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Abstract 

In decision theory, lncommensurabihties among conflicting decision criteria are typically handled 
by multicritena optimization methods such as Pareto efficiency and mean-variance analysis In 
economelrics and statistics, where conflicting model cnterm replace conflicting decision criteria, 
probabdtty assessments are routinely used to transform disparate model discr, pancy term.~ into 
apparently commensurable quantities. This tactic has both strengths and weaknesses On the p~us 
side, it permits the construction of a single teal-valued measure ol theory and data mcompattbihty m 
Ihe form of a hkehho~3d function or a posterior probabihty distribution On the minus side, the 
amalgamation of conceptually distract model discrepancy terms into a single ~eal-valued mcompatl- 
bdtty measure can make it difficult to untangle the true ,,,ourcc of any dmgnosed model specification 
problem. This paper discusses recent theoretical and empirical work on a multicritena "'flexible least 
squares" (FLS) approach to model specification and estimatton. The basic FLS objective is to 
determine the "cost-efficient frontier,'" that is, the set of estimates that are mimmaUy incompatible w~th 
a specified set of model criteria. The relatton of this work to previous work m econometrics, statistics, 
and systems science is also clarified. 
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1. Introduction 

Why have multicriteria decision making (MCDM) techniques played only a mi- 
nor role in econometric and statistical methodology to date? 

On the surface, this minor role is surprising. Every postulated theoretical relation 
is almost surely false. A cross-sectional function for household demand may be 
misspecified as linear rather than nonlinear. Dynamic relations may be misspecified 
because, for example, a wealth accumulation function omits an important variable. 
Measurement errors stemming from imprecise measuring instruments may not be 
additive, or, even if additive, they may not be normally distributed. The important 
point is that conceptually distinct types of theoretical relations are false for 
conceptually distinct reasons. Consequently, model specification and estimation 
would seem, intrinsically, to be a multicriteria decision problem. Any model will 
typically entail various conceptually distinct types of model specification error, and 
a researcher undertaking the estimation of the model would presumably want each 
type of error to be small. 

The apparent explanation for the minor MCDM role is that standard econo- 
metric and statistical techniques routinely require researchers to cast their inference 
problems in an all-encompassing stochastic framework. As will be discussed more 
carefully in subsequent sections, the actual data generating process is assumed to be 
describable by means of some well-defined probability distribution either objective- 
ly, i.e., apart from any observer, or subjectively, as a coherent reflection of a re- 
searcher's beliefs. Within this all-encompassing stochastic framework, discrepancy 
terms arising from model misspecification are interpreted as random quantitites 
governed by joint probability distributions. The determination of the separate and 
joint behavior of the theoretical variables in relation to process observations can 
then be analyzed in terms of a likelihood function or a posterior probability 
distribution. The problem of reconciling imperfect theory with observations is thus 
transtbrmed into the problem of determining the most probable parameter values 
lbr a stochastic model whose structural form is assumed to be correctly and 
completely specified. 

What are the strengths and weaknesses of this standard approach? On the plus 
side, it provides a powerful and elegant way in which to scale and weigh disparate 
sources of information. All discussion of theoretical variables is conducted in terms 
of assumed joint probability relations, so that a common level of abstraction is 
achieved. This permits the construction of a single real-calued measure of incom- 
patibility (goodness of fit) between theory and observations, e.g., the construction of 
a likelihood function. To use an analogy from decision theory, it is as if the 
preferences of decision makers with potentially conflicting objectives could always 
be represented in aggregate form by a single real-valued utility function. 

On the minus side, it forces an inferential study to proceed under the generally 
false presumption of correct model specification. This standard ~'null hypothesis" is 
to be employed even when a researcher is fully aware that he has resorted 
to conventional or otherwise arbitrary probability assessments for model discrep- 
ancy terms. Residuals (estimates for the model discrepancy terms} can of course 
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subsequently be subjected to various diagnostic procedures to check for model 
rnisspecification. Yet the fact remains that all incompatibilities between theory and 
observations, whatever their actual source, are forced to reveal themselves as 
inconsistencies between postulated and empirical p r o b a b i l i t y  relations; the cross- 
sectional, dynamic, or measurement relations tend to be pushed into the back- 
ground or lost sight of entirely through various analytical manipulations. Untangl- 
ing the true source of a diagnosed specification problem can thus be difficult. 

In Refs. [14-19] the problem of model specification and estimation is re-exam- 
ined from a multicriteria perspective. A framework is developed which en- 
compasses a broad range of views concerning the appropriate interpretation and 
treatment of model discrepancy terms. On the one hand, conceptually distinct 
discrepancy terms can be considered without amalgamation, as illustrated by the 
"flexible least squares" (FLS~ approach. The basic FLS objective is to determine the 
set of estimates that are "cost efficient" in the sense that no other estimates yield 
uniformly smaller discrepancy terms. Alternatively, when appropriate, joint prob- 
ability assessments can be used to achieve a complete amalgamation of the 
discrepancy terms into a single real-valued measure of theory and data incompati- 
bility. 

Section 2 illustrates the FLS approach for a time-varying linear estimation 
problem in which a researcher is unable or unwilling to provide probability 
assessments for model discrepancy terms. Section 3 contrasts the FLS handling of 
this problem with the standard inferential approach in which probability assess- 
ments for discrepancy terms are assumed to be available. A variety of FLS 
simulation studies and empirical applications are reviewed in Section 4. A more 
general multicriteria framework for model specification and estimation is outlined 
in Section 5. Section 6 discusses the relationship of this multicriteria framework to 
previous uses of multicriteria methods in econometrics, statistics, and systems 
science. Final remarks are given in Section 7. 

2. The FLS Approach: An Illustrative Example 

Suppose scalar observations . v t , y 2  . . . . .  Y r  have been obtained on a process at 
successive time points 1,2 . . . . .  T. The basic estimation objective is to understand 
the way in which the process has evolved over the course of the observation period. 

The state of the process at each time t is described by an N × 1 column vector 
xt of unknown process attributes. For example, for a time-varying linear regression 
problem, x, might simply be a listing of the time t regression coefficients. For an 
economic growth problem, x, might include stocks of real and financial assets 
available at time t, together with various structural parameters characterizing the 
objectives and constraints faced by firms and households. 

The relationship between the observation y ,  and the state vector ,q at each time 
t is postulated a priori to be approximately linear. In addition, the evolution of the 
state vector x ,  - although not well understood a priori - is postulated to be gractt,-I 
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in the sense that  x,  undergoes  at most  a small change  f rom one observa t ion  t ime to 
the next. These prior postulates  of approximate ly  l inear measu remen t  and  gradual  
state evolut ion  are model led  as follows: 

Measurement Relations [Approximate Linearity]. 

Yt --  h~xt "~ O, t = 1 . . . . .  T ,  

where  h~ is a 1 x N row vec tor  o f  k n o w n  e x o q e n o u s  variables.  

(1) 

Dynamic Relations [Gradual State Evolution]. 

x t ~ 1 - x t ~ O ,  t = l  . . . . .  T - 1 .  (2) 

In accordance  with the basic es t imat ion objective, suppose  an a t t empt  is now 
made  to de termine  all possible estimates X'r = (-¢~ . . . .  ,-¢r) for the state sequence 
X r  = (x i  . . . . .  Xr) that  are minimal ly  incompat ib le  with the given theoret ical  rela- 
tions (1) and  (2), condi t ional  on  the given observa t ion  sequence I"T = (Yl . . . . .  Yr). 
The  mult icri teria nature of this es t imat ion p rob lem is seen as follows. T w o  concep- 
tually dist inct  types of d iscrepancy terms can be associated with each possible state 
sequence est imate Xr. First, the choice o f . g r  could  result in nonzero  measu remen t  
discrepancy terms y, - h;.¢, in (1). Second, the choice o f .~ r  could result in nonzero  
dynamic  discrepancy terms -¢t + 1 - .'¢t in (2). In o rder  to conclude that  the theoret-  
ical relations (1) and (2) are in reasonable agreement  with the observat , .ms,  each 

type of discrepancy would  have to be small in some sense. 
Suppose  a measurement  cost CM(..~-/, Yl, T) and  a dynamic  cost co( ,gr ,  Yr, T)  are 

separately assessed for the two disparate  types of  discrepancy terms entai led by the 
choice of a state sequence es t imate  ~'r.  These costs represent the degree to which 
nonzero  discrepancy terms are viewed as undesirable.  For i l lustration, suppose  
these costs take the forrn of sums of squared discrepancy terms, implying that  
positive and negative discrepancies  are viewed as equally undesirable.  More  pre- 
cisely, for any given state sequence estimate,.Y.r, let the measurement  cost  associated 
with -'~r be given by 

T 

cM(P(r, Y r ,  T )  = ~ [ ,,, - h;.¢,] z , (3) 
t = l  

and let the dynamic  cost associated with ) ( r  be given by 
T - I  

cv(-~r, Yr, T)  = Z [-¢,+ 1 - :¢,]'D[X,+, - .¢,], (4) 
t = l  

where D is a suitably selected positive definite scaling matrix. 

1 The scaling matrix D can be specified so that the FLS estimates obtained below for the state vectors 
\~ are essentially invanant to the choice of un,ts for the components of the exogenous vector~ h,. See 
Ref. [40, Footnote 3]. 
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If the prior beliefs (1) and (2) concerning the measurement and dynamic relations 
hold true with absolute equality, then selecting the actual state sequence XT as the 
state sequence estimate would result in zero values for both CM and Co - the "ideal" 
cost point in the terminology of Yu [45, p. 67]. In all other cases, each potential 
state sequence estimate ,,Yy will entail positive measurement and/or dynamic costs. 
Nevertheless, not all of these state sequence estimates are equally interesting. In 
particular, a state sequence estimate,~r that is dominated by another estimate X~-:, 
in the sense that X~- yields a lower value for one type of cost without increasing the 
value of the other, should presumably be excluded from consideration. 

Attention is therefore focused on the set of undominated state sequence esti- 
mates. Such estimates are referred to as.flexible least squares (FLS) estimates. Each 
FLS estimate shows how the process state vector could have evolved over time in 
a manner minimally incompatible with the prior measurement and dynamic rela- 
tions (1) and (2). Without additional modelling criteria, restricting attention to any 
proper subset of the FLS estimates is an arbitrary decision. Consequently, the FLS 
approach envisions the generation and consideration of a representative sample of 
the FLS estimates in order to determine the similarities and divergencies displayed 
by these potential state sequences. The similarities might be used to construct more 
structured hypotheses regarding ~,he measurement a nd evolution of the state ,'ector. 
The divergencies reflect the uncertainty inherent in the problem formulation 
regarding the true nature of the underlying process. 

Define the cost possibility set to be the collection 

C ( T ) = [CD(,'~T, Yr, T ), CM(-'~r, YT, T)[,~r ~ R T~" 'i (5) 

of all possible configuranons of dynamic and measurement costs attainable at time 
7, conditional on the given observation sequence Y'r. In analogy to the usual 
Parelo-eHicient fi'ontier, the cost-e[liciem [~ontier C~(T)is then detined to be the 
collection of all undolninated cost vectors c = if'i), csl)in C(T),  i.e., all cost vectors 
(" in C(T) for which there exists no other cost vector c* ha C(T) satisfying ('* _< ( '  

with c* ¢ c. Formally, letting vmin denote vector minimization, 

CF(T) = vmin C(T) .  (6) 

By construction, then, the cost-efficient frontier is the collection of all cost vectors 
associated with the FLS state sequence estimates. 

If the N x T matrix lilt . . . . .  liT] has full rank N, the cost-efficient frontier CV(T) 
is a strictly convex curve in the CD--CM plane giving the locus of vector-minimal 
costs attainable at time T, conditional on the given observations. In particular, 
as depicted in Figure 1, CV(T) reveals the measurement cost CM that must be 
paid in order to achieve a zero dynamic cost co, i.e., time-constant state vector 
estimates. 

Once the FLS estimates and the cost-efficient frontier have been determined, 
three different levels of analysis can be used to investigate the degree to which 
the theoretical relations (1) and (2) are incompatible with the observations 

Yl . . . . .  YT. 
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Fig. 1. 

First, one can determine the efficient attainable trade-off between the measure- 
ment and dynamic costs CM and cD at any point # along the cost-efficient frontier, 
where/~ denotes the slope of the frontier multiplied by -1 ;  i.e., I t  = - d c u / d c D .  

Second, one can generate the FLS estimates whose cost vectors correspond to 
a rough grid of g~-points spanning the frontier. Each of these FLS estimates yields 
a possible time path for the actual state vector, and summary descriptive statistics 
(e.g., average value and standard deviation) constructed for these estimates can be 
used to indicate the extent to which the state vector evolves over time. Finally, the 
time-paths traced out by the FLS estimates can be directly examined for evidence of 
systematic and possibly idiosyncratic time variation,.; in individual state variables 
that are difficult to discern fi'om summary statistical characterizations. Various 
simulation and empirical studies making use of this three-stage FLS analysis are 
discussed in Section 4, below. 

In summary, the basic FLS objective is to characterize the set of all state 
sequence estimates that achieve vector-minimal incompatibility between process 
observations and imperfectly specified theoretical relations, whatever form these 
theoretical relations might take. Although probability relations can be incorpor- 
ated along with other types of theoretical relations (see [14, 19]), they do not play 
a distinguished role. Indeed, as illustrated above, they may be absent altogether. In 
contrast, commonly used statistical estimation techniques such as maximum a pos- 
teriori (MAP) and maximum likelihood estimation are point estimation techniques 
that attempt to determine the most probable state sequence estimate for a stochas- 
tic model whose structure is assumed to be correctly and completely specified. The 
crucial distinction between the two approaches lies in the use of probability theory 
to transform potentially disparate model discrepancy terms into apparently com- 
mensurable quantities. 

The next section illustrates this distinction by ~'e-formulating the state estimation 
problem (1) and (2) in accordance with standard statistical practice. 
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3. Standard Approach to the Problem in Section 2 

Suppose scalar observations yl . . . . .  .vr obtained on a process are postulated to be 
approximately linearly related to a sequence of state vectors Xl . . . .  , xr.  The prior 
measurement relations take the following form. 

Measurement Relations [Approximate Linearity]. 

Yt = h'txt + vt, t = 1 . . . .  , T ,  (7) 

where xt denotes an N × 1 column vector o f  unknown state variables, h'~ denotes 
a 1 x N row vector o f  known exogenous variables, and v, denotes a scalar measurement 
discrepancy term. 

If no restrictions are placed on the discre?ancy term v,, then Eq. (7) is simply 
a defining relation for v,. That is, vt is a slack variable, and Eq. (7) is true by 
definition whether or not an approximately linear relation exists between y, and 
x, in actuality. The slack variable vt depends on everything affecting y, that is not 
captured by the term h~x, - that is, everything unknown, or not presumed to be 
known, about how y, might depend on higher order terms in x,, on missing 
variables, and so forth. To give content to the prior of "approximately linear 
measurement," the discrepancy term t,, must further be restricted to be small in 
some sense. 

Suppose in addition to (7) that the state vector x, is assumed to evolve gradually 
over time. The prior dynamic relations take the following form. 

Dynamic Relations [Gradual State Evo|ution]. 

N t t  I "~ '~'t -[" ~ ' f '  t = 1 . . . . .  T -- ! ,  

where the N × 1 rector % dem,tes a dynamic discrepancy term. 

(8) 

As before, if no restrictions are placed on the discrepancy term wf, then Eq. (8) 
simply defines wt to be a slack variable incorporating everything unknown, or not 
presumed to be known, about how the differenced state vector t-x, + ~ - x,] depends 
on higher-order terms in xt, on missing variables, and so forth. Consequently, as it 
stands, Eq. (8) is true regardless of the actual relation between xz+, and x,. To give 
content to the prior of "'gradual state evolution," the discrepancy term wt must 
further be restricted to be small in some sense. 

If no additional theoretical relations are introduced, the estimation problem 
described above is simply an alternative representation for the multicriteria estima- 
tion problem outlined in Section 2. Each possible estimate for the state sequence 
(xl  . . . . .  x r )  entails two conceptually distinct apple-and-orange types of discrepancy 
terms - measurement arid dynamic - and a researcher undertaking this estimation 
would presumably want each type of discrepancy to be small. 

However, standard econometric and statistical techniques invariably do intro- 
duce a third type of theoletical relation at this point in the description of 
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an estimation problem: namely, probability relations restricting discrepancy terms. 
Consider, for example, the following commonly assumed relations implying that 
the measurement and dynamic discrepancy terms l,, and w, in (7) and (8) are random 
quantities with known probability density functions (PDFs) governing both their 
individual and joint behavior. 

Probability Relations. 

(v~) and (w,) = mutually and serially independent processes; (9) 

(PDF for v,) = P,., t = 1 . . . . .  T: (10) 

( P D F f o r w t ) = P , . ,  t =  1 . . . . .  T - I ;  (11) 

Xl distributed independently of vt and wt for each t. (12) 

(PDF for x~) = P.,. (13) 

Since (7) and (8) are still interpreted as equations in the usual exact mathematical 
sense, t't and w, now appear in these equations as commensurable "'disturbance 
terms" impinging on correctly specified theoretical relauons. The previous inter- 
pretation for v, and wt as apple-and-orange discrepancy terms incorporating 
everything unknown about the measurement and dynamic aspects of the process is 
thus dramatically altered. 

Once the commensurability of the discrepancy terms w, and vt is assumed, 
a single real-valued measure of theory and data incompatibility can be constructed. 
Specifically, combining the measurement rel'ations (7) with the probability relations 
(9) o(13) permits tile derivation of a probab,hty density function P(YrlX~) for the 
obserwltion sequence Y'~ =(Y~ . . . . .  )'1') conditional on the state sequence 
Xr :--(xt . . . . .  xl ). Combining the dynamic relations (8} with Ihe probability rela- 
tions (9) ( I  3) permits the deriwition of a "prior" probability density function P(Xr) 
for X,r. The joint probability density function for X r  and Y~ then takes the form 

P(XT, Yr) = P(¥'~ IXr)" P(Xr).  (14) 

The joint probability density function (14) elegantly combines the two distinct 
sources of theory and data incompatibility - measurement and dynamic-  into 
a single real-valued measure of incompatibility for any considered state sequence 
X1.. 

As detailed in [43], an objective commonly assumed for estimation problems 
described by relations of the form (7)-(13) is maximum a posteriori (MAP) estima- 
tion, i.e., the determination of the state sequence Xr  that maximizes the posterior 
probability density function P(Xrl Yr) • Since the observation sequence Yt is 
assumed to be given, this objective is equivalent to determining the state sequence 
XT that maximizes the product of P(Xrl YT) and P(Yr). In accordance with 
Bayesian rules of probability theory, 

P(XTI VT). P(YT) = P(¥'r iXr)" P(XT), (15) 
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where, as earlier explained, the right-hand expression can be evaluated using the 
relations (7)-(13). Determining a MAP state sequence is thus equivalent to deter- 
mining a state sequence which minimizes the real-valued incompatibility cost 
function 

c(Xr, Yr, T) = -- Iog[P(Yr IXr)P(Xr)]. (16) 

In summary, what ultimately has been accomplished by the augmentatign of the 
measurement and dynamic relations (7) and (8) with the probability relations 
(9)-(13)? The multicriteria problem of  achieving vector-minimal incompatibility be- 
tween impelfectly specified theoretical relations and process observations has been 
transIbrn~ed into the single-criterion problem of determining the most probable state 
sequence ]br a stochastic model whose structure is assumed to he correctly and 
completely specified. 

One basic objection to this standard estimation approach is that it entails an 
interpretation for the discrepancy terms that is at odds with the originally specified 
priors ~1) and (2). In particular, the time-trend smoothness prior (2) is replaced with 
the prior of a random walk, even though these two priors represent different 
conceptualizations for the movement of the underlying state vectors. The time- 
trend prior (2) postulates that successwe state vectors evolve gradually from one 
time period to the next, a movement that might be captured by a straight line 
or a sine wave, for example. In contrast, the random walk model implies that 
"error terms" are persistently accumulated in successive state vectors, resulting in a 
nonstationary process exhibiting jagged discontinuities between successive state 
vec to r s .  

it is sometimes countered that this distinction1 is unimportant if the t'arumces of 
the random walk error terms are anticipated to be small. However, as stressed in 
recent macroeconometric work, e.g., [34], the dynamic properties of a ume-trend 
model arc altogether different from the dynamic properties of a random walk 
model, however one models the variances of these enor  terms. Consequently. 
"small discrepancy terms" and "small error term variances" are not conceptually 
interchangeable descriptions. In particular, for initial diagnostic checks of poorly 
understood structures, the probabilistic assumption of"small variances" can be an 
overly restrictive concept (cf. [351). 

Another important objection to the standard estimation approach is that the 
probability relations (9)-113) imply that w, and vt are governed by a well-defined 
ioint probability distribution and hence are cardinally comparable. For many 
"processes it is hard to maintain this assumption in a publicly credible way. For 
example, the observations y~ . . . . .  vT might be the outcome of a nonreplicable 
experiment, implying that probabihty assessments for the discrepancy terms w, and 
v, cannot be put to an objective test. Alternatively, as stressed in Section 2, the 
theoretical relations (7) and (8) might represent tentatively held conjectures 
concerning a poorly understood process, or a linearized set of relations obtained for 
an analytically intractable nonlinear process. In this case it is quesuonable whether 
the discrepancy terms are governed by any meaningful probability relationships. 
A researcher might then have to resort to specifications determined largely by 
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convention if he is forced to provide a probabilistic characterization for the 
discrepancy terms. 

A third objection to the standard estimation approach is that conceptually 
distinct discrepancy terms are amalgamated into a single real-valued incompatibil- 
ity measure such as (16). This amalgamation makes it difficult to detect and 
correctly sort out which aspects of the model, if any, are seriously misspecified. 
There is of course no way to determine from the single real-valued measure (16) that 
a serious specification error has occurred, e.g., in the dynamic relations (8) rather 
than the measurement relations (7). In fact, (16) is constructed under the premise 
that no specification error has occurred, and there is no way to use it per se to check 
for any kind of modelling difficulty. Rather, subsequent tests must be conducted to 
check whether the data appear to be anomalous with respect to the given model 
specification, or whether other plausible model specifications exist that make the 
data appear less anomalous. 

A further difficulty here, as detailed in Ref. [19, Section 5.1-1, is that standard 
diagnostic procedures force all incompatibilities between theory and observations 
to reveal themselves as incompatibilities between theoretically anticipated prob- 
ability relations and empirically determined statistical properties. For example, 
suppose the dynamic relations (8) are fundamentally misspecified because the true 
dynamic dependence of x t ÷  t on x, is highly nonlinear. Using standard diagnostic 
tests on the dynamic residual terms ~t - [.gt+ 1 - :~t], a researcher would presum- 
ably perceive that the properties of these residuals are at odds with the probability 
relations assumed for wt in (9) and (11). The tendency of the researcher might then 
be to concentrate on modifying the probability assumptions for w, to improve 
statistical fit - e.g., to replace serial independence with first-order serial correlation, 
or to assume that wt has a time-varying covariance matrix - rather than to think 
more carefully about the actual physical or behavioral relationships connecting 
Xt + t t o  Xt. 

These three objections to the standard estimation approach - potenti,dly dis- 
torted priors, inappropriate and potentially misleading assumptions of cardinal 
comparability, and the confounding of conceptually distinct discrepancy terms 
- would be of purely academic interest if treating discrepancy terms as commensur- 
able random disturbance terms constituted the only way to obtain estimates for 
unknown process states. However, Section 2 suggests to the contrary that an 
alternative multicriteria treatment of discrepancy terms is also feasible for this 
purpose. 

4. FLS Simulation and Empirical Studies 

In the previous two sections a case is made for the conceptual desirability of 
a multicriteria FLS approach to the estimation of process states for processes 
whose properties are poorly understood a priori and hence whose descriptions 
incorporate potentially significant specification errors. Not yet examined, however, 
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is the extent to which the FLS approach permits the recovery of accurate informa- 
tion about process states. The present section briefly reviews a number of simula- 
tion and empirical studies that have addressed this issue. 

Ref. [17-1 undertakes an FLS analysis of a time-varying linear regression prob- 
lem, a special case of( l)  and (2) in which the time t state vector xt denotes the vector 
of time t regression coefficients and the time t exogenous vector h, denotes the 
vector of time t regressor variables. The basic estimation objective is to determine 
whether the regression coefficients have exhibited any systematic time-variation 
over the course of the observation period. 

A Fortran program for generating the FLS estimates is provided in Ref. [17], 
together with an explanation of the program logic. 2 Various FLS simulation 
experiments making use of this program are reported and graphically depicted in 
[ 13, 17-1. These experiments demonstrate the ability of the FLS method to track and 
recover linear, quadratic, s~nusoidal, and elliptical motions in the true underlying 
regression coefficients, despite noisy observations, and relying only on prior 
measurement and dynamic relations of the form (1) and (2). Indeed, the motions are 
recovered with good qualitative accuracy all along the FLS frontier. 

For example, experiments were carried out for which the components of the true 
two-&mensional coefficient (state) vectors x, = (b,l,b,2) were simulated to be 
sinusoidal functions of t. The first component,  b,~, moved through two complete 
periods of a sine wave over the interval of time from t = 1 to t = 30, and the second 
component,  b,2, moved through one complete period of a sine wave over this same 
time interval. Each observation y, was generated in accordance with the linear 
regression model y, = h',x, + v,, where the components of the regressor vector 
Ifr were taken to be deterministic cyclic functions of t and the components of the 
measurement discrepancy term v, were independently generated from a pseudo- 
landom number generator for a normal distribution N(0,0.5t. 

As depict,~d in Fig. 2, the FLS estimates for b,i and h,2 closely tracked the true 
wdues for these coefficients both qualitatively and quantitatively at the point/~ = I 
along the cost-efficient frontier. As ~ was increased from 1 to 1000 by powers of ten. 
the FLS estimates were pulled steadily inward toward the zero dynamic cost 
(ordinary least squares)solution, (bt~,b,,_)= (0.03,0.04)for t = 1 . . . . .  30. Neverthe- 
less, for each gt, the two-period and one-period sinusoidal motions of the true 
coefficients were still reflected. Thus, 60 coefficients were recovered from only 30 
observations, with good qualitative accuracy, all along the cost-efficient frontier. 

Although these simulation experiments indicate that the FLS estimates are able 
to track smooth motions in the regression coefficients, the question remains 
whether discontinuous motions cause the FLS method tc fail. This issue arose in 
the FLS money demand study [40], for the focus of the study concerned possible 

-'This FLS program for time-varying hnear regression has ~ecently been mcolporatcd into the 
statistical package SHAZAM: see [44], or email info@shazam econ ubc.ca for informauon. See also 
[18] for a more general FLS Fortran program. GFLS, apphcable for systems characterized b v 
approximately linear mea';urement and dynamxc relations 
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step-function breaks in money demand regression coefficients. Various simulation 
experiments were therefore conducted in which the components of the true regres- 
sion coefficients were shifted idiosyncratically at various points in time. Surprising- 
ly, using only measurement and smoothness priors analogous to (1) and (2), the 
FLS estimates were able to track and recover these step-function shifts with good 
qualitative accuracy all along the cost-efficient frontier despite the absence of any 
prior knowledge concerning the timing, number, and magnitude of the shift~. 
Indeed, the larger the magnitude of the shifts, the better the accuracy of the 
estimates. 

To understand this seeming paradox, consider what happens if an underlying 
true linear regression coefficient [~,; undergoes a single step-function shift :rom its 
current valae b to a new value b' at some time t = t'. If the FLS estimate/~t, for fit, is 
equal to b G;r t < t', and if it remains at b over the remainder of the observation 
period from t' to T despite the shift in l/t, at t = t', then the result is an accumulation 
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of measurement costs over t' to T, and the larger the magnitude of the shift, the 
larger the accumulation of measurement costs. On the other hand. if/~,, were 
likewise to shift from b to b' at t = t', the result would be a one-time dynamic cost 
but n o  subsequent accumulation of measurement costs. Thus, cost-minimization 
considerations will generally dictate that the FLS estimates should shift in response 
to shifts in the underlying true coefficients as long as the shifts are spaced suffi- 
ciently far apart and do not occur close to the final observation time T. 

Given the promising nature of these shift simulation results, the FLS method was 
next used in [40J to undertake an empirical money demand investigation. 
Measurement and dynamic relations analogous to (1) and (2) were used to model 
US money demand over the volatile period 1959: Q2-1985: Q3. In particular, no 
prior information regarding possible shift times was used in the FLS estimation 
procedure. The time paths traced out by the FLS coefficient (state) estimates were 
found to exhibit a clear-cut downward shift in 1974, during the time of the first 
OPEC oil price shock, at each tested point along the cost-efficient frontier. This 
finding was in accordance with previous ordinary least squares (OLS) studies of US 
money demand that had investigated the possibility of a 1974 shift in the money 
demand regression coefficients using variants of the Chow test and recursive least 
squares. 

In addition, however, the FLS results in [40] also indicated the presence of 
systematic idiosyncratic time variations in the regression coefficients - e.g., a sharp 
and steady decline in the coefficient for the inflation rate - which Chow tests and 
recursive least squares are not designed to detect. Moreover, the ~unit root" 
nonstationarity problem reported in these previous OLS money demand studies 
was seen to disappear once the FLS coefficient estimates were allowed to exhibil 
even small amounts of tune variation in "tccordance with the dynamic smoothness 
prior (2). 

A number ofotller empirical FLS studies have recently appeared that suggest the 
potential usefulness of FLS as a diagnostic tool. For example, Dorfia~an and Foste," 
[6] use FLS to develop a n c w  measure of productivity change. They a.~.sume that 
measurement urrors are independently and identically distributed random vari- 
ables whereas the coefficients characterizing the production relation evolve slowly 
over time in an unknown determimstic manner. Under these assumptions they are 
able to provide a statistical interpretation for their FLS coefficient estimates and 
hence also for their FLS measure of productivity change. 

Dorfman and Foster then apply their FLS productivity measure to US agricul- 
tural data for the period 1948-1983. They compare the FLS measure with two 
more traditional measures that assume time-constant production function para- 
meters--total  factor productivity, and a measure of technical change based on the 
elasticity of production with respect to time. They find (pp. 286-288) that the FLS 
measure is more stable than these latter measures in the sense of having a s~.-qaller 
variance around a constant percentage growth rate. Interestingly, the FLS measure 
also produces considerably lower estimates of productivity growth than the total 
factor productivity measure and generally higher estimates of productivity growth 
than the elasticity measure. 
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In [30], Lfitkepohl uses FLS to obtain detailed information on the variability of 
individual coefficients for a US money demand relation specified m error-correc- 
tion form. He shows (Fig. 1, p. 735) that all long-run coefficients are relatively stable 
over the 33-year period 1954-1987, with the least stable being the coefficient on the 
short-term interest rate (proxied by the discount rate on 91-day Treasury bills) and 
the most stable being the coefficient on transactions volume (proxied by real GNP). 
On the other hand, the short-run coefficients on rates of change in the interest rate, 
transactions volume, and the general price level (proxied by the GNP deflator) are 
considerably more volatile than the long-run coefficients over this same period. He 
concludes (p. 742) that these FLS findings are consistent with a financial innova- 
tions explanation of money demand instability over this period. 

In a different study, Liitkepohl and t~erwartz [31] generalize the FLS time- 
varying linear regression method develcged in [ 17, 18] by allowing for anticipated 
seasonal periodicities as well as for tim ~ trends. They first unt~ertake a study of their 
generalized FLS algorithm for three artificially generated time series, each having 
a seasonal pattern, in which a variable is linearly dependent on its value in some 
pa~t time. In the first model, the intercept and slope coefficients are both time 
invariant; in the second model, these coefficients are both periodic; and in the third 
model, the intercept is periodic and undergoes a structural shift in mid-sample 
whereas the slope coefficient is time invariant. They show (Tables 1 and 2) that their 
generalized FLS measure is able to detect the time invariance of the coefficients in 
the first model and the coefficient periodicities in the second and third models, as 
well as the structura! shift for the third model. 

Li.itkepohl and Herwartz then use their generalized FLS measure to study actual 
consumption and income time series data for the (West) German economy, with the 
goal of detecting specific types of coefficient variations and identifying any coeffi- 
cients that appear to be time-invariant. They interpret their FLS findings for 
income as evidence in favor of a model in which the intercept is periodic and 
remaining coefficients are time invariant: and they interpret their FLS findings for 
consumption as evidence in favor of a model with time-invariant coefficients for 
first and second-order lagged terms but with periodically varying coefficients for 
the intercept and higher-order lagged terms. 

Finally, Schneider [36] carries out an extensive comparative study between 
maximum likelihood (EM and scoring) and FLS time-varying linear regression 
methods, where the latter is characterized (p. 192) as a descriptive variant of 
Kalman filtering that constitutes a "simple but powerful tool of exploratory data 
analysis." He first applies FLS as a preliminary descriptive stability test to a stan- 
dard Goldfeld-type model of money demand for (West) Germany. As depicted in 
his Figs. 14.2-14.7 (pp. 206-208), he concludes (p. 211) that only the coefficients for 
the short-term and long-term interest rates and the 90-da~ swap rate exhibit 
a distinct time-varying behavior. In particular, he notes that the behavior of the 
short-term interest rate is particularly remarkable: an apparent stabilization from 
1974 onward that coincides with the date when the German central bank officially 
switched from an interest-rate target regime to a money target regime. [lrl sub- 
sequent discussion (p. 212) he notes that an FLS argument can also be made for 
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a step change in the swap rate in 1974, the introduction date of flexible exchange 
rates.] In support of these conclusions, he notes that the patterns in the individual 
paths of the FLS coefficient estimates persist over a large portion of the cost- 
efficient frontier. 

Schneider next checks what paths for the regression coefficients are picked out by 
maximum likelihood (ML) when the descriptive dynamic and measurement costs 
cD and cm are reinterpreted as elements of a likelihood function generated from 
a random walk model for the regression coefficients. First cautioning that little is 
known about the sampling distributions of ML estimators for this time-varying 
linear regression model, he concludes (p. 212) that the movements in the coefficients 
for the short-term interest rate and the swap rate appear to be significantly 
identified to be time-varying at a type I error level of 1%. The estimates for the 
variances are low, reflecting the fact that the random walk model spreads out the 
time variation over the entire sample period. Although the FLS-apparent step 
changes in the short-term interest rate and swap rate are thus considerably 
smoothed, the ML-estimated paths for the individual coefficients nevertheless 
exhibit the same general features as the FLS-estlmated paths. This is seen in his 
Figs. 14.8-14.13 (pp. 214-217) depicting two-standard-deviation bands about the 
means of proxied a po.steriori distributions for the regression coefficients, condi- 
tional on M L estimates rot remaining structural parameters. 

5. Generalizations 

In prev;o':~s sections at l> shown how FLS can be used to investigate the basic 
incompatibility of theory and data for processes characterized by approximately 
linear measurement relations and gradual state evolution. In this section we 
describe a more general multicriterm approach to cstimatnm develoFed m [ 19 ]. We 
also suggest how the latter approach might be recast m the form o; a utility 
maximization problem subject to a budget constraint. 

Consider a situation in which a sequence I~T = (y, . . . . .  3'7) of noisy observations 
y, has been obtained on some process of i~lterest. The basic objective is to learn 
about the sequence of states X7 = (x~ . . . . .  XT) through which the process has passed. 

Suppose the degree to which each possible state sequence estimate XT iS incom- 
patible with the ~ivon c~bservation sequence YT is measured by a K-dimensional 
vector C(,'YT, IT, T) of incompatibility costs. These costs may represent penalties 
imposed for failure to satisfy criteria co~oectured to be true (theoretical relations), 
and also penalties imposed for failure to satisfy criteria preJerred to be true 
(objectives). Let C(T) denote the set of all incompatibility cost vectors 
c = c(Xr, FT, T) corresponding to possible state sequence estimates -'~'r. The co,t- 
efficient fi'omier, denoted by CF(T}, iS then defined to be the collection of un- 
dominated cost vectors c in CIT). That is, a cost vector c in C(T) is an element of 
Cr(TI if and only if there exists no other cost vector c* in C(T) satisfying c* < c 
with c* ¢- c. 
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By construction, the state sequence estimates -,~T whose cost vectors attain the 
cost-efficient frontier are characterized by a basic efficiency property: For the given 
observations, no other possible state sequence estimate yields lower incompatibility 
cost with respect to each of the K modelling criteria included in the incompatibility 
cost vector. Each of these state sequence estimates thu~ represents one possible way 
the actual process could have evolved over time in a manner minimally incompat- 
ible with the prior theoretical relations and objectives. 

The basic multicriteria estimation problem can be summarized as follows: 

The Basic Muiticriteria Estimation Problem: Given a process length T, an observa- 
tion sequence Fr, amt a vector-valued incoJypatibility cost fimction e( ' ,  Yr, T), 
determine all possible stare sequence estimates X r  that t, ector-minimize the incompati- 
bility cost c(,l(r, Yr, T). That is, determine all possible state sequence estimates 
Xr  whose cost vectors C~A'r, Yr, T) attain the cost-efficient frontier CF(T). 

The cost-efficient frontier CV(T) can be obtained by means of a multicriteria 
extension of the usual scalar dynamic programming equations. 3 Consider the 
estimation problem at any intermediate time t. Suppose a K-dimensional vector 
cO(,, Y,,t) of incompatibility costs can be associated with each t-length state 
sequence estimate Xt = (.f~ .... ,.~,), conditional on the sequence of observations 
Yt = (3'1 . . . . .  Yt). Let C(.,~,, t) dent, te the set of all cost vectors c(X,, Y,, t) attainable ,~t 
time t, conditional on the time-t state estimate being .f,; and let CF(~, t) denote the 
cost-efficieat frontier for C(.¢,, t). Gi,~en certain regularity conditions, it is shown in 
[19] that the state-conditional frontier at any intermediate time t is mapped into 
a state-conditional frontier at time t +1  in accordance with a vector-valued 
recurrence relation having the form 

CF(.¢,~ t,t + I)= vmin(U, .~, [cF(.f,,t)+ Ac(.f,,.f,+l,y,, l,t + I)]), (17) 

where vmin denotes vector-minimization and dc ( . )  denotes a vector of incremental 
costs associated with the state transition (.-~,, .-¢, + 1). The cost-efficient frontier at the 
final time T is then given by 

CF(T) v m i n I ~  v "  ] = C ( x r ,  T )  . 
L.~ T 

(18) 

Three well-known state estimation algorithms are derived in [19] as single- 
criterion special cases of the multicriteria recurrence relations (17) and ! 18) : namely, 
the Kalman filter [21], the Viterbi filter [8, 41], and the Larson-Peschon filter [26] 
for sequentially generating maximum a posteriori (MAP) probability estimates. In 

3 General multicriteria dynamic programming algorithms have previously been developed by a var- 
iety of other researchers. See, for example, Ref, [29]. 
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addition, an algorithm for sequentially generating the FLS estimates for the 
problem discussed in Section 2, above, is derived as a bicriteria special case of ll 7) 
and ( 181. 

Finally, it is interesting to note that the basic multicriteria estimation problem 
outlined above can be recast as a problem of utility maximization subject to 
constraint. That is, one can include in the cost vector only those costs correspond- 
ing to criteria conjectured to be true (i.e., theoretical relations), so that the resulting 
cost-efficient frontiei depicting the feasible efficient trade-offs among model dis- 
crepancy terms is analogous to a "'budget constraint." One could then superimpose 
on this frontier the indifference curves for a researcher's "utility function" that 
assigns a utility value to each possible configuration of costs (discrepancy terms), 
thus permitting for that researcher the selection of a unique "best" model specifica- 
tion along the frontier. In this way it might be possible to separate the subjective 
selection of a model based on properties preferred by individual researchers from 
the more objective identification of model specifications that are efficient with 
regard to possible trade-offs among discrepancy terms. 

6. Relation to Previous Work 

Roughly stated, multicriteria decision making (MCDM)is the study of decision 
situations in which one or more agents with potentially conflicting objectives must 
somehow decide on the implementation of an action. Due m large part to the 
seminal work of Charnes and Cooper, Yu, Zeleny and others dating back to the 
early nineteen sixties, MCDM has now become an established interdisciplinary 
field that cuts across the boundary lines sepa.'atmg operations research, manage- 
ment science, systems science, computer science, applied mathematics, psychology, 
and many other disciplines. See, for example, Refs. [7, 24, 38, 45-47]. 

The duality between decision making Icontroi) and estnnation (system identi- 
fication) for single-criterion optimization problems has been known for over 
30 years ([21, p. 42]). Surprisingly, however, the interconnections between 
multk'riteria decision making and multicriteria estimation have yet to be systemati- 
cally explored. 

Some use of multicriteria methods has of course occurred in statistical inferential 
studies. Multicriteria methods have traditionally been used to describe the trade-off 
between Type I and Type II errors. In addition, multicriteria methods have been 
used to describe the trade-off between bias and variance (fidelity and smoothness) 
which some estimation procedures entail. See, for example, the discussion of ridge 
trace procedures in [12, pp. 915-916], the discussion of smoothing sphnes in [42], 
and the discussion in [93 of penalized likelihood methods for the location and 
probabilistic evaluation of ~'bumps'" in estimated probability densities. 

One also finds instances ir~ which researchers have advocated using multicriterm 
methods for other types of estimation purposes. For example, in the systems 
literature, Benedict and Bordner [3] proposed a bicriteria estimation algorithm for 
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a class of radar tracking problems. Moreover, various researchers have proposed 
using bicriteria methods for handling the dual objectives of system optimization 
and system identification which arise for "dual control" problems, i.e., for problems 
m which an agent is attempting to control a system at the same time he is 
attempting to learn about its characteristics. See, for example, [10, 25]. In the 
MCDM literature, both Narula and Wellington [33] and Zeleny [46, pp. 469-471] 
have proposed the use of multicriteria methods for linear regression analysis. Also, 
Charnes and Cooper have developed a "~data envelopment analysis" method for the 
estimation of the Pareto-efficient frontier of an empirically determined multi- 
input/multi-output production function. The method has been used to classify 
organizations using the same kinds of inputs and outputs either as efficient 
or inefficient; see [1]. Other potential applications of this method are discussed in 
[4, 37]. 

In the econometrics hterature, Leamer [27, pp. 141-170] introduces the notion 
of an "information contract curve" in the space of regression coefficients to discuss 
regression selection strategies in the case in which only the contours (iso-density 
surfaces) of the prior probability density function and the likelihood function are 
known. Specifically, the information contract curve is a locus of points giving all 
feasible estimates for the regression coefficient vector which are efficient relative to 
two potentially conflicting criteria: maximization of the prior probability density 
function specified as ,t contour map; and maximization of the sample-conditioned 
likelihood function specified as a contour map. 

In subsequent work (see E28] ), Learner proposes a more general "global sensitiv- 
ity analysis" for investigating the sensitivity of posterior distribution inferences to 
alternative choices of prior probability distributions. A related line of work on 
"set-valued filtering" has been developed in the systems science and statistics 
literatures: see, tot" example, [39, Section V.B: 32]. These studies argue that unique 
estimates cannot be inferred fi'om data sets when, for whatever reason, a data 
analyst is unable to use probability assessments to fully scale and weigh disparate 
sources of information in the form of a uniquely specified posterior probability 
distribution. 

Many statisticians, econometricians, and systems scientists are either unwilling 
or unable to undertake a complete scalarization of their estimation problems in the 
form of a posterior probability distribution. Nevertheless, rather than considering 
the sensitivity of inferences to alternative prior probability distributions, the major- 
ity of these researchers instead rely on ordinary least squares and maximum 
likelihood methoas for initial estimation purposes, followed by subsequent diag- 
nostic testing to check for model misspecification. 

Hendry and Richard [11] have attempted to systematize the latter model 
specification procedure. They formulate various model design criteria which they 
believe to be of particular relevance for econometric modelling. For any one model, 
these model design criteria could be construed as constituting an incompatibility 
cost vector c in the sense of Section 5, above. However, Hendry and Richard do not 
attempt to determine the trade-otis among the criteria in accordance with any 
systematic multicriteria (vector optimization) procedure. 
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Rather, as is standard in the diagnostic testing literature, Hendry and Richard 
advocate the sequential application of their model design criteria, opening themsel- 
ves to the usual criticism (see, e.g., [12, pp. 869-870]) that the choice of a final 
model might depend upon the particular order of applicationff One way to 
interpret this path-dependence criticism is to note that Hendry and Richard may 
simply be ending up at one among many possible points on a frontier of models 
that are all equally acceptable (efficient) relative to their postulated set of criteria. In 
other words, assuming that the various criteria represent an over-identifying set of 
constraints, a systematic multicriteria treatment of the modelling problem would 
necessarily lead to a set of efficient models rather than to a uniquely determined 
specification. 

In summary, although the MCDM literature has apparently not had much of an 
impact on econometric and statistical procedures to date, some preliminary steps 
toward a full-blown multicriteria approach have been taken. Learner considers the 
trade-offs between a prior and a data-based conception of a best estimate. Hendry 
and Richard formalize a set of potentially conflicting model design criteria which 
they argue will be objectively meaningful to other researchers. In terms of the 
general multicriteria framework outlined in Section 5, above, the differences separ- 
ating these two approaches reduce to a different dimension K for the basic cost 
vector c, a different idea concerning which model criteria should be included in c. 
and a different degree of recognition that conflicting model criteria result in 
set-valued inferences in the form of a nondegenerate cost-efficient .fi'omier of 
alternative models. 

Our work on multicriteria estimation has its roots in "'Sridhar filtering." In 
a series of studies initiated in the mid-nineteen sixties focusing on continuous-time 
rigid-body dynamics (see, e.g., Refs. [-2, 5] ), R. Sridhar and other associates 
explored the idea of forming a c.,,~t-of-estimation function as a weighted sum of 
squared dynamic and measurement discrepancy terms. In Refs. [14, 15] we extend 
this previous work by considering a broader class of models and by deriving exact 
fihering equations for the determination of the cost-minimizing solutions. In 
a related study, Kohn and Ansley [22] discuss the relation between the use of 
Bayesian smoothness priors for state-space smoothing and the use of a Sridhar- 
type penalized least squares criterion function with quadratically specified dynamic 
and measurement costs to achieve optimal function smoothing. However, as in the 
earlier Sridhar studies, the cost-of-estimation functions in these studies are still 
formulated with uniquely specified penalty weights. 

The basic FLS approach, introduced in 1-16], instead focuses attention on a cost 
vector (co, cM) incorporating separate penalty costs for dynamic and measurement 
discrepancy terms. This permits the construction of a "cost-efficient frontier," 
a curve in a two-dimensional cost plane that provides an exphcit way to determine 
the efficient trade-offs between dynamic and measurement discrepancy terms. Since 

4The observation that the "decision path" can affect a final choice is also well known m tlae MCDM 
literature; see, e g, [23] 
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the costs indicate the relative undesirabili ty of var ious  discrepancy term patterns 
rather than any intrinsic propert ies  of the discrepancy terms per se, quadra t ic  cost 
specifications - while useful for tractability - are in no sense required. As indicated 
in Section 5 of this paper, we now view the original FLS  formulat ion as a special 
case of  a more  general multicriteria est imation f ramework  in which the cost vector 
c can incorporate  whatever  modell ing criteria are deemed relevant for the problem 

at hand. 

7. Concluding Remarks 

This paper  suggests that  multicriteria methods  such as FLS provide a systematic 
way to approach  the est imation of processes whose  descriptions e m b o d y  poten- 
tially significant specification errors. The heart of  the FLS  approach  is the recogni- 
tion that  conflicting model  criteria result in se t -va lued  inferences in the form of 
a nondegenerate  cost-efficient fi 'ontier of alternative model  specifications. The 
power  and elegance achieved by the usual scalarization through the int roduct ion 
of probabil ist ic  assumptions  is impressive; but  when doub t  exists concerning 
the appropr ia teness  of these assumptions,  FL S  offers a contending conceptual  
alternative. 
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