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ABSTRACT 

Discrepancies between assumed dynamical models and observations are often handled 
by making further probabiIistic assumptions, a tactic which has both strengths and weak- 
nesses. A re-examination of filtering and smoothing is conducted, and an alternative mul- 
ticriteria approach, which is probability free, is advanced. This approach involves vector 
minimization as a key ingredient, and it specializes to the well-known Kalman. Viterbi. 
Larson-Peschon, and Swerling filters. 

1. INTRODUCTION 

Since World War II, probabilistic methods have held a dominant position 
in filtering and smoothing theory [I]. These methods, leading to likelihood 
and posterior distribution functions, have the great advantage that they pro- 
duce scalar measures of theory and data incompatibility. Recently, various 
other methods for incorporating disparate sources of information into a single 
scalar incompatibility measure have attracted increasing attention, e.g., Bell- 
man and Zadeh’s fuzzy set approach [Z] and Salukvadze’s ideal point theory 
[Ill. 

For many processes, however, model discrepancies arise from concep- 
tually distinct sources, e.g., imperfect measurement devices versus mis-spec- 
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ified dynamic laws of motion. It therefore can be difficult to achieve a sca- 
larization of the incompatibility measure in a publicly credible way. In 
decision theory, this type of incommensurability is handled by multicriteria 
optimization techniques 191; but, to date, such techniques have not been ex- 
ploited systematically in state estimation theory. 

In this paper we present a multicriteria framework for dynamic state es- 
timation which encompasses a wide range of views concerning the appropriate 
specification of incompatibility measures. If available, probability assess- 
ments can be used to provide a single scalar measure of incompatibility, as 
illustrated by the well-known Kalman [8], Viterbi 13, 141, Larson-Peschon 
[lo], and Swerling 1121 filters. ~ternatively, disparate sources of information 
can be systematically considered without forced scalarization, as illustrated 
by the “flexible least squares” approach [4, 5, 6, 71. 

The following two sections use illustrative examples to compare and con- 
trast the standard scalar-criterion approach to state estimation with the mul- 
ticriteria approach. Section 2 discusses the standard approach to state esti- 
mation for a time-varying linear system in which probability relations for 
discrepancy terms are used to obtain a scalar measure of theory and data 
incompatibility, namely, a posterior probability density function for the se- 
quence of state vectors. Section 3 discusses an alternative multicriteria ap- 
proach to this problem which could be used by a data analyst who is either 
unable or unwilling to provide probability assessments for discrepancy terms, 
at least in the preliminary stages of his study. A multicriteria framework for 
more generally specified state estimation problems is outlined in Section 4 
and concluding comments are given in Section 5. 

2. STANDARD TREATMENT OF A STATE ESTIMATION PROBLEM 

Suppose scalar obse~ations y,, . . . , yT obtained on a process are pos- 
tulated to be linearly related to a sequence of state vectors XI, . . . , XT, as 
follows: 

Measurement Relations: 

YI = h:x, + VI, t= I,...,T, (11 

where 

/I: = (hl,, . . . , hrN) = 1 x N row vector of known state coefficients; 

xr = (x,1 9 . . . , &A!)’ = N x 1 column vector of unknown state variables; 

ut = a scalar measurement discrepancy term: 

If no restrictions are placed on the discrepancy term vr, then equation (1) 
is simply a defining relation for uoI. That is, v, is a slack variable, and equation 
(1) is true by definition whether or not a linear relation between y, and xI exists 
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in actuality. In particular, the equality sign in equation (1) really does mean 
equality in the usual exact mathematical sense. Introduced in this way, there 
is nothing controversial about v,. 

What will V, depend on? Everything affecting yt which is not captured by 
the term h:x$, i.e., everything unknown, or not presumed to be known, about 
how yt might depend on higher order terms in xr, on missing variables, and 
so forth. 

Suppose, in addition to (I), that the state vector x( is assumed to evolve 
over time as follows: 

Dynamic Relations: 

X,+1 = -G + WI, t = 1, . . . , T-I, 

where 

w, = a dynamic discrepancy term. 

As before, if no restrictions are placed on the discrepancy term w,, then 
equation (2) defines wI to be a slack variable incorporating everything un- 
known, or not presumed to be known, about how the state vector xI + , depends 
on x, and on missing variables. Equation (2) is thus true regardless of the 
actual relation between xt + 1 and x,, and the equality sign in equation (2) again 
means equality in the usual exact mathematics sense. 

If no additional theoretical relations are introduced at this point, the prob- 
lem of estimating the state vectors x, would seem intrinsically to be a mul- 
ticrireria optimization problem. Each possible estimate for the state sequence 
(Xl,. . . , xT) entails two conceptually distinct apple-and-orange types of dis- 
crepancy terms-measurement and dynamic-and a data anaiyst undertaking 
this estimation would presumably want each type of discrepancy to be small. 

However, standard state estimation techniques invariably introduce a third 
type of theoretical relation in addition to (1) and (2): namely, probability re- 
lations governing the discrepancy terms V, and w, and the initial state vector 
x1. Consider, for example, the following commonly assumed relations: 

~obability Relations: 

[PDF for v,] = P(v,), t = 1, . . . , T; (34 

[PDF for w,] = P(w,), t = 1, . . . , T-1; (3b) 

(v,) and (w,) mutually and serially independent processes; (34 

[PDF for x,] = P(x,); (3d) 

xl distributed independently of u, and w, for each t. (3e) 
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Under relations (3), the discrepancy terms u, and w, are interpreted as 
random quantities with known probability density functions (PDF’s) govern- 
ing both their individual and joint behavior. The equality signs in (1) and (2) 
are still interpreted as equalities in the usual exact mathematical sense, hence 
V, and w, now appear in (1) and (2) as commensurable disturbance terms 
impinging on correctly specified theoretical relations. The previous interpre- 
tation for u, and w, as conceptually distinct apple-and-orange discrepancy 
terms incorporating everything unknown about the measurement and dynamic 
aspects of the process is thus dramatically altered. 

Specifically, combining the measurement relations (1) with the probability 
relations (3) permits the derivation of a probability density function P( YT 1 XT) 
for the observation sequence Y, = (y,, . . . , y7) conditional on the state 
sequence X7. = (x,, . . . , x7). Combining the dynamic relations (2) with the 
probability relations (3) permits the derivation of a “prior” probability density 
function P(X,) for XT. The multiplication of these two derived probability 
density functions then yields the joint probability density function for XT and 
Y T, 

p(yT ixT)‘P(xT) = p(xT, YTh (4) 

The joint probability density function (4) elegantly combines the two distinct 
sources of theory and data incompatibility-measurement and dynamic-into 
a single scalar measure of incompatibility for any considered state sequence 
XT. 

The usual objective assumed for problem (1) through (3) is to determine 
the state sequence XT which maximizes the posterior probability density func- 
tion P(XTJ YT). Since the observation sequence YT is assumed to be given, 
this objective is equivalent to determining the state sequence XT which max- 
imizes the product of P(XT 1 YT) and P( YT). By the agreed-upon rules of prob- 
ability theory, 

p(xT 1 yT)‘P( YT) = p( YT IxT)‘p(xTh (3 

where, as earlier in (5) be evaluated 
using relations 

is thus equivalent to determining 

c(xT, YT, T) = -log[p( YT ( xT)*P(xT)I. (6) 

In summary, what ultimately has been accomplished by the augmentation 
of the measurement and dynamic relations (1) and (2) with the probability 
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relations (3)? The multicriteria problem of achieving vector-minimal incom- 
patibility between imperfectly specified theoretical relations and process ob- 
servations has been transformed into the scalar optimization problem of de- 
termining the most probable state sequence for a stochastic model assumed 
to be correctly and completely specified. 

This by now conventional series of modeling steps would not be open to 
question if it were any easy task to specify probabilistic properties for the 
discrepancy terms V, and w, in a credible manner. However, for many ap- 
plications-particularly in the fields of economics and biomedical engineer- 
ing-this is not the case. For example, the observations y, , . . . , y, may be 
the outcome of a nonreplicable experiment, so that agreement among data 
analysts concerning probabilistic properties for the discrepancy terms is dif- 
ficult to achieve. Alternatively, the theoretical relations (1) and (2) may rep- 
resent tentatively held conjectures concerning a poorly understood process, 
or a linearized set of relations obtained for an analytically intractable non- 
linear process. In this case it is questionable whether the discrepancy terms 
are governed by any well-defined probability relationships. A data analyst 
may then have to resort to specifications determined largely by convention 
if he is forced to provide a probabilistic characterization for the discrepancy 
terms. 

How might a data analyst determine the degree to which the theoretical 
relations (I) and (2) are incompatible with the observations y,. . . . , yT when 
he is either unable or unwilling to provide a probabilistic characterization for 
the discrepancy terms v, and w,? 

The next section illustrates what might be done. 

3. A MULTICRITERIA APPROACH 

Suppose scalar observations yI, . . . , y7. have been obtained on a process 
which is not yet well understood. The following linear relation is postulated 
between the observation y, and an N x 1 vector xI of unknown state variables 
at each time t: 

Measurement Relations [Approximately Linear Measurement] 

[y,-h:x,l=O, t=l,..., T, (74 

where hi is a given 1 x N vector of coefficients. It is recognized that some 
systematic time-variation in the state vectors xI might have occurred over the 
observation period. However, it is anticipated that any such evolution will 
have been gradual, so that successive state vectors do not differ too much 
from one observation time to the next. 
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Dynamic Relations [Slowly Evolving State Vector] 

Lx,+, - &I = 0, t = 1, . . . , T-l. (7b) 

The problem of filtering and smoothing is to try to determine the state 
sequence estimates which are in some sense minimally incompatible with 
given theoretical relations, conditional on a given set of observations. This 
problem is essentially a multicriteria optimization problem which will be pre- 
sented in general terms in Section 4. 

For the case at hand, the multicriteria nature of the filtering and smoothing 
problem is seen as follows. Two conceptually distinct types of model spec- 
ification error can be associated with each possible state sequence estimate 
&= (i,,..., 2,). First, the choice of $T could result in measurement 
specification errors consisting of non-zero discrepancy terms [y, - 
hi%] in (7A). Second, the choice of kr could result in dynamic specification 
errors consisting of non-zero discrepancy terms [a,, , - a,] in (7b). In order 
to conclude that the theoretical relations (7) are in reasonable agreement with 
the observations, each type of discrepancy would have to be small. 

Suppose a measurement cost c,&~, Y,, 7) and a dynamic cost c,@~, 
YT, T) are separately assessed for the two disparate types of model specifi- 
cation errors entailed by the choice of a state sequence estimate 2,. On the 
basis of both tractability and general intuitive appeal, these costs are taken 
to be sums of squared discrepancy terms. More precisely, for any given state 
sequence estimate _%?=, the measurement cost associated with 8, is taken to 
be 

c&f&, Yr, 7-l = i [Yr - cf,12 
t=1 

and the dynamic cost associated with 2, is taken to be 

(8) 

T-l 

cd&, YT, T) = x l-f,+, - -frl’m~r+l - %I, (9) 
1-l 

where D is a suitably selected positive definite scaling matrix.’ 
If the prior beliefs (7) concerning the measurement and dynamic relations 

are absolutely true, then the actual state sequence XT would result in zero 

’ The scaling matrix D can be specified so that the “FLS estimates” obtained below for 
the state vectors X, are essentially invariant to the choice of units for the components of the 
coeffkient vectors h,. See Tesfatsion and Veitch [13, Footnote 31. 
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values for both c,+, and cD. In any real-world application, we would of course 
expect to see positive measurement and dynamic costs associated with each 
potential state sequence estimate 8,. Nevertheless, not all of these estimates 
are equally interesting. Specifically, we would not be interested in a state 
sequence estimate 8, if it were cost-subordinated by another estimate _$$ in 
the sense that 8: yielded a lower value for one type of cost without increasing 
the value of the other. 

We therefore focus attention on the set of state sequence estimates which 
are not cost-subordinated by any other state sequence estimate. Such esti- 
mates are referred to as flexible least squares (FLS) estimates. Each FLS 
estimate shows how the state vector could have evolved over time in a manner 
minimally incompatible with the prior measurement and dynamic relations 
(7). Without additional prior information or additional modeling criteria, re- 
stricting attention to any proper subset of the FLS estimates is a purely ar- 
bitrary decision. Consequently, the FLS approach envisions the generation 
and consideration of all of the FLS estimates in order to determine the com- 
monalities and divergencies displayed by these potential state sequences. 

Define the cost possibility set to be the collection 

of all possible configurations of dynamic and measurement costs attainable 
at time T, conditional on the given observation sequence Yr. The cost-efficient 

frontier CF (T) is then defined to be the collection of all cost vectors c = 
(cg, c~) in C(T) which are not subordinated by any other cost vector c* in 
C(T) in the sense that c* 5 c. Formally, letting “vmin” denote vector-min- 
imization, 

CF( ZJ = vmin C( 23. (11) 

By construction, then, the cost-efficient frontier is the collection of all cost 
vectors associated with the FLS state sequence estimates. 

Ifthe N x Tmatrix [hi,. . . , hT] has full rank N, the cost-efficient frontier 
CF( T) is a strictly convex curve in the cD-c,+, plane giving the locus of vector- 
minimal costs attainable at time T, conditional on the given observations. In 
particular, CF( ZJ reveals the measurement cost cM that must be paid in order 
to achieve the zero dynamic cost (time-constant state vector estimates) re- 
quired by OLS estimation. [See Figure 1.1 

Once the FLS estimates and the cost-efficient frontier are determined, 
three different levels of analysis can be used to investigate the incompatibility 
of the theoretical relations (7) and the observations yl, . . . , y,. First, the 
frontier can be examined to determine the efficient attainable trade-offs be- 
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0 CD 0 CD 

(0) Cost Possibility Set C(T) (b) Cost- Efficient Frontier CF(T) 

Fig. l(a). Cost possibility set C(T) 
Fig. l(b). Cost-efficient frontier C’(T) 

tween the measurement and dynamic costs c,+, and CD. Second, descriptive 
summary statistics, e.g., average value and standard deviation, can be con- 
structed for the time-paths traced out by the FLS estimates at each point 
along the frontier. These summary statistics provide rough indicators of the 
extent to which the FLS estimates deviate from the OLS solution associated 
with the extreme point of the frontier where dynamic cost is zero. Finally, 
the time-paths traced out by the FLS estimates can be directly examined for 
evidence of systematic movements in individual state variables, e.g., unan- 
ticipated jumps at dispersed points in time. These movements might be dif- 
ficult to discern from summary statistical characterizations of the time-paths. 

A detailed theoretical discussion of the FLS technique is given in [4-61. 
A Fortran program for generating the FLS estimates is provided in Kalaba 
and Tesfatsion [5]; and simulation experiments demonstrating the ability of 
the FLS estimates to track linear, quadratic, sinusoidal, and regime shift mo- 
tions in the true state variables, despite noisy observations, are reported and 
graphically depicted. In Tefatsion and Veitch [13], the FLS technique is used 
to undertake an empirical investigation of a well-known log-linear regression 
model for U.S. money demand over the volatile period 1959:Q2_1985:Q3. 
Interesting insights are obtained concerning shifts in the money demand re- 
lation at economically reasonable points in time. 

4. GENERALIZATIONS 

In the previous section it is shown how a multicriteria approach might be 
used to investigate the basic incompatibility of theory and data for one type 
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of filtering and smoothing problem. This multicriteria approach is generalized 

in Kalaba and Tesfatsion [7] to a much broader class of problems. The present 
section briefly reviews this work. 

Consider a situation in which a sequence of observations Y7 = (y,, . . . , 
y7) has been obtained on a process over time periods 1, . . . , T. The basic 

problem is to learn about the sequence of states XT = (x, , . . , xT) through 
which the process has passed. 

Suppose the degree to which each possible state sequence estimate X7 is 

incompatible with the given observation sequence YT is measured by a K- 

dimensional vector c(X~, Y,, 7J of incompatibility costs. These costs may 

represent penalties imposed for failure to satisfy criteria conjectured to be 

true (theoretical relations), and also penalties imposed for failure to satisfy 

criteria preferred to be true (objectives). Let C(T) denote the set of all in- 

compatibility cost vectors c = c(J?,. YT, T) corresponding to possible state 

sequence estimates X7. The cost-efficientfrontier, denoted by CF(T). is then 

defined to be the collection of cost vectors c in C(T) which are not subor- 

dinated by any other cost vector c* in C(T) in the sense that c* I c. 

By construction, the state sequence estimates XT whose cost vectors attain 

the cost-efftcient frontier are characterized by a basic efficiency property: for 

the given observations, no other possible state sequence estimate yields lower 

incompatibility cost with respect to each of the K modeling criteria included 

in the incompatibility cost vector. Each of these state sequence estimates thus 

represents one possible way the actual process could have evolved over time 

in a manner minimally incompatible with the prior theoretical relations and 

objectives. 

The basic multicriteria estimation problem can be summarized as follows: 

The Basic Multicriteria Estimation Problem 

Given a process length T, an observation sequence YT, and a multidi- 

mensional incompatibility cost function c(., Y7, T), determine all possible 

state sequence estimates k 7 which vector-minimize the incompatibility cost 

c(k,, YT, T). That is, determine all possible state sequence estimates R, 

whose cost vectors c(_j?,, Y7, T) attain the cost-efficient frontier CF(T). 

A vector-valued recurrence relation is established for the cost-efficient 
frontier in Kalaba and Tesfatsion [7]. This recurrence relation is readily rec- 

ognizable as a multicriteria extension of the usual scalar dynamic program- 
ming equations. 

To give a rough idea of this result, consider the estimation problem at any 
intermediate time t. Suppose a K-dimension vector c(X,, Y,, t) of incompat- 
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ibility costs can be associated with each t-length state sequence estimate 2, 
= (R,, * * . , R,), conditional on the sequence of observations Y: = (y, , . . . , 

y,). Let C(.f,, t) denote the set of all cost vectors c&;, Y,, r) attainable at 
time t, conditional on the time-t state estimate being i,; and let CF(&, t) denote 
the cost-efficient frontier for C(9, t). 

Given certain regularity conditions, it is shown that state-conditional fron- 
tiers at time t are mapped into state-conditional frontiers at time f + 1 in 
accordance with a vector-valued recurrence relation having the form 

CF(-f, + 1, t + 1) = vmin (U,,[CF(R,, t) + WC, %+I, yt+l, t + 1)lh (12) 

where “vmin” denotes vector-minimization and SC(*) denotes a vector of 
incremental costs associated with the state transition (a,, R,,,). Moreover, 
the cost-efficient frontier at the final time T satisfies 

f?(T) = vmin [UmTCF(RT, Z)]. (13) 

Three well-known state estimation algorithms are derived in Kalaba and 
Tesfatsion [7] as scalar-criterion special cases of the multicriteria recurrence 
relations (12) and (13): namely, the Kalman [8], Viterbi [3, 141, and Larson- 
Peschon [IO] filters for sequentially generating maximum a posteriori prob- 
ability estimates. In addition, an algorithm for sequentially generating the FLS 
estimates for the problem discussed above in Section 3 is derived as a bicriteria 
special case of (12) and (13). 

5. CONCLUDING REMARKS 

The specification of appropriate criteria for measuring the incompatibility 
of theory and data is a key issue for state estimation. The general multicriteria 
framework outlined in Section 4 provides an organizing principle for state 
estimation which accommodates a broad range of perspectives on this issue. 
If available, probability assessments can be used to provide a single scalar 
measure of incompatibility, as illustrated in Section 2. Alternatively, disparate 
sources of information can be systematically considered without forced sca- 
larization, as illustrated in Section 3. 

Future studies will stress both theoretical developments and practical ap- 
plications. For example, the state sequence estimates whose costs attain the 
cost-efficient frontier constitute a “population” of estimates characterized by 
a basic efficiency property: For the given observations, these are the state 
sequence estimates which are minimally incompatible with the prior theo- 
retical relations and objectives. Systematic procedures need to be developed 
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for interpreting and reporting the behavior displayed by these estimates in 
both simulation and empirical studies. A second related issue concerns the 
use of the posterior information embodied in the cost-efficient frontier for 
adaptive model respecification. 

For many years filtering and smoothing studies have primarily dealt with 
situations where theoretical specifications are essentially correct and model 
discrepancy terms are reasonably modeled as random quantities with known 
distributions. More recently, however, the social and biological sciences have 
presented filtering and smoothing problems of critical importance for which 
the underlying relations are not well understood. In such areas, model mis- 
specification is an endemic problem, and procedures are needed for coping 
with this reality. As suggested in this paper, the explicit recognition of model 
specification errors raises a number of new and interesting challenges for 
filtering and smoothing theory. 
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