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Abstract

In decision theory, incommensurabilities among conflicting decision criteria are typically handled
by multicriteria optimization methods such as Pareto efficiency and mean-variance analysis In
econometrics and statistics, where conflicting model critera replace conflicting decision criteria,
probability assessments are routnely used to transform disparate model discre pancy terms nto
apparently commensurable quantities. This tactic has both strengths and weaknesses On the pius
side, 1t permits the construction of a single 1cal-valued measure ol theory und data mcompatibility in
the form of a hkehhood function or a posterior probability distribution On the minus side, the
amalgamation of conceptually distinet model discrepancy terms into a single 1eal-valued incompati-
bility measure can make it difficult to untangle the true source of any diagnosed model speatication
problem. This paper discusses recent theoretical and empirical work on a multicriteria “flexible least
squares” (FLS) approach to model specification und estimation. The basic FLS objective 15 to
determine the “cost-cificient frontier,” that is, the sct of estimates that are minimally mcompatible with
a specified set of model criteria. The relation of this work to previous work in econometrics, statistics.
and systems science is also clarified.
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1. Imtroduction

Why have multicriteria decision making (MCDM) techniques played only a mi-
nor role in econometric and statistical methodology to date?

On the surface, this minor role is surprising. Every postulated theoretical relation
is almost surely false. A cross-sectional function for household demand may be
misspecified as linear rather than nonlinear. Dynamic relations may be misspecified
because, for example, a wealth accumulation function omits an important variable.
Measurement errors stemming from imprecise measuring instruments may not be
additive, or, even if additive, they may not be normally distributed. The important
point is that conceptually distinct types of theoretical relations are false for
conceptually distinct reasons. Consequently, model specification and estimation
would seem, intrinsically. to be a multicriteria decision problem. Any model will
typically entail various conceptually distinct types of model specification error, and
a researcher undertaking the estimation of the model would presumably want each
type of error to be small.

The apparent explanation for the minor MCDM role is that standard econo-
metric and statistical techniques routinely require researchers to cast their inference
problems in an all-encompassing stochastic framework. As will be discussed more
carefully in subsequent sections, the actual data generating process is assumed to be
describable by means of some well-defined probability distribution either objective-
ly, i.e.. apart from any observer, or subjectively, as a coherent reflection of a re-
searcher’s beliefs. Within this all-encompassing stochastic framework, discrepancy
terms arising from model misspecification are interpreted as random quantitites
governed by joint probability distributions. The determination of the separate and
joint behavior of the theoretical variables in relation to process observations can
then be analyzed in terms of a likelihvod function or a posterior probability
distribution. The problem of reconciling imperfect theory with observations is thus
transformed into the problem of determining the most probable parameter valucs
for a stochastic model whose structural form is assumed to be correctly and
completely specified.

What are the strengths and weaknesses of this standard approach? On the plus
side, it provides a powerful and elegant way in which to scale and weigh disparate
sources of information. All discussion of theoretical variables is conducted in terms
of assumed joint probability relations, so that a common level of abstraction is
achieved. This permits the construction of a single real-valued measure of incom-
patibility (goodness of fit) between theory and observations, e.g., the construction of
a likelihood function. To use an analogy from decision theory, it is as if the
preferences of decision makers with potentially conflicting objectives could always
be represented in aggregate form by a single real-valued utility function.

On the minus side, it forces an inferential study to proceed under the generally
false presumption of correct model specification. This standard “null hypothesis” is
to be employed even when a researcher is fully aware that he has resorted
to conventional or otherwise arbitrary probability assessments for model discrep-
ancy terms. Residuals (estimates for the model discrepancy terms) can of course
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subsequently be subjected to various diagnostic procedures to check for model
misspecification. Yet the fact remains that all incompatibilities between theory and
observations, whatever their actual source, are forced to reveal themselves as
inconsistencies between postulated and empirical probability relations; the cross-
sectional, dynamic, or measurement relations tend to be pushed into the back-
ground or lost sight of entirely through various analytical manipulations. Untangl-
ing the true source of a diagnosed specification problem can thus be difficult.

In Refs. [14-19] the problem of model specification and estimation is re-exam-
ined from a multicriteria perspective. A framework is developed which en-
compasses a broad range of views concerning the appropriate interpretation and
treatment of model discrepancy terms. On the one hand, conceptually distinct
discrepancy terms can be considered without amalgamation, as illustrated by the
“flexible least squares” (FLS) approach. The basic FLS objective is to determine the
set of estimates that are “cost efficient” in the sense that no other estimates yield
uniformly smaller discrepancy terms. Alternatively, when appropriate, joint prob-
ability assessments can be used to achieve a complete amalgamation of the
discrepancy terms into a single real-valued measure of theory and data incompati-
bility.

Section 2 illustrates the FLS approach for a time-varying linear estimation
problem in which a researcher is unable or unwilling to provide probability
assessments for model discrepancy terms. Section 3 contrasts the FLS handling of
this problem with the standard inferential approach in which probability assess-
ments for discrepancy terms are assumed to be available. A variety of FLS
simulation studies and empirical applications are reviewed in Section 4. A more
general multicriteria framework for model specification and estimation is outlined
in Section 5. Section 6 discusses the relationship of this multicriteria framework to
previous uses of multicriteria methods in econometrics, statistics, and systems
science. Final remarks are given in Section 7.

2. The FLS Approach: An Hlustrative Example

Suppose scalar observations yy,¥», ..., r have been obtained on a process at
successive time points 1,2, ..., T. The basic estimation objective is to understand
the way in which the process has evolved over the course of the observation period.

The state of the process at each time t is described by an N x 1 column vector
x, of unknown process attributes. For example, for a time-varying linear regression
problem, x, might simply be a listing of the time t regression coefficients. For an
economic growth problem, x, might include stocks of real and financial assets
available at time t, together with various structural parameters characterizing the
objectives and constraints faced by firms and households.

The relationship between the observation y, and the state vector x, at each time
 is postulated a priori to be approximately linear. In addition, the evolution of the
state vector x, — although not well understood a priori - is postulated to be gradu.l
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in the sense that x, undergoes at most a small change from one observation time to
the next. These prior postulates of approximately linear measurement and gradual
state evolution are modelled as follows:

Measurement Relations [Approximate Linearity].
Ve —hx, =0, t=1,...,T, (1)

where h; is a 1 x N row vector of known exogenous variables.

Dynaziic Relations [ Gradual State Evolution].
Npag— X, 20, r=1,....,T —1. 2)

In accordance with the basic estimation objective, suppose an attempt is now
made to determine all possible estimates Xy = (¥,, ..., ¥7) for the state sequence
Xy = (xy,....x7) that are minimally incompatible with the given theoretical rela-
tions (1) and (2), conditional on the given observation sequence ¥y = (yy, ..., y7).
The multicriteria nature of this estimation problem is seen as follows. Two concep-
tually distinct types of discrepancy terms can be associated with each possible state
sequence estimate Xy. First, the choice of Xy could result in nonzero measurement
discrepancy terms y, — h;X, in (1). Second, the choice of X; could result in nonzero
dynamic discrepancy terms X,,, — X, in (2). In order to conclude that the theoret-
ical relations (1) and (2) are in reasonable agreement with the observat.ons, each
type of discrepancy would have to be small in some sense.

Supposc a measurement cost cy(Xq, ¥4, T) and a dynamic cost cplXr, ¥r. T) are
separately assessed for the two disparate types of discrepancy terms entailed by the
choice of a state sequence estimate X,. Thesc costs represent the degree to which
nonzero discrepancy terms wre viewed as undesirable. For illustration, suppose
these costs take the form of sums of squared discrepancy terms, implying that
positive and negative discrepancies are viewed as equally undesirable. More pre-
cisely, for any given state sequence estimate Xy, let the measurement cost associated
with X7 be given by

T
('M(XT.. Y]‘., T) = Z [", - h;X‘,]Z, (3)
=1
and let the dynamic cost associated with X; be given by
T-1

CD(XAT- Yr,T)= Z [Xie1 — X D[N+, — X], (4)

t=1

where D is a suitably selected positive definite scaling matrix.!

! The scaling matrix D can be specified so that the FLS estimates obtaned below for the state vectors

v, are essentially invariant to the choice of umits for the components of the exogenous vectors h,. See
Ref. [40, Footnote 3].
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If the prior beliefs (1) and (2) concerning the measurement and dynamic relations
hold true with absolute equality, then selecting the actual state sequence X as the
state sequence estimate would result in zero values for both ¢y and ¢p — the “ideal”
cost point in the terminology of Yu [45, p. 67]. In all other cases, each potential
state sequence estimate X will entail positive measurement and/or dynamic costs.
Nevertheless, not all of these state sequence estimates are equally interesting. In
particular, a state sequence estimate X that is dominated by another estimate X3,
in the sense that X7 yields a lower value for one type of cost without increasing the
value of the other, should presumably be excluded from consideration.

Attention is therefore focused on the set of undominated state sequence esti-
mates. Such estimates are referred to as flexible least squares (FLS) estimates. Each
FLS estimate shows how the process state vector could have evolved over time in
a manner minimally incompatible with the prior measurement and dynamic rela-
tions (1) and (2). Without additional modelling criteria, restricting attention to any
proper subset of the FLS estimates is an arbitrary decision. Consequently, the FLS
approach envisions the generation and consideration of a representative sample of
the FLS estimates in order to determine the similarities and divergencies displayed
by these potential state sequences. The similarities might be used to construct more
structured hypotheses regarding the measurement and evolution of the statc vector.
The divergencies reflect the uncertainty inherent in the problem formulation
regarding the true nature of the underlying process.

Define the cost possibility set to be the collection

C(T)= {"D(Xra Yr.T), ‘-'M(XTa Y;. T) IXT € RTV; (5)

of all possible configurations of dynamic and measurement costs attainable at time
7, conditional on the given observation sequence ¥y. In analogy to the usual
Pareto-efficient frontier, the cost-efficient fiontier CY(T) is then defined to be the
collection of all undominated cost vectors ¢ = (¢, o) in C(T) ., i.c., all cost vectors
¢ in C(T) lor which there exists no other cost vector ¢* in C(T) satisfying ¢* < ¢
with ¢* # ¢. Formally, letting vinin denote vector minimization,

CHT) = vminC(T). (6)

By construction, then, the cost-efficient {rontier is the collection of all cost vectors
associated with the FLS state sequence estimates.

If the N x T matrix [h,.....hy] has full rank N, the cost-efficient frontier C*(T')
is a strictly convex curve in the ¢p—cy plane giving the locus of vector-minimal
costs attainable at time T, conditional on the given observations. In particular,
as depicted in Figure 1, CY(T) reveals the measurement cost ¢y that must be
paid in order to achieve a zero dynamic cost ¢p, i.€., time-constant statc vector
estimates.

Once the FLS estimates and the cost-efficient frontier have been determined,
three different levels of analysis can be used to investigate the degree to which
the theoretical relations (1) and (2) are incompatible with the observations

Yia-oouVre
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Fig. L.

First, one can determine the efficient attainable trade-off between the measure-
ment and dynamic costs ¢y and ¢p at any point u along the cost-efficient frontier,
where u denotes the slope of the frontier multiplied by —1; i.e., u = — dey/dep.
Second, one can generate the FLS estimates whose cost vectors correspond to
a rough grid of u-points spanning the frontier. Each of these FLS estimates yields
a possible time path for the actual state vector, and summary descriptive statistics
(e.g., average value and standard deviation) constructed for these estimates can be
used to indicate the extent to which the state vector evolves over time. Finally, the
time-paths traced out by the FLS estimates can be directly examined for evidence of
systematic and possibly idiosyncratic time variations in individual state variables
that are difficult to discern from summary statistical characterizations. Various
simulation and empirical studics making use of this threc-stage FLS analysis are
discussed in Section 4, below.

In summary, the basic FLS objective is to characterize the set of all state
sequence estimates that achieve vector-minimal incompatibility between process
observations and imperfectly specified theoretical relations, whatever form these
theoretical relations might take. Although probability relations can be incorpor-
ated along with other types of theoretical relations (see [14, 19]), they do not play
a distinguished role. Indeed, as illustrated above, they may be absent altogether. In
contrast, commonly used statistical estimation techniques such as maximum a pos-
teriori (MAP) and maximum likelihood estimation are point estimation techniques
that attempt to determine the most probable state sequence estimate for a stochas-
tic model whose structure is assumed to be correctly and completely specified. The
crucial distinction between the iwo approaches lies in the use of probability theory
to transform potentially disparate model discrepancy terms into apparently com-
mensurable quantities.

The next section illustrates this distinction by ve-formulating the state estimation
problem (1) and (2) in accordance with standard statistical practice.
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3. Standard Approach to the Problem in Section 2

Suppose scalar observations yy, ..., yr obtained on a process are pos.ulated to be
approximately linearly related to a sequence of state vectors x, ..., x¢. The prior
measurement relations take the following form.

Measurement Relations [ Approximate Linearity].
ye=hx+v, t=1..T, (7)

where x, denotes an N x 1 column vector of unknown state variables, k', denotes
a 1 x N row vector of known exogenous variables, and v, denotes a scalar measurement
discrepancy term.

If no restrictions are placed on the discrepancy term v,, then Eq. (7) is simply
a defining relation for ¢,. That is, v, is a slack variable, and Eq. (7) is true by
definition whether or not an approximately linear relation exists between y, and
x, in actuality. The slack variable v, depends on everything affecting y, that is not
captured by the term A;x, — that is, everything unknown, or not presumed to be
known, about how y, might depend on higher order terms in x, on missing
variables, and so forth. To give content to the prior of “approximately linear
measurement,” the discrepancy term v, must further be restricted to be small in
some sense.

Suppose in addition to (7) that the state vector x, is assumed to evolve gradually
over time. The prior dynamic relations take the following form.

Dynamic Relations [ Gradual State Evolution].
Xpop=x+w, t=1....T—1, (8)

where the N x 1 vector w, denotes a dynamic discrepancy terim.

As before, if no restrictions are placed on the discrepancy term w,, then Eq. (8)
simply defines w, to be a slack variable incorporating everything unknown, or not
presumed to be known, about how the differenced state vector [x,+, — x,] depends
on higher -order terms in x,, on missing variables, and so forth. Consequently, as it
stands, Eq. (8) is true regardless of the actual relation between x,., and x,. To give
content to the prior of “gradual state evolution,” the discrepancy term w, must
further be restricted to be small in some sense.

If no additional theoretical relations are introduced, the estimation problem
described above is simply an alternative representation for the multicriteria estima-
tion problem outlined in Section 2. Each possible estimate for the state sequence
(X1, ..., xr) entails two conceptually distinct apple-and-orange types of discrepancy
terms — measurement and dynamic — and a researcher undertaking this estimation
would presumably want each type of discrepancy to be small,

However, standard econometric and statistical techniques invariably do intro-
duce a third type of theoretical relation at this point in the description of
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an estimation problem: namely, probability relations restricting discrepancy terms.
Consider, for example, the following commonly assumed relations implying that
the measurement and dynamic discrepancy terms ¢, and w, in (7) and (8) are random
quantities with known probability density functions (PDFs) governing both their
individual and joint behavior.

Probability Relations.

(r,) and (w,) = mutually and serially independent processes; 9)
(PDF fore,)=P,, t=1,...,T; (10)
(PDF forw)=P,, t=1,....T —1; (1
x; distributed independently of ¢, and w, for each ¢, (12)
(PDF for x,) = P,. (13)

Since (7) and (8) are still interpreted as equations in the usual exact mathematical
sense, r, and w, now appear in these equations as commensurable “disturbance
terms” impinging on correctly specified theoretical relations. The previous inter-
pretation for r, and w, as apple-and-orange discrepancy terms incorporating
everything unknown about the measurement and dynamic aspects of the process is
thus dramatically altered.

Once the commensurability of the discrepancy terms w, and «, is assumed,
a single real-valued measure of theory and data incompatibility can be constructed.
Specifically, combining the measurement relations (7) with the probability relations
(9) -(13) permits the derivation of a probab.lity density function P(¥;|X7) for the
obscrvation sequence Yy = (y,....,)r) conditional on the state scquence
Xp:z(x,...,X ). Combining the dynamic relations (8) with the probability rela-
tions (9) - (13) permits the derivation of a “prior™ probability density function P(X;)
for Xr. The joint probability density function for Xy and ¥; then takes the form

P(Xy, ¥r) = P(Y1]X7) P(Xy). (14)

The joint probability density function (14) elegantly combines the two distinct
sources of theory and data incompatibility — measurement and dynamic- into
a single real-valued measure of incompatibility for any considered state sequence
X’l'.

As detailed in [43], an objective commonly assumed for estimation problems
described by relations of the form (7)-(13) is maximum a posteriori (MAP) estima-
tion, i.e., the determination of the state sequence Xy that maximizes the posterior
probability density function P(X;|¥;) . Since the obscrvation sequence ¥, is
assumed to be given, this objective is equivalent to determining the state sequence
Xp that maximizes the product of P(X,;|¥;) and P(¥y). In accordance with
Bayesian rules of probability theory,

P(XT|YT)'P(YT)=P(Y'rin)'P(XT)- (15)
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where, as earlier explained, the right-hand expression can be evaluated using the
relations (7)—(13). Determining a MAP state sequence is thus equivalent to deter-
mining a state sequence which minimizes the real-valued incompatibility cost
function

(X7, ¥y, T) = — log[P(¥Y7| X7) P(X7)]. (16)

In summary, what ultimately has been accomplished by the augmentation of the
measurement and dynamic relations (7) and (8) with the probability relations
(9)-(13)? The multicriteria problem of achieving vector-minimal incompatibility be-
tween imperfectly specified theoretical relations and process observations has been
transformed into the single-criterion problem of determining the most probable state
sequence for a stochastic model whose structure is assumed to be correctly and
completely specified.

One basic objection to this standard estimation approach is that it entails an
interpretation for the discrepancy terms that is at odds with the originally specified
priors (1) and (2). In particular. the time-trend smoothness prior (2) is replaced with
the prior of a random walk, even though these two priors represent different
conceptualizations for the movement of the underlying state vectors. The time-
trend prior (2) postulates that successive state vectors evolve gradually from one
time period to the next, a movement that might be captured by a straight line
or a sine wave, for example. In contrast, the random walk model implies that
“error terms” are persistently accumulated in successive state vectors, resulting in a
nonstationary vrocess exhibiting jagged discontinuities between successive state
vectors.

It is sometimes countered that this distinction is unimportant if the variances of
the random walk error terms are anticipated to be small. However. as stressed in
recent macroeconometric work. e.g.. [34]. the dynamic properties of a time-trend
model are altogether different from the dynamic properties of a random walk
model, however one models the variances of these ertor terms. Consequently.
“small discrepancy terms” and “small error term variances” are not conceptually
interchangeable descriptions. In particular, for initial diagnostic checks of poorly
understood structures, the probabilistic assumption of “small variances™ can be an
overly restrictive concept (cf. [35]).

Another important objection to the standard estimation approach is that the
probability relations (9)-(13) imply that w, and v, are governed by a well-defined
joint probability distribution and hence are cardinally comparable. For many
processes it is hard to maintain this assumption in a publicly credible way. For
example, the observations y;,....rr might be the outcome of a nonreplicable
experiment, implying that probabihity assessments for the discrepancy terms w;, and
r, cannot be put to an objective test. Alternatively, as stressed in Section 2, the
theoretical relations (7) and (8) might represent tentatively held conjectures
concerning a poorly understood process. or a linearized set of relations obtained for
an analytically intractable nonlinear process. In this case it 1s questionable whether
the discrepancy terms are governed by any meaningful probability relationships.
A researcher might then have to resort to specifications determined largely by
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convention if he is forced to provide a probabilistic characterization for the
discrepancy terms.

A third objection to the standard estimation approach is that conceptually
distinct discrepancy terms are amalgamated into a single real-valued incompatibil-
ity measure such as (16). This amalgamation makes it difficult to detect and
correctly sort out which aspects of the model, if any, are seriously misspecified.
There is of course no way to determine from the single real-valued measure (16) that
a serious specification error has occurred, e.g., in the dynamic relations (8) rather
than the measurement relations (7). In fact, (16) is constructed under the premise
that no specification error has occurred, and there is no way to use it per se to check
for any kind of modelling difficulty. Rather, subsequent tests must be conducted to
check whether the data appear to be anomalous with respect to the given model
specification, or whether other plausible model specifications exist that make the
data appear less anomalous.

A further difficulty here, as detailed in Ref. [19, Section 5.1], is that standard
diagnostic procedures force all incompatibilities between theory and observations
to reveal themselves as incompatibilities between theoretically anticipated prob-
ability relations and empirically determined statistical properties. For example,
suppose the dynamic relations (8) are fundamentally misspecified because the true
dynamic dependence of x,.; on x, is highly nonlinear. Using standard diagnostic
tests on the dynamic residual terms W, = [X,,., — %,], a researcher would presum-
ably perceive that the properties of these residuals are at odds with the probability
relations assumed for w, in (9) and (11). The tendency of the researcher might then
be to concentrate on modifying the probability assumptions for w, to improve
statistical fit — e.g., to replace serial independence with first-order serial correlation,
or to assume that w, has a timc-varying covariance matrix - rather than to think
more carefully about the actual physical or behavioral relationships connecting
Xy tO X,

These three objections to the standard estimation approach — potentially dis-
torted priors, inappropriate and potentially misleading assumptions of cardinal
comparability, and the confounding of conceptually distinct discrepancy terms
- would be of purely academic interest if treating discrepancy terms as commensur-
able random disturbance terms constituted the only way to obtain estimates for
unknown process states. However, Section 2 suggests to the contrary that an
alternative multicriteria treatment of discrepancy terms is also feasible for this
purpose.

4. FLS Simulation and Empirical Studies

In the previous two sections a case is made for the conceptual desirability of
a multicriteria FLS approach to the estimation of process states for processes
whose properties are poorly understood a priori and hence whose descriptions
incorporate potentially significant specification errors. Not yet examined, however,
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1s the extent to which the FLS approach permits the recovery of accurate informa-
tion about process states. The present section briefly reviews a number of simula-
tion and empirical studies that have addressed this issue.

Ref. [17] undertakes an FLS analysis of a time-varying linear regression prob-
lem, a special case of (1) and (2) in which the time ¢ state vector x, denotes the vector
of time t regression coefficients and the time ¢ exogenous vector h, denotes the
vector of time t regressor variables. The basic estimation objective is to determine
whether the regression coefficients have exhibited any systematic time-variation
over the course of the observation period.

A Fortran program for generating the FLS estimates is provided in Ref. [17],
together with an explanation of the program logic.? Various FLS simulation
experiments making use of this program are reported and graphically depicted in
[13,17]. These experiments demonstrate the ability of the FLS method to track and
recover linear, quadratic, sinusoidal, and elliptical motions in the true underlying
regression coefficients, despite noisy observations, and relying only on prior
measurement and dynamic relations of the form (1) and (2). Indeed, the motions are
recovered with good qualitative accuracy all along the FLS frontier.

For example, experiments were carried out for which the components of the true
two-dimensional coefficient (state) vectors x, = (b,;,b,») were simulated to be
sinusoidal functions of t. The first component, b,;, moved through two complete
periods of a sine wave over the interval of time fromt = 1 to t = 30, and the second
component, b.,, moved through one complete period of a sine wave over this same
time interval. Each observation y, was generated in accordance with the linear
regression model y, = Iyx, + v,. where the components of the regressor vector
Iy were taken to be deterministic cyclic functions of ¢ and the components of the
measurement discrepancy term v, were independently generated from a pseudo-
tandom number generator for a normal distribution N(0,0.5) .

As depicted in Fig. 2, the FLS estimates for b, and b,, closely tracked the true
values for these coeflicients both qualitatively and quantitatively at the point ¢ = 1
along the cost-efficient frontier. As y was increased from 1 to 1000 by powers of ien.
the FLS estimates were pulled steadily inward toward the zero dynamic cost
(ordinary least squares) solution, (b, b,;) = (0.03,0.04) for t = 1....,30. Neverthe-
less, for each u. the two-period and one-period sinusoidal motions of the true
coeflicients were still reflected. Thus, 60 coefficients were recovered from only 30
observations, with good qualitative accuracy, all along the cost-efficient frontier.

Although these simulation experiments indicate that the FLS estimates are able
to track smooth motions in the regression coefficients, the question remains
whether discontinuous motions cause the FLS method tc fail. This issue arose in
the FLS money demand study [40], for the focus of the study concerned possible

2This FLS program for time-varying linear regression has 1ccently been incoiporated into the
statistical package SHAZAM: see [44], or email info@shazam econ ubc.ca for information. See also
[18] for a more general FLS Fortran program, GFLS, apphcable for systems characterized by
approximately linear measurement and dynamic relations
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step-function breaks in money demand regression cocfficients. Various simulation
experiments were therefore conducted in which the components of the true regres-
sion coefficients were shifted idiosyncratically at various points in time. Surprising-
ly, using only measurement and smoothness priors analogous to (1) and (2), the
FLS estimates were able to track and recover these step-function shifts with good
qualitative accuracy all along the cost-efficient frontier despite the absence of any
prior knowledge concerning the timing. number, and magnitude of the shifts.
Indeed, the larger the magnitude of the shifts, the better the accuracy of the
estimates.

To understand this seeming paradox, consider what happens if an underlying
true linear regression coefficient f,; undergoes a single step-function shift ‘rom its
current valae b to a new value b’ at some time t = . If the FLS estimate ﬁ,, for 3, is
equal to b for ¢ < t', and if it remains at b over the remainder of the observation
period from ' to T despite the shift in f3,, at t = ¢, then the result is an accumulation
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of measurement costs over t' to T: and the larger the magnitude of the shift, the
larger the accumulation of measurement costs. On the other hand. if 8, were
likewisc to shift from b to b" at t = t’, the result would be a one-time dynamic cost
but no subsequent accumulation of measuremeni costs. Thus, cost-minimization
considerations will generally dictate that the FLS estimates should shift in response
to shifts in the underlying true coefficients as long as the shifts are spaced suffi-
ciently far apart and do not occur close to the final observation time T.

Given the promising nature of these shift simulation results, the FLS method was
next used in [40] to undertake an empirical money demand investigation.
Measurement and dynamic relations analogous to (1) and (2) were used to model
US money demand over the volatile period 1959: Q2-1985: Q3. In particular, no
prior information regarding possible shift times was used in the FLS estimation
procedure. The time paths traced out by the FLS coefficient (state) estimates were
found to exhibit a clear-cut downward shift in 1974, during the time of the first
OPEC oil price shock, at each tested point along the cost-efficient frontier. This
finding was in accordance with previous ordinary least squares (OLS) studies of US
money demand that had investigated the possibility of a 1974 shift in the money
demand regression coeflicients using variants of the Chow test and recursive least
squares.

In addition, however, the FLS results in [40] also indicated the presence of
systematic 1diosyncratic time variations in the regression coefficients — e.g., a sharp
and steady decline in the coefficient for the inflation rate — which Chow tests and
recursive least squares are not designed to detect. Moreover, the “unit root”
nonstationarity problem reported in these previous OLS money demand studies
was seen to disappear once the FLS coefficient estimates were allowed to exhibit
even small amounts of time variation in 4ccordance with the dynamic smoothness
prior (2).

A number of other empirical FLS studies have recently appeared that snggest the
potential usefulness of FLS as a diagnostic tool. For example, Dorfman and Foster
6] use FLS to develop a new measure of productivity change. They assume that
measurement crrors are independently and identically distributed random vari-
ables whereas the coefficients characterizing the production relation evolve slowly
over time in an unknown deterministic manner. Under these assumptions they are
able to provide a statistical interpretation for their FLS coefficient estimates and
hence also for their FLS measure of productivity change.

Dorfman and Foster then apply their FLS productivity measure to US agricul-
tural data for the period 1948-1983. They compare the FLS measure with two
more traditional measures that assume time-constant production function para-
meters—total factor productivity, and a measure of technical change based on the
elasticity of production with respect to time. They find (pp. 286-288) that the FLS
measure is more stable than these latter measures in the sense of having a smaller
variance around a constant percentage growth rate. Interestingly, the FLS measure
also produces considerably lower estimates of productivity growth than the total
factor productivity measure and generally higher estimates of productivity growth
than the elasticity measure.
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In [30]. Liitkepohl uses FLS to obtain detailed information on the variability of
individual coefficients for a US money demand relation specified in error-correc-
tion form. He shows (Fig. 1, p. 735) that all long-run coefficients are relatively stable
over the 33-year period 1954-1987, with the least stable being the coefficient on the
short-term interest rate (proxied by the discount rate on 91-day Treasury bills) and
the most stable being the coefficient on transactions volume (proxied by real GNP).
On the other hand, the short-run coefficients on rates of change in the interest rate,
transactions volume, and the general price level (proxied by the GNP deflator) are
considerably more volatile than the long-run coefficients over this same period. He
concludes (p. 742) that these FLS findings are consistent with a financial innova-
tions explanation of money demand instability over this period.

In a different study, Liitkepohl and Ferwartz [31] generalize the FLS time-
varying linear regression method develcped in [17, 18] by allowing for anticipated
seasonal periodicities as wel! as for tim : trends. They first unuertake a study of their
generalized FLS algorithm for three artificially generated time series, each having
a seasonal pattern, in which a variable is linearly dependent on its value in some
past time. In the first model, the intercept and slope coefficients are both time
invariant; in the second model, these coefficients are both periodic; and in the third
model, the intercept is periodic and undergoes a structural shift in mid-sample
whereas the slope coefficient is time invariant. They show (Tables 1 and 2) that their
generalized FLS measure is able to detect the time invariance of the coefficients in
the first model and the coefficient periodicities in the second and third models, as
well as the structural shift for the third model.

Liitkepohl and Herwartz then use their generalized FLS measure to study actual
consumption and income time series data for the (West) German economy, with the
goal of detecting specific types of coeflicient variations and identifying any coeffi-
cients that appear to be time-invariant. They interpret their FLS findings for
income as evidence in favor of a model in which the intercept is periodic and
remaining coefficients are time invariant: and they interpret their FLS findings for
consumption as evidence in favor of a model with time-invariant coefficients for
first and second-order lagged terms but with periodically varying coeflicients for
the intercept and higher-order lagged terms.

Finally, Schneider [36] carries out an extensive comparative study between
maximum likelihood (EM and scoring) and FLS time-varying linear regression
methods, where the latter is characterized (p. 192) as a descriptive variant of
Kalman filtering that constitutes a “simple but powerful tool of exploratory data
analysis.” He first applies FLS as a preliminary descriptive stability test to a stan-
dard Goldfeld-type model of money demand for (West) Germany. As depicted in
his Figs. 14.2-14.7 (pp. 206-208), he concludes (p. 211) that only the coefficients for
the short-term and long-term interest rates and the 90-day swap rate exhibit
a distinct time-varying behavior. In particular, he notes that the behavior of the
short-term interest rate is particularly remarkable: an apparent stabilization from
1974 onward that coincides with the date when the German central bank officially
switched from an interest-rate target regime to a money target regime. [In sub-
sequent discussion (p. 212) he notes that an FLS argument can also be made for
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a step change in the swap rate in 1974, the introduction date of flexible exchange
rates.] In support of these conclusions, he notes that the patterns in the individual
paths of the FLS coefficient estimates persist over a large portion of the cost-
efficient frontier.

Schneider next checks what paths for the regression coefficients are picked out by
maximum likelihood (ML) when the descriptive dynamic and measurement costs
¢p and cy are reinterpreted as elements of a likelihood function generated from
a random walk model for the regression coefficients. First cautioning that little is
known about the sampling distributions of ML estimators for this time-varying
linear regression model, he concludes (p. 212) that the movements in the coefficients
for the short-term interest rate and the swap rate appear to be significantly
identified to be time-varying at a type I error level of 1%. The estimates for the
variances are low, reflecting the fact that the random walk model spreads out the
time variation over the entire sample period. Although the FLS-apparent step
changes in the short-term interest rate and swap rate are thus considerably
smoothed, the ML-estimated paths fer the individual coefficients nevertheless
exhibit the saume general features as the FLS-estimated paths. This 1s seen in his
Figs. 14.8-14.13 (pp. 214-217) depicting two-standard-deviation bands about the
means of proxied a posteriori distributions for the regression coefficients, condi-
tional on ML estimates for remaining structural parameters.

5. Generalizations

In previons sections 1t 1s shown how FLS can be used to mnvestigate the buasic
incompatibility of theory and data for processes characterized by approximately
lincar measurement relations and gradual state evolution. In this section we
describe a more general multicriteria approach to estimation developed in [19]. We
also suggest how the latter approach mught be recast m the form of a utility
maximization problem subject to a budget constraint.

Consider a situation in which a sequence Y3 = (¥, ....yq) of noisy observations
¥, has been obtained on some process of interest. The basic objective is to learn
about the sequence of states X; = (xy, ..., x7) through which the process has passed.

Suppose the degree to which each possible state sequence estimate X is incom-
patible with the given observation sequence ¥y is measured by a K-dimensional
vector ¢(Xr, Y7, T) of incompatibility costs. These costs may represeni penalties
imposed for failure to satisfy criteria coijectured to be true (theoretical relations).
and also penalties imposed for failure to satisfy criteria preferred to be true
(objectives). Let C(T) denote the set of all incompatibility cost vectors
¢ = (X, Yy T) corresponding to possible state sequence estimates Xr. The cost-
efficient frontier, denoted by CF(T), is then defined to be the collection of un-
dominated cost vectors ¢ in C{T). That is, a cost vector ¢ in C(T)1s an element of
CY(T) if and only if there exists no other cost vector ¢* in C(T') satisfying ¢* < ¢
with ¢* # ¢.
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By construction, the state sequence estimates X; whose cost vectors attain the
cost-efficient frontier are characterized by a basic efficiency property: For the given
observations, no other possible state sequence estimate yields lower incompatibility
cost with respect to each of the K modelling criteria included in the incompatibility
cost vector. Each of these state sequence estimates thue represents one possible way
the actual process could have evolved over time in a manner minimally incompat-
ible with the prior theoretical relations and objectives.

The basic multicriteria estimation problem can be summarized as follows:

The Basic Multicriteria Estimation Problem: Given a process length T, an observa-
tion sequence Yr, and a vector-valued incompatibility cost function ¢(-. ¥y, T),
determine all possible state sequence estimates Xy that vector-minimize the incompati-
bility cost ¢(Xr, Y7, T). That is, determine all possible state sequence estimates
X7 whose cost rectors cxi:{r, Y1, T) attain the cost-efficient frontier CY(T).

The cost-efficient frontier C*(T) can be obtained by means of a multicriteria
extension of the usual scalar dynamic programming equations.®> Consider the
estimation problem at any intermediate time t. Suppose a K-dimensional vector
¢(X,.Y,,t) of incompatibility costs can be associated with each t-length state
sequence estimate X, = (¥, ..., %,), conditional on the sequence of observations
Y, =(yi....)) . Let C(X,, 1) dencte the set of all cost vectors ¢(X,, ¥,,t) attainable at
time 1, conditional on the time-t state estimate being ¥,; and let CF(%,, 1) denote the
cost-efficieat frontier for C(¥,.t) . Given certain regularity conditions, it is shown in
[19] that the state-conditional fronticr at any intermediate time ¢ is mapped into
a state-conditional frontier at time t + 1 in accordancc with a vector-valued
recurrence relation having the form

CH¥, i+ )= vmin(U [CHRO) + AR Xr 1oy ot + l)]), (17)
<
where vmin denotes vector-minimization and 4¢(-) denotes a vector of incremental

costs associated with the state transition (¥,, ¥, ;). The cost-efficient frontier at the
final time T is then given by

CH(T) = vmin [U CF(%r T)]. (18)
T

Three well-known state estimation algorithms are derived in [19] as single-
criterion special cases of the multicriteria recurrence relations ( 17)and (18) : namely,
the Kalman filter [21], the Viterbi filter [8. 417, and the Larson-Peschon filter [26]
for sequentially generating maximum a posteriori (MAP) probability estimates. In

:‘ General multicriteria dynamic programming algorithms have previously been developed by a var-
lety of other researchers. See. for example, Ref, [29].
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addition, an algorithm for sequentially generating the FLS estimates for the
problem discussed in Section 2, above, is derived as a bicriteria special case of ( 17)
and (18).

Finally, it is interesting to note that the basic multicriteria estimation problem
outlined above can be recast as a problem of utility maximization subject to
constraint. That is, one can include in the cost vector only those costs correspond-
ing to criteria conjectured to be true (i.., theoretical relations), so that the resulting
cost-efficient frontie1 depicting the feasible efficient trade-offs among model dis-
crepancy terms is anaiogous to a “budget constraint.” One could then superimpose
on this frontier the indifference curves for a researcher’s “utility function™ that
assigns a utility value to each possible configuration of costs (discrepancy terms),
thus permitting for that researcher the selection of a unique “best” model specifica-
tion along the frontier. In this way it might be possible to separate the subjective
selection of a model based on properties preferred by individual researchers from
the more objective identification of model specifications that are efficient with
regard to possible trade-offs among discrepancy terms.

6. Relation to Previous Work

Roughly stated, multicriteria decision making (MCDM) is the study of decision
situations in which one or more agents with potentially conflicting objectives must
somehow decide on the implementation of an action. Due in large part to the
seminal work of Charnes and Cooper. Yu, Zeleny and others dating back to the
early nineteen sixties, MCDM has now become an established interdisciplinary
field that cuts across the boundary lines separating operations research, manage-
ment science, systems science, computer science, applied mathematics, psychology.
and many other disciplines. See, for example. Refs. [7, 24, 38, 45-47].

The duality between decision making (control) and estimation (system identi-
fication) for single-criterion optimization problems has been known for over
30 years ([21, p.42]). Surprisingly, however, the interconncctions between
multicriteria decision making and multicriteria estimation have yet to be systemati-
cally explored.

Some use of multicriteria methods has of course occurred in statistical inferential
studies. Multicriteria methods have traditionally been used to describe the trade-off
between Type I and Type II errors. In addition, multicriteria methods have been
used to describe the trade-off between bias and variance (fidelity and smoothness)
which some estimation procedures entail. See, for example, the discussion of ridge
trace procedures in [12, pp. 915-916], the discussion of smoothing splines in [42],
and the discussion in [9] of penalized likelihood methods for the location and
probabilistic evaluation of “bumps™ in =stimated probability densities.

One also finds instances in which researchers have advocated using multicriteria
methods for other types of estimation purposes. For example, in the systems
literature, Benedict and Bordner [3] proposed a bicriteria estimation algorithm for
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a class of radar tracking problems. Moreover, various researchers have proposed
using bicriteria methods for handling the dual objectives of system optimization
and system identification which arise for “dual control” problems, i.e., for problems
in which an agent is attempting to control a system at the same time he is
attempting to learn about its characteristics. See, for example, [10, 25]. In the
MCDM literature, both Narula and Wellington [33] and Zeleny [46, pp. 469-471]
have proposed the use of multicriteria methods for linear regression analysis. Also,
Charnes and Cooper have developed a “data envelopment analysis” method for the
estimation of the Pareto-efficient frontier of an empirically determined multi-
input/multi-output production function. The mcthod has been used to classify
organizations using the same kinds of inputs and outputs either as efficient
or inefficient; see [1]. Other potential applications of this method are discussed in
[4, 37].

In the econometrics literature, Leamer [27, pp. 141-170] introduces the notion
of an “information contract curve” in the space of regression coefficients to discuss
regression selection strategies in the case in which only the contours (iso-density
surfaces) of the prior probability density function anc the likelihood function are
known. Specifically, the information contract curve is a locus of points giving all
feasible estimates for the regression coefficient vector which are efficient relative to
two potentially conflicting criteria: maximization of the prior probability density
function specified as a contour map; and maximization of the sample-conditioned
likelihood function specified as a contour map.

In subsequent work (see [ 28] ), Leamer proposes a more general “global sensitiv-
ity analysis” for investigating the sensitivity of posterior distribution inferences to
alternative choices of prior probability distributions. A related line of work on
“set-valued filtering” has been developed in the systems science and statistics
literatures: sce, for example, [39, Section V.B; 32]. These studies argue that unique
estimates cannot be inferred from data sets when, for whatever reason, a data
analyst is unable to use probability assessments to fully scale and weigh disparate
sources of information in the form of a uniquely specified posterior probability
distribution.

Many statisticians, econometricians, and systems scientists are either unwilling
or unable to undertake a complete scalarization of their estimation problems in the
form of a posterior probability distribution. Nevertheless, rather than considering
the sensitivity of inferences to alternative prior probability distributions, the major-
ity of these researchers instead rely on ordinary least squares and maximum
likelihood methodas for initial estimation purposes, followed by subsequent diag-
nostic testing to check for model misspecification,

Hendry and Richard [11] have attempted to systematize the latter model
specification procedure. They formulate various model design criteria which they
believe to be of particular relevance for econometric modelling. For any one model,
these model design criteria could be construed as constituting an incompatibility
cost vector ¢ in the sense of Section 5, above. However, Hendry and Richard do not
attempt to determine the trade-offs among the criteria in accordance with any
systematic multicriteria (vector optimization) procedure.
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Rather, as is standard in the diagnostic testing literature, Hendry and Richard
advocate the sequential application of their model design criteria, opening themsei-
ves to the usual criticism (see, e.g., [12, pp. 869-8701]) that the choice of a final
model might depend upon the particular order of application.* One way to
interpret this path-dependence criticism is to note that Hendry and Richard may
simply be ending up at one among many possible points on a frontier of models
that are all equally acceptabile (efficient) relative to their postulated set of criteria. In
other words, assuming that the various criteria represent an over-identifying set of
constraints, a systematic multicriteria treatment of the modelling problem would
necessarily lead to a set of efficient models rather than to a uniquely determined
specification.

In summary, although the MCDM literature has apparently not had much of an
impact on econometric and statistical procedures to date, some preliminary steps
toward a full-blown multicriteria approach have been taken. Leamer considers the
trade-offs between a prior and a data-based conception of a best estimate. Hendry
and Richard formalize a set of potentially conflicting model design criteria which
they argue will be objectively meaningful to other researchers. In terms of the
general multicriteria framework outlined in Section 5, above, the differences separ-
ating these two approaches reduce to a different dimension K for the basic cost
vector ¢, a different idea concerning which model criteria should be included in c.
and a different degree of recognition that conflicting model criteria result in
set-valued inferences in the form of a nondegenerate cost-efficient frontier of
alternative models.

Our work on multicriteria estimation has its roots in “Sridhar filtering.” In
a series of studies initiated in the mid-nineteen sixties focusing on continuous-time
rigid-body dynamics (see, e.g., Refs. [2, 5] ), R. Sridhar and other associates
explored the idea of forming a cust-of-estimation function as a weighted sum of
squared dynamic and measurement discrepancy terms. In Refs. [14, 15] we extend
this previous work by considering a broader class of models and by derving exact
filtering equations for the determination of the cost-mmimizing selutions. In
a related study, Kohn and Ansley [22] discuss the relation between the use of
Bayesian smoothness priors for state-space smoothing and the use of a Sridhar-
type penalized least squares criterion function with quadratically specified dynamic
and measurement costs to achieve optimal function smoothing. However, as in the
earlier Sridhar studies, the cost-of-estimation functions in these studies are still
formulated with uniquely specified penalty weights.

The basic FLS approach, introduced in [16], instead focuses attention on a cost
vector (cp, cw) incorporating separate penalty costs for dynamic and measurement
discrepancy terms. This permits the construction of a “cost-efficient frontier.”
a curve in a two-dimensional cost plane that provides an explicit way to determine
the efficient trade-offs between dynamic and measurement discrepancy terms. Since

+The observation that the “decision path™ can affect a final choice 1s also well known n the MCDM
literature; see, e g, [23]
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the costs indicate the relative undesirability of various discrepancy term patterns
rather than any intrinsic properties of the discrepancy terms per se, quadratic cost
specifications — while useful for tractability — are in no sense required. As indicated
in Section 5 of this paper, we now view the original FLS formulation as a special
case of a more general multicriteria estimation framework in which the cost vector
¢ can incorporate whatever modelling criteria are deemed relevant for the problem
at hand.

7. Concluding Remarks

This paper suggests that multicriteria methods such as FLS provide a systematic
way to approach the estimation of processes whose descriptions embody poten-
tially significant specification errors. The heart of the FLS approach is the recogni-
tion that conflicting model criteria result in set-valued inferences in the form of
a nendegenerate cost-efficient frontier of alternative model specifications. The
power and elegance achieved by the usual scalarization through the introduction
of probabilistic assumptions is impressive; but when doubt exists concerning
the appropriateness of these assumptions, FLS offers a contending conceptual
alternative.
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