure 1. Curvature flow on curves. The solid line represents the flow at a
later time.

In the case of curves in R2, the speed is just the curvature, so we can imagine the flow as
the motion of the boundary of a melting thin sheet of ice floating on cold water. Grayson
[Gra87] proved that any embedded closed curve in the plane will stay embedded and shrink
to a point. In R3, the MCF shrinks spheres to their centers and cylinders to their axes.

The mean curvature flow and related geometric evolution equations have many applica-
tions. For example, they can be used for topological classifications of manifolds, and in
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the celebrated series of articles by Perelman, the Ricci flow was used to solve the Poincaré
conjecture. Another application of flows can be found in image processing, where the MCF
is an important tool because of its smoothing property.

In general, these evolution equations can develop singularities in finite time. In the case
of the MCF, singularities will always develop if we start with a compact surface. Indeed, we
can enclose such a surface in a large enough sphere and since two disjoint surfaces always
remain disjoint, the flow of the compact surface can not exist longer than the flow of the
shrinking sphere. In order to define a more general (weaker) version of the flows past their
singularities, it is essential to have a good understanding of the behavior of the solutions
near the singular/extinction time.

The second fundamental form A(p, t) encodes all the information about the curvature of
a surface. A singularity at time T is classified into one of two types according to the rate at
which maxp∈Mt |A(p, t)| blows up. Roughly speaking, singularities are of type I if we have
a good control of the geometry. For the MCF, Huisken [Hui90] showed that these singu-
larities are modeled by self-shrinking surfaces, which are surfaces that are rescaled by the
flow, while their shape is left unchanged. Currently, there are only four known examples of
complete embedded self-shrinking surfaces in R3: spheres, cylinders, planes and shrinking
doughnuts [Ang92]. However, there exist numerical evidence of many others [ACI95] [Cho94].

Type II singularities are more complex because of the lack of control on the curvatures.
The examples of convergence in [AV95] and [AV97] indicate that they are modeled by self-
translating surfaces (STS), which are surfaces that are translated by the flow while their
general shape is left unchanged. The second curve in Figure 1 is self-translating and is called
the grim reaper. Huisken and Sinestrari [HS99] proved that if the initial surface has non-
negative mean curvature, the family of evolving surfaces appropriately rescaled converges to
a strictly convex STS or Rd−k × Σk, where Σk is a lower dimensional strictly convex STS.
Until recently, few examples of this type were available. Besides the classic examples of a
plane, a grim reaper cylinder, and a rotationally symmetric soliton [AW94], I constructed
STSs by desingularizing the intersection of a grim reaper cylinder and a plane [Ngu09b].
Recently, I generalized the previous result and proved that the construction can be adapted
to desingularize any generic finite family of grim reaper cylinders [Ngu10b].

A full classification of singularities is not possible. The most general studies to date use
some properties preserved by the flow to restrict the families of evolving surfaces: convex
[Hui84], mean convex [HS99], rotationally symmetric [KM], etc. Moreover, few examples of
self-shrinking surfaces are stable. Indeed, Colding and Minicozzi recently proved that the
only stable self-shrinkers in R3 are spheres, cylinders, and planes [CM]. In other words, any
other self-shrinker can be deformed so that the family of evolving surfaces flows away from
it. Unstable examples should be numerous but elusive and it is therefore essential to find
successful methods to find them.
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2. My research

Inspired by the works of Traizet [Tra96] and Kapouleas [Kap97] on minimal surfaces, I
successfully constructed new examples of embedded self-translating surfaces in R3. The idea
is to start with two STSs, for example two grim reaper cylinders, and cut out a neighborhood
of the intersection (see Figure 2). I then fit a well-chosen surface in the gap using smooth
transition functions to obtain an embedded approximate solution. The exact solution is
found by solving a perturbation problem. This process, which transforms an immersed
surface into an embedded one, is called desingularization.

Figure 2. Construction of an approximate solution.

The surfaces used to replace the intersection line(s) are Scherk minimal surfaces, shown
in Figure 3. They are ideal because they are embedded, asymptotic to four half-planes, and
have many symmetries. Note that these surfaces are minimal surfaces (their mean curvature
vanishes everywhere) so they won’t move under MCF until we bend them.

Figure 3. Two Scherk surfaces and the cross sections of one of them.

My first result about STSs concerns the desingularization of a plane and a grim reaper
cylinder. One can think of the initial configuration as a trident times R.

Theorem 1 ([Ngu09b]). There exists a complete embedded self-translating surface that desin-
gularizes the intersection of a grim reaper cylinder and a plane, provided the plane is po-
sitioned exactly half-way between the asymptotic planes of the grim reaper cylinder and is
parallel to them.
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The proof gives the existence of not only one STS, but a whole family characterized by a
small parameter τ . Roughly speaking, τ controls the size of the neighborhood that is cut out
and the scaling of the Scherk surface (the scale factor is ∼ τ). A smaller τ means working
in a smaller neighborhood and achieving a better approximate solution in the first step. As
long as this parameter is small enough, it will be possible to solve the perturbation problem
and the construction will work.

The previous result relies heavily on the many symmetries of the initial configuration.
Recently, I proved that this theorem can be generalized to the setting of a finite family of
grim reaper cylinders in general position, which only has symmetries in the z-direction.

Theorem 2 ([Ngu10b]). If {Γn}Nn=1 is a finite family of grim reaper cylinders moving at the
same velocity under MCF and such that

• no three grim reapers intersect on the same line,
• no two grim reapers share the same asymptotic plane,

then there exist a constant δτ > 0 and a one parameter family of self-translating surfaces
{Mτ}τ∈(0,δτ ) desingularizing

⋃N
n=1 Γn. The surfaces Mτ converge uniformly to the union of

the grim reapers as τ → 0 on any neighborhood of R3 that does not contain the lines of
intersection.

Figure 4. A self-translating surface Mτ̄

Desingularizations are special cases of more general gluing constructions, where one sim-
ply fits together adequate pieces to construct the approximate solution. These techniques
have been applied to diverse settings, such as constructing constant mean curvature surfaces
[Kap90] and gluing wormholes into 3-manifolds in relativity [IMP02]. Gluing constructions
are very technical, however the overarching principle is the same. First, one constructs an ap-
proximate solution by attaching appropriate pieces with smooth cut-off functions. Then, in
what is typically a much harder step, one adjusts this initial guess to obtain an exact solution.

In our case, we perturb a surface by adding the graph of a small function in the normal
direction. More precisely, the position vector X becomes X + fν, where f is the function,
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and ν is the oriented unit normal vector. We then determine how the function f affects
the geometric quantities in the equation we wish to solve. Finding a self-translating surface
amounts to finding a solution f to a nonlinear partial differential equation and relies on a
good understanding of the associated linear operator L. In most cases, the linear operator
has a non trivial kernel, so solving Lf = E directly is not possible. But this problem is not
fatal.

One way to deal with the presence of a kernel is to restrict the class of possible per-
turbations by imposing symmetries on all the surfaces considered, and hopefully rule out
functions in the kernel. This method only works if the initial configuration has the imposed
symmetries. Another approach is to invert the linear operator modulo eigenfunctions cor-
responding to small or vanishing eigenvalues. In other words, one can add or subtract a
linear combination of eigenfunctions to the inhomogeneous term E in order to land in the
space perpendicular to the kernel, where the operator is invertible. The key to a successful
construction is to be able to generate these linear combinations by slight adjustment of the
approximate solution. The initial configuration therefore has to be flexible. Once the study
of the linear case is completed, one uses a fixed point theorem to finish the proof.

3. Current and future projects

3.1. Desingularization for self-shrinking surfaces under MCF. I have made signif-
icant progress in desingularizing the intersection of a sphere and a plane to obtain a new
example of a self-shrinking surface [Ngu09a] [Ngu10a]. The construction is more delicate,
because of the lack of flexibility. Although spheres shrink to their centers no matter where
they are in R3, in order to find the equation for self-similar surfaces one has to choose the
center of homothety, thereby fixing the origin. As a result, the equation is not translation
invariant. Despite these difficulties, the desingularization of a sphere and a plane through
its center should be possible. It would be interesting to figure out if all combinations of
the known examples (sphere, cylinder, plane, and doughnut) can be desingularized. If not,
under what conditions would the construction work?

3.2. Stability of the grim reaper. Colding and Minicozzi have shown that spheres, cylin-
ders and planes are the only stable self-shinking surfaces in R3. The same question con-
cerning self-translating surfaces is open. I have started a collaboration with Ivan Blank to
prove that the grim reaper is stable under small perturbations. One related question would
be to determine how much we can open the U shape of the grim reaper before the family of
evolving surfaces moves away from it.

3.3. Gluing constructions in relativity. Inspired by the work of Isenberg, Mazzeo and
Pollack [IMP02], I am working on a gluing construction along hyperbolic cusps for initial
data to Einstein equations, in collaboration with David Auckly. This problem is related to
Thurston’s geometrization conjecture, which was solved by Perelman and states that any 3-
manifold has a natural decomposition into geometric pieces each having one of eight possible
geometries. Perleman’s proof shows that the parabolic Ricci flow uncovers the geometric
decomposition of a 3-manifold. The Einstein equations can be considered as a hyperbolic
Ricci flow, so it is natural to wonder how the evolution of the vacuum Einstein equations
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relates to the geometric decomposition of the 3-manifold. In particular we ask if it is possible
to glue initial data that is close to geometric data along tori.

3.4. Traveling wave Allen-Cahn equation. Let u be an entire solution of the traveling
wave Allen Cahn equation

∆u+ c∂xn+1u+ u(1− u2) = 0, in Rn+1,(1)

|u(x)| ≤ 1, ∂xn+1u > 0, lim
xn+1→±∞

u(x′, xn+1) = ±1.(2)

Del Pino, Kowalczyk, and Wei [dPKW] claim that given any self-translating surface that
separates R3 into two connected components, they can construct a solution to (1) whose zero
level set is the original self-translating surface. I plan on studying whether the zero level sets
of all solutions to (1) and (2) are self-translating hypersurfaces for the MCF. The problem
is related to the de Giorgi conjecture, which states that the zero level sets of entire solutions
to ∆u+ u(1− u2) = 0 and (2) are minimal surfaces. The conjecture has been solved with a
positive answer in dimensions n ≤ 7 and with a negative answer in dimensions n ≥ 8.
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