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Abstract--Suppose noisy observations obtained on a process are assumed to have been generated 
by a linear regression model with coefficients which evolve only slowly over time, if at all. Do the 
estimated time-paths for the coefficients display any systematic time-variation, or is time-constancy a 
reasonably satisfactory approximation? A "flexible least squares" (FLS) solution is proposed for 
this problem, consisting of all coefficient sequence estimates which yield vector-minimal sums of 
squared residual measurement and dynamic errors conditional on the given observations. A procedure 
with FORTRAN implementation is developed for the exact sequential updating of the FLS estimates 
as the process length increases and new observations are obtained. Simulation experiments demon- 
strating the ability of FLS to track linear, quadratic, sinusoidal, and regime shift motions in the true 
coefficients, despite noisy observations, are reported. An empirical money demand application is also 
summarized. 

1. I N T R O D U C T I O N  

1.1. Overview 

Suppose an investigator undertaking a time-series linear regression study suspects that the 
regression coefficients might have changed over the period of  time during which observations were 
obtained. The present paper  proposes a conceptually and computationally straightforward way to 
guard against such a possibility. 

The dynamic equations governing the motion of  the coefficients will often not be known. 
Nevertheless, for many  linear regression applications in the natural and social sciences, an 
assumption that the coefficients evolve only slowly over time seems reasonable. In this case two 
kinds of  model specification error can be associated with each choice of  an estimate b = (b, . . . . .  bs) 
for the sequence of  coefficient vectors bn: residual measurement error given by the discrepancy 
between the observed dependent variable Yn and the estimated linear regression model x~bn at each 
time n; and residual dynamic error given by the discrepancy lb,+, - b , ]  between coefficient vector 
estimates for each successive pair of  times n and n + 1. 

Suppose a vector of  "incompatibility costs" is assigned to each possible coefficient sequence 
estimate b based on the specification errors which b would entail. For  example, suppose the 
cost assigned to b for measurement error is given by the sum of  squared residual measurement 
errors, and the cost assigned to b for dynamic error is given by the sum of  squared residual dynamic 
errors. 

The "flexible least squares" (FLS) solution is defined to be the collection of  all coefficient 
sequence estimates b which yield vector-minimal sums of  squared residual measurement and 
dynamic errors for the given observations--i .e,  which attain the "residual efficiency frontier". 
The frontier characterizes the efficient attainable trade-offs between residual measurement error 
and residual dynamic error. In particular; the frontier reveals the cost in terms of residual 
measurement error that must be paid in order to attain the zero residual dynamic error 
(time-constant coefficients) required by ordinary least squares estimation. 

Coefficient sequence estimates b which attain the residual efficiency frontier are referred to as 
"FLS estimates". Each FLS estimate has a basic efficiency property: no other coefficient sequence 

tThe present paper is a revised version of Ref. [1], presented at the 1987Ninth Annual Conference of the Society for Economic 
Dynamics and Control, in an April 1987 seminar at UC Berkeley, and in a January 1988 seminar at the University of 
Arizona. The authors are grateful to conference and seminar participants for numerous helpful suggestions. 

:~Author for correspondence. 
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estimate yields both lower measurement error and lower dynamic error for the given observations. 
The time-paths traced out by the FLS estimates thus indicate how the regression coefficients could 
have evolved over time in a manner minimally incompatible with the prior measurement and 
dynamic specifications. 

The time-varying linear regression problem treated in the present paper is formally set out in 
Section 2. The FLS approach to this problem, briefly outlined above, is more carefully developed in 
Section 3. A matrix representation for the FLS estimates is derived in Section 4. In Section 5 a 
procedure is developed for the exact sequential updating of the FLS estimates as the process length 
increases and additional observations are obtained. Section 6 develops various intrinsic geometric 
relationships between the FLS estimates and the ordinary least squares solution obtained by 
imposing constancy on the coefficient vectors prior to estimation. 

In Section 7 it is established, analytically, that any unanticipated shift in the true coeffi- 
cient vector will be reflected in the time-paths traced out by the FLS estimates. Section 8 
describes some of the simulation studies undertaken with a FORTRAN program "FLS" which 
demonstrate the ability of the FLS estimates to track linear, quadratic, sinusoidal, and regime 
shift time-variations in the true coefficients, despite noisy observations. Section 8 also briefly 
summarizes the findings of an empirical money demand study [2] in which FLS is used to investi- 
gate coefficient stability for the well-known Goldfeld U.S. money demand model [3] over 
1959:Q2-1985:Q3. 

The final Section 9 discusses topics for future research. Proofs of theorems are provided in 
Appendix A. A list of FORTRAN statements for the computer program FLS is provided in 
Appendix B, together with a brief discussion of the program logic. 

1.2. Relationship to previous time-varying linear regression studies 

The time-varying linear regression problem has attracted considerable attention from 
econometricians and statisticians over the past several decades. Early studies of this problem 
include Quandt [4] on estimating the location of a shift from one regression scheme to another, 
and Quandt [5] and Chow [6] on testing the null hypothesis of a shift at a particular point in 
time. A synthesis of this work can be found in Fisher [7]. See also the later work of Guthery [8], 
Brown et al. [9], Ertel and Fowlkes [10], and Cooley and Prescott [11] on linear regression 
models with stochastically varying coefficients. Rosenberg [12] provides a general survey of this 
literature. 

Other studies (e.g. [13-18]) have investigated the application of Kalman-Bucy filtering [19, 20] 
to linear regression models with various types of non-constancy assumed for the coefficients. 
Finally, the relationship between statistical smoothing spline models (e.g. Craven and Wahba [21]) 
and time-varying linear regression models is clarified in [18, pp. 12-14]. 

All of these statistical time-varying linear regression studies require the specification of 
probabilistic properties for residual error terms and, ultimately, for test statistics. These require- 
ments pose three potential difficulties. 

First, most time-series data used in empirical economics is not generated within the framework 
of controlled experiments. The inability to replicate the same experiment a large number of times 
means that objective information concerning probabilistic properties for residual error terms may 
be difficult to obtain.t In addition, the complexity of many economic processes suggests that model 
specification errors are inevitable. However, the specification of probabilistic properties for residual 
error terms implies that these terms are to be interpreted as random shocks disturbing an otherwise 
correctly specified model rather than as potential discrepancies resulting from model misspecifi- 
cation. Finally, obtaining distributional properties for the test statistics relied on by conventional 
methods can require theoretically significant simplifications (e.g. linearizations) for computational 
reasons. If the test statistics then result in a rejection of the model, it may be difficult to pinpoint 
which maintained restrictions--theoretical, probabilistic, or computational--are responsible for 
the rejection. 

tSee, for example, the complex approximations undertaken by Doan et ai. [22, pp. 6-26] and Miller and Roberds 
[23, pp. 5-10] in order to specify the initial mean values and second moment matrices required by the Kalman-Bucy 
filter. 
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In contrast to conventional statistical techniques, FLS is an exploratory data analysis tool for 
testing the basic compatibility of theory and observations. As clarified in previous studies [24-27], 
the theory may consist of nonlinear measurement, dynamic, and stochastic specifications. The 
form these specifications take is not restricted. In particular, investigators are not required to use 
an ad hoc stochastic framework when they have little knowledge of, or belief in, probabilistic 
properties for residual error terms. FLS determines the degree to which the theoretical specifi- 
cations can be simultaneously satisfied, conditional on the given observations. Once a theoretical 
model is found which is basically compatible with the data, a more structured statistical approach 
can be used to refine the estimates. 

Time-varying linear regression techniques are commonly applied when a process is undergoing 
some type of structural variation which is not yet well understood. The theoretical, simulation, and 
empirical results reported in the present study suggest that FLS provides a useful complement to 
existing statistical techniques for this class of problems. 

1.3. Relationship to previous work in systems science and engineering 

The idea of forming an incompatibility cost-of-estimation function as a suitably weighted sum 
of squared residual dynamic and measurement modelling errors was stressed by R. Sridhar, R. 
Bellman, and other associates in a series of studies [28-30] focusing on a class of continuous-time 
nonlinear filtering problems arising in rigid body dynamics. Invariant imbedding techniques [31, 32] 
were used to convert the first-order necessary conditions for minimization of the cost-of-estimation 
function (a two-point boundary value problem) into an initial value problem amenable to 
sequential solution techniques. 

Building on this work, exact sequential filtering and smoothing equations were developed in 
[24, 25] for a discrete-time analog of the continuous-time Sridhar nonlinear filtering problem. 
As in previous studies, the exact sequential equations were obtained by converting the first-order 
necessary conditions for cost minimization into an initial value problem. 

In [26] it is shown that sequential solution techniques can be devised for discrete-time processes 
modelled in terms of general nonlinear dynamic and measurement specifications without making 
direct use of the first-order necessary conditions for cost minimization. Specifically, two exact 
procedures are developed for the direct sequential minimization of the cost-of-estimation function 
as the duration of the process increases and new observation vectors are obtained. The first 
algorithm proceeds by an imbedding on the process length and the final state vector. The second 
algorithm proceeds by an imbedding on the process length and the final observation vector. 
Each algorithm generates optimal (least cost) filtered and smoothed state estimates, together with 
optimal one-step-ahead state predictions. 

The basic conceptual idea of minimizing a weighted sum of squared residual dynamic and 
measurement modelling errors to obtain state estimates for nonlinear processes is extended in three 
directions in [27] to obtain a "flexible least cost" state estimation technique for a broader range 
of problems. 

First, instead of focusing on the state estimates which minimize a cost-of-estimation function 
specified for one given set of weights, the solution to the state estimation problem is instead taken 
to be the collection of all state estimates which attain the "cost-efficiency frontier"--i.e, which 
yield vector-minimal sums of squared residual dynamic and measurement errors, conditional 
on the given observations. A cost-of-estimation function with varying weights is used to generate 
the cost-efficiency frontier. Second, it is shown that exact sequential updating equations can be 
obtained for more generally specified cost-of-estimation functions; e.g. cost-of-estimation functions 
for which the dynamic and measurement costs are specified to be arbitrary increasing functions 
of the absolute residual dynamic and measurement modelling errors. Third, it is shown that prior 
stochastic specifications can be incorporated into the cost-of-estimation function in addition to 
prior dynamic and measurement specificatons. The basic cost-efficiency frontier is then a surface 
in E 3 giving the locus of minimal attainable dynamic, measurement, and stochastic costs-of- 
estimation for a given set of observations. 

The present paper undertakes a detailed theoretical and experimental study of the flexible least 
cost approach for processes characterized by linear state (coefficient) measurements, unknown state 
dynamics proxied by a smoothness prior, and squared residual error cost specifications. 
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2. T I M E - V A R Y I N G  LINEAR REGRESSION PROBLEM 

Suppose noisy scalar observations y , , . . . ,  YN obtained on a process over a time-span 1 . . . . .  N 
are assumed to have been generated by a linear regression model with coefficients which evolve 
only slowly over time, if at all. More precisely, suppose these prior theoretical beliefs take the 
following form: 

Prior measurement specification [linear measurement]: 

y.--xXb.. .~O, n = 1 . . . . .  N. (2.1a) 

Prior dynamic specification [coefficient stability]: 

b . + t - b . ' ~ O ,  n = l  . . . . .  N - l ,  (2.1b) 

where 

T (X.~ . . . .  X.X) 1 X K row vector of known exogenous regressors; 
b. = (b.~ . . . . .  b.x) r = K x 1 column vector of unknown coefficients. 

The measurement and dynamic specificatons (2.1) reflect the prior beliefs of linear measurement 
and coefficient stability in a simple direct way, without augmentation by any stochastic restrictions. 
These prior beliefs seem relevant for a wide variety of processes in both the natural and the social 
sciences. 

A basic problem is then to determine whether the theory is compatible with the observations. 
That is, does there exist any coefficient sequence estimate ( b l , . . . ,  bu) which satisfies the prior 
theoretical specifications (2.1) in an acceptable approximate sense for the realized sequence of 
observations (y~ . . . . .  YN)? How might such a coefficient sequence estimate be found? 

3. FLEXIBLE LEAST SQUARES (FLS) 

3.1. The basic FLS  approach 

Two kinds of model specification error can be associated with each possible coefficient sequence 
estimate b = (b~ . . . . .  bu) for model (2.1). First, b could fail to satisfy the prior measurement 
specification (2.1a). Second, b could fail to satisfy the prior dynamic specification (2.1b).l" 

Suppose the cost assigned to b for the first type of error is measured by the sum:~ of squared 
residual measurement errors 

r 2(b; N) = 

and the cost assigned to b for the second 
dynamic errors 

r ~(b; N) = 

N 
T 2 [ y , -  x,b,] , (3.1) 

n = l  

type of error is measured by the sum of squared residual 

N - I  

[ b . + , -  b.lT[b.+ ~ -  b.]. (3.2) 
n = l  

Define the (time N) residual possibility set to be the collection 

P(N)  = {r 2(b; N), r2(b; N) lb ~ E Nr} (3.3) 

of all possible configurations of squared residual dynamic error and measurement error sums 
attainable at time N, conditional on the given observations Yl . . . . .  YN. The residual possibility set 
is depicted in Fig. l a. 

If  the prior theoretical specifications (2.1) are correct, the squared residual errors associated 
with the actual coefficient sequence will be approximately zero. In general, however, the l o w e r  

fThis simple breakdown of costs into two categories, measurement and dynamic, can of course b¢ generalized (s¢¢ [24, 27, 
Section 4]). 

:[:It is assumed that preliminary scaling and transformations have been carried out as appropriate prior to forming the sums 
(3.1) and (3.2). In particular, the units in which the rcgressor variables ~ arc measured should be chosen so that the 
regressors are approximately of the same order of  magnitude. 
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Fig. 1. (a) Residual possibility set P(N), (b) residual efficiency frontier PF(N). 
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envelope for the residual possibility set P(N) will be bounded away from the origin in E :. This 
lower envelope gives the locus of vector-minimal sums of squared residual dynamic and 
measurement errors attainable at time N, conditional on the given observations. In particular, 
the lower envelope reveals the cost in terms of residual measurement error that must be paid in 
order to achieve the zero residual dynamic error (time-constant coefficients) required by OLS 
estimation. Hereafter this lower envelope, denoted by PF(N), will be referred to as the (time N) 
residual efficiency frontier; and coefficient sequence estimates b which attain this frontier will be 
referred to as FLS estimates. 

The FLS estimates along the residual efficiency frontier constitute a "population" of estimates 
characterized by a basic efficiency property: for the given observations, these are the coefficient 
sequence estimates which are minimally incompatible with the linear measurement and coefficient 
stability specifications (2.1). Three different levels of analysis can be used to compare the FLS 
estimates along the frontier with the time-constant OLS solution obtained at the frontier extreme 
point characterized by zero residual dynamic error. 

At the most general level, the qualitative shape of the frontier indicates whether or not the OLS 
solution provides a good description of the observations. If the true model generating the 
observations has time-constant coefficients, then, starting from the OLS extreme point, the frontier 
should indicate that only small decreases in measurement error are possible even for large increases 
in dynamic error. The frontier should thus be rather flat (moderately sloped) in a neighborhood 
of the OLS extreme point in the rD-r~2 ~ plane. If the true model generating the observations has 
time-varying coefficients, then large decreases in measurement error should be attainable with only 
small increases in dynamic error. The frontier should thus be fairly steeply sloped in a 
neighborhood of the OLS extreme point. In this case the OLS solution is unlikely to reflect the 
properties exhibited by the typical FLS estimates along the frontier. 

The next logical step is to construct summary statistics for the time-paths traced out by the 
FLS estimates along the frontier. For example, at any point along the frontier the average 
value attained by the FLS estimates for the kth coefficient can be compared with the OLS estimate 
for the kth coefficient, k = 1 . . . . .  K. The standard deviation of the FLS kth coefficient estimates 
about their average value provides a summary measure of the extent to which these estimates 
deviate from constancy. These average value and standard deviation statistics can be used to assess 
the extent to which the OLS solution is representative of the typical FLS estimates along the 
frontier. 

Finally, the time-paths traced out by the FLS estimates along the frontier can be directly 
examined for evidence of systematic movements in individual coefficients---e.g, unanticipated shifts 
at dispersed points in time. Such movements might be difficult to discern from the summary average 
value and standard deviation characterizations for the estimated time-paths. 

This three-level analysis proved to be useful for interpreting and reporting the findings of the 
empirical money demand study [2]. 

3.2. Parametric representation for the residual efficiency frontier 
How might the residual efficiency frontier be found? In analogy to the usual procedure for trac- 

ing out Pareto-efficiency frontiers, a parameterized family of minimization problems is considered. 
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Thus, let # t> 0 be given, and suppose the K x N matrix of  regressor vectors [xl,.  • •, x#] has full 
rank K. Let each possible coefficient sequence estimate b = (bl . . . . .  bN) be assigned an incompati- 
bility cost 

C(b; #, N) = #rg(b; N) + r~(b; N), (3.4) 

consisting of  the #-weighted average of  the associated dynamic error and measurement error sums 
(3.1) and (3.2).t Expressing these sums in terms of  their components, the incompatibility cost 
C(b; ~, N) takes the form 

N - - I  N 

C(b;/~, N) = # ~ lb,+, - b,]r[b,+, - b,] + ~ [y, - xr, b,] ~. (3.5) 
n ~ [  n ~ l  

As (3.5) indicates, the incompatibility cost function C(b; t~, N) generalizes the goodness-of-fit 
criterion function for ordinary least squares estimation by permitting the coefficient vectors b, to 
vary over time. 

If/~ > 0, let the coefficient sequence estimate which uniquely minimizes the incompatibility cost 
(3.4) be denoted by 

bFLS(/2, N) = (bFLS0z, N) . . . . .  b~LS(#, N)) (3.6) 

(uniqueness of  the minimizing sequence for # > 0 is established below in Section 4). If/~ = 0, let 
(3.6) denote any coefficient sequence estimate b which minimizes the sum of  squared residual 
dynamic errors r~(b; N)  subject to r~(b;N)  = 0. Hereafter, (3.6) will be referred to as the flexible 
least squares (FLS) solution at time N, conditional on I~. 

Finally, let the sums of  squared residual measurement errors and dynamic errors corresponding 
to the FLS solution (3.6) be denoted by 

r ~ ,  N) = r~(bFLS(/~, N); N); (3.7a) 

r~(/~, N) = r~(bVLS(#, U); N). (3.7b) 

By construction, a point (r~, r~) in E 2 lies on the residual efficiency frontier PF(N) if and only if 
there exists some/z >i 0 such that (r~, r:M) = (revOz, N), r~(/~, N)). The residual efficiency frontier 
PF(N) thus takes the parameterized form:I 

PF(N) = {r2(#, N), r2M(#, N)[0 ~< # < ~} .  (3.8) 

The parameterized residual efficiency frontier (3.8) is qualitatively depicted in Fig. lb. As # 
approaches zero, the incompatibility cost function (3.4) ultimately places no weight on the prior 
dynamic specifications (2.1b); i.e. r~ is minimized with no regard for r~,. Thus r2M can generally 
be brought down close to zero and the corresponding value for r~ will be relatively large. As/z  
becomes arbitrarily large, the incompatibility cost function (3.4) places absolute priority on the 
prior dynamic specifications (2. lb); i.e. r~ is minimized subject to r2v = 0. The latter case coincides 
with OLS estimation in which a single K x 1 coefficient vector is used to minimize the sum of  
squared residual measurement errors r~ (see Section 6, below). 

The next two sections of  the paper develop explicit procedures for generating the FLS solution 
(3.6). 

tWhen a least-squares formulation such as (3.4) is used as the incompatibility cost function, a common reaction is that 
the analysis is implicitly relying on normality assumptions for residual error terms. To the contrary, (3.4) assesses the 
costs associated with various possible deviations between theory and observations; it bears no necessary relation to any 
intrinsic stochastic properties of the residual error terms. Specifically, (3.4) indicates that residual measurement errors 
of equal magnitude are specified to be equally costly, not that ~ errors are anticipated to be symm~rically distributed 
around zero; and similarly for residual dynamic errors. More general specifications for the incompatibility cost function 
can certainly be considered. See, for example, [27, Section 4]. 

:Hn numerous simulation experiments the residual efficiency frontier (3.8) has been adequately traced out by evaluating the 
residual error sums (3.7) over a rough grid of/~-points incrmudng by powers of ten. In other words, the generation of 
the residual efficiency frontier is not a difficult matter, All of the numerically generated frontiers have displayed the 
convex shape qualitatively depicted in Fig. lb (see Section 8, below, for a brief summary of these simulation 
experiments). 
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4. THE FLS S O L U T I O N :  M A T R I X  R E P R E S E N T A T I O N  

Matrix representations for the incompatibility cost function (3.4) and the FLS solution (3.6) will 
now be derived. 

Let I denote the K x K identity matrix. Also, define 

X(N) T = (x, . . . . .  xt~) = K x N matrix of  regressors; (4.1a) 

b(N)  = ( b T , . . . ,  bT )  T = N K  x 1 column vector of  coefficients; (4.1b) 

y ( N )  = Cv~,.. . ,  yN)T= N x 1 column vector of  observations; (4.1c) 

[ xl 0 " 
G(N)  = " . .  = N K  x N matrix formed from the regressors; (4.1d) 

0 XN 

A(#, N) = 

r x , x T + g I  i fn  = 1; 

A,(/~)= ~x~x  T + 2 g I  i fn  # 1, N; 
/ 
[ .  xux  T + I~1 if n = N; 

"A,(~) -,ul 0 

- # I  A2~) - / d  

0 - /~I  

0 . . . . . . . . . . .  0 - / ~ I  

0 

0 

- # I  

A~0') 

(4.1e) 

O.lf) 

The following results are established in Section A. 1 of  Appendix A. The incompatibility cost 
function (3.4) can be expressed in matrix form as 

C(b(N);  lz, N )  = b(N)TA (/a, N ) b ( N )  - 2b(N)TG(N)y(N)  + y (N)Ty(N) .  (4.2) 

The first-order necessary conditions for a vector b(N)  to minimize (4.2) thus take the form 

.4 (iz, N ) b ( N )  = G(N)y (N) .  (4.3) 

The matrix A (/~, N)  is positive semidefinite for every/z >t 0 and N >1 1. Moreover, if/~ > 0 and the 
N x K regressor matrix X ( N )  has rank K, then A (/z, N)  is positive definite and the incompatibility 
cost function (4.2) is a strictly convex function of  b(N).  In the latter case it follows from (4.3) that 
(4.2) is uniquely minimized by the N K  x 1 column vector 

bFgSo~ ) N )  m A (,p, N)-IG(N)y(N). (4.4) 

Thus, given/z > 0 and rank X ( N )  = K, (4.4) yields an explicit matrix representation for the FLS 
solution (3.6). 

To obtain the FLS solution (3.6) by means of  equation (4.4), the N K  x N K  matrix A (#, N) must 
be inverted. One could try to accomplish this inversion directly, taking advantage of  the special 
form of  the matrix A (/z, N). Alternatively, one could try to accomplish this inversion indirectly, 
by means of  a lower-dimensional sequential procedure. 

As will be clarified in the following sections, the latter approach yields a numerically stable 
algorithm for the exact sequential derivation of  the FLS solution (3.6) which is conceptually 
informative in its own right. The sequential procedure gives directly the estimate bF~(/z, n) for the 
time-n coefficient vector b, as each successive observation y, is obtained. This permits a simple direct 
check for coefficient constancy. Once the estimate for the time-n coefficient vector is obtained, it 
is a simple matter to obtain smoothed (back-updated) estimates for all intermediate coefficient 
vectors for times 1 through n - 1, as well as an explicit smoothed estimate for the actual dynamic 
relationship connecting each successive coefficient vector pair. 

CAMWA 174/9 ..-I~ 
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5. EXACT SEQUENTIAL DERIVATION OF THE FLS SOLUTION 

In Section 5.1, below, a basic recurrence relation is derived for the exact sequential minimization 
of a "cost-of-estimation" function as the duration of the process increases and additional 
observations are obtained. In Section 5.2 it is shown how this basic recurrence relation can be more 
concretely represented in terms of recurrence relations for a K x K matrix, a K x 1 vector, and 
a scalar. 

In Sections 5.3 and 5.4 it is shown how the recurrence relations derived in Sections 5.1 and 5.2 
can be used to develop exact sequential updating equations for the FLS solution (3.6). Specifically, 
these recurrence relations allow the original NK-dimensional problem of minimizing the incompati- 
bility cost function (3.4) with respect to b = (b] . . . . .  bu) to be decomposed into a sequence of N 
linear-quadratic cost-minimization problems, each of dimension K, a significant computational 
reduction. 

5.1. The basic recurrence relation 

Let /~ > 0 and n i> 2 be given. Define the total cost of the estimation process at time n - 1, 
conditional on the coefficient estimates b l , . . . ,  b, for times 1 through n, to be the/t-weighted sum 
of squared residual dynamic and measurement errors 

n - - ¿  n - - I  

W(b,  . . . .  , b . ; # , n -  1)=/~ ~ [bs+,-bslT[bs+,-bs]+ ~ [ys--xTb,] 2. (5.1) 
s = l  s = l  

Let ~b(b,; #, n - 1) denote the smallest cost of the estimation process at time n - 1, conditional on 
the coefficient estimate b, for time n; i.e. 

gp(b,;#,n - 1)= inf W(b~ . . . . .  b,;Iz, n - 1). (5.2) 
b l , ' " , b n  - I  

By construction, the function W(.; #, n - 1) defined by (5.1) is bounded below over its domain 
E ~x. It follows by the principle of  iterated infima that the cost-of-estimation function ~ (.; #, n - 1 )  

defined by (5.2) satisfies the recurrence relation 

c p ( b , + ~ ; # , n ) = i n f ~ [ b , + ~ -  b,]T[b,+ ~ -b , ]+ [y , -xTb , ]~+dp(b , ; i z ,  n - 1)] (5.3a) 
bn 

for all b,+~ in E x. 
The recurrence relation (5.3a) is initialized by assigning a prior cost-of-estimation 4)(b~; tz, 0) 

to each b~ in E x. Given the incompatibility cost function specification (3.4), this prior cost-of- 
estimation takes the form 

~b(b,;/~, 0) =- 0. (5.3b) 

In general, however, ~b(b~;/~, 0) could reflect the cost of specifying an estimate b~ for time 1 
conditional on everything that is known about the process prior to obtaining an observation y~ 
at time 1. 

The recurrence relation (5.3) can be given a dynamic programming interpretation. At any current 
time n the choice of a coefficient estimate b. incurs three types of cost conditional on an anticipated 
coefficient estimate b. + ~ for time n + 1. First, b. could fail to satisfy the prior dynamic specification 
(2.1b). The cost incurred for this dynamic error is/~ lb. +~-b.]X[b. +1-b . ] .  Second, b. could fail 
to satisfy the prior measurement specification (2.1a). The cost incurred for this measurement 
error is [ y . -  xTb.] 2. Third, a cost 4)(b.; #, n - 1) is incurred for choosing b. at time n based on 
everything that is known about the process through time n - 1. 

These three costs together comprise the total cost of choosing a coefficient estimate b. at 
time n, conditional on an anticipated coefficient estimate b, +~ for time n + 1. Minimization of  
this total cost with respect to b, thus yields the cost O(b ,+d# ,n)  incurred for choosing the 
coefficient estimate b, + ~ at time n + 1 based on everything that is known about the process through 
time n. 

As will be clarified in future studies, a recurrence relation such as (5.3)for  the updating of 
incompatibility cost provides a generalization of  the recurrence relation derived in Larson and 
Peschon [33, equation (14)] for the Bayesian updating of  a probability density function. 
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5.2. A more concrete representation for  the basic recurrence relation 

It will now be shown how the basic recurrence relation (5.3) can be more concretely represented 
in terms of recurrence relations for a K × K matrix Q.(#), a K × 1 vector p.(#), and a scalar r.(#). 

The prior cost-of-estimation function (5.3b) can be expressed in the quadratic form 

where 

(b,; #, O) = b~Qo(#)bl - 2b~po(#) + ro(#), (5.4a) 

where 

Q.(u) = [I - 3,/.(#)]; (5.8b) 

p.(u ) = ue.(u ); (5.8c) 

r.(~,) = r ._  l(U) + y.~ - J r . - , ( , )  + x.y.]Te.(u). (5.8d)  

Using (5.7b) and (5.7c) to eliminate M.(/z) and e.(g) in (5.8), one obtains 

Q.(#) = u[Q. - I (g )  + kd + x.x.r]-'[Q._ 1(#) + x.x~; (5.9a) 

p.(#) = #[Q.-I(#)  + ttI + x.x.r]-1[p._ 1(#) + x.y.]; (5.9b) 

r.(#) -- r ._ j (g)  + y2. - [p._l(lz) + x.y.]T[Q._~(g) + # I  + x.x.r]-t[p._,(#) + x~,.]. (5.9c) 

It is clear from (5.9a) that the K x K matrix Q.(#) is positive semidefinite (definite) if Q._ ,(#) is 
positive semidefinite (definite). Equations (5.9) thus yield the sought-after recurrence relations for 
Q.(#), p.(#), and r.(u). 

Note that the matrices Q.(#) are independent of the observations y..  Their determination can 
thus be accomplished off-line, prior to the realization of any observations. 

Q0(u)  = [0],, × ,,; (5 .4b)  

p0(u)  = 0 , ,x , ;  (5 .4c)  

r0(u) = 0. (5 .4d)  

Suppose it has been shown for some n/> 1 that the cost-of-estimation function ~b(. ;#, n - 1) for 
time n - 1 has the quadratic form 

~b(b.; #, n - 1) = bT.Q._ ,(#)b. - 2bT.p._ ,(It) + r._ l(#) (5.5) 

for some K × K positive semidefinite matrix Q._ j(#), K × 1 vector p._ i(#), and scalar r._ l(#). 
The cost-of-estimation function ~b(.;#, n) for time n satisfies the recurrence relation (5.3a). 

Using the induction hypothesis (5.5), the first-order necessary (and sufficient) conditions for a 
vector b. to minimize the bracketed term on the right-hand side of  (5.3a), conditional on b.+ i, 
reduce to 

0 =  --2y~.T+ T T 2 T 2 T 2[x.b.]x.  -- 2#b~V+ ~ + #b.  + b .Q ._  l(kt) - 2p. T_,(/~). (5.6) 

The vector b. which satisfies (5.6) is a linear function of  b.+l given by 

b*(Iz ) = e.(l~ ) + M.(#  )b.+ l, (5.7a) 

where 

M.(#) = u[Q.- i (u)  + u I + x .x~- l ;  (5.7b) 

e.(/~) = # - 'M.(#)[p._  i(#) + x.y.]. (5.7c) 

By the induction hypothesis (5.5), the K x K matrix M.(g) is positive definite. 
Substituting (5.7a) into (5.3a), one obtains 

~b(b.+l; #, n) [ y _  T . 2 = x .b .  (#)] +/z[bn+ l -b.*(#)]T[b.+l-b*~(#)]+qb(b*.(g);#,n - 1) 

=6.r+ iQ.(u)b.+, - 2br.+ f t . (g)  + r.(#), (5.8a) 

Owner
Inserted Text
muAuthors' note: The right-hand side of (5.8b) has a typo.  It should read   Q_n(mu) = mu [I - M(mu)]This needed mu multiplicative factor appears correctly in (5.9a) below.Thanks to Hossein Kazemi (UMass Amherst) for catching this typo.
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5.3. Filtered coefficient estimates 

Let/~ > 0 be given, and suppose the K x n regressor matrix [xl . . . . .  x.] has full rank K for each 
n t> K. Using the recurrence relations derived in Sections 5.1 and 5.2, an exact sequential procedure 
will now be given for generating the unique FLS estimate bFLS(/~, n) for the time-n coefficient vector 
b,, conditional on the observations y l , . . . ,  y. ,  for each process length n i> K. 

At time n -- 1, Q0(/~), p0(#), and r0(~) are determined from (5.4b), (5.4c), and (5.4d) to be 
identically zero. A first observation yi is obtained. In preparation for time 2, the recurrence 
relations (5.9) are used to determine and store the matrix QI(~), the vector p~(/~), and the scalar 
r~(p). If  1 = K, the unique FLS estimate for the time-1 coefficient vector b~, conditional on the 
observation y~, is given by 

b ~VLS(p, 1) ---- arg min([y~ -- xTb~] 2 + O(bm; #, 0)) 
bl 

= [Q0(/~) + xlxlr]-Z[P0(#) + xlYl]. (5.10) 

At time n >/2, Q,_ m(#), p._~(#), and r,_ m(/~) have previously been calculated and stored. An 
additional observation y.  is obtained. In preparation for time n + 1 the recurrence relations (5.9) 
are used to determine and store the matrix Q.(/a), the vector p,(/~), and the scalar r.(#). If  n >I K, 
the unique FLS estimate for the time-n coefficient vector b,, conditional on the observations 
ym . . . . .  y, ,  is given by 

bFLS(#, n) = arg s i n  ([y, -- xTb.] ~ + O(b,; #, n - 1)) 
bn 

= [Q._ ,(I+) + x . x ~ - ' [ p . _  , (#)  + x.y,,]. (5.11) 

If the K x K matrix Q._t(/~) has full rank K, the FLS estimate (5.11) satisfies the recurrence 
relation 

b.VLS(#, n) FLS X FLS b._ ~(/J, n 1) + F.(/J) [y. 1)], (5.12a) = - - x . b . _  i(/+, n - 

w h e r e  the K x 1 filter gain F.(/+) is given by 

F.(I+) = S.(/J)x./[1 + xV.S.(#)x,,]; (5.12b) 

S.(I+) = [Q._ ,(/j)]-l. (5.12c) 

It is easily established that (5.11) does yield the unique FLS estimate for the time-n coefficient 
vector b. for each process length n t> K. By assumption, the total incompatibility cost at time n, 
given the coefficient estimates b~ , . . . ,  b., is 

C(b~ . . . . .  b.; #, n) = [y, - xV.b.] ~ + W(b~ . . . . .  b,; #, n - 1), (5.13) 

where the function W( . ; l t ,  n -  1) is defined by (5.1). The simultaneous minimization of the 
incompatibility cost function (5.13) with respect to the coefficient vectors b~ . . . .  , b. can thus be 
equivalently expressed as 

s i n  ([y. - x+.b.] 2 + W(b~ . . . . .  b.; g, n - 1)) 
b I . . . . .  b n 

= min([y. ~ - x . b . ]  + s i n  W(b~ . . . .  , b . ; ~ , n - 1 ) )  
b .  bl . . . . .  bn - I 

-- min([y, - xT.b,,] 2 + +(b.;/a, n - 1)). (5.14) 
bn 

This establishes the first equality in (5.11). The second equality in (5.11) follows by direct 
calculation, using expression (5.5) for 4~(b.;/a, n - 1). 

Relation (5.12) can be verified by tedious but straightforward calculations by use of (5.9), (5.10), 
and the well-known Woodbury matrix inversion l~nma. 
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5.4. S m o o t h e d  coefficient es t imates  

Let / t  > 0 and N t> K be given. Suppose the procedure outlined in Section 5.3 has been used to 
generate the unique FLS estimate b~LS(#, N) for the time-N coefficient vector bN, conditional on 
the observations yt . . . . .  YN: i.e. 

b~LS(/~, N) = arg min ([y~ -- x~b~] 2 + O(bN;/~, N -- 1)) 
bN 

= [QN- t ( / t )  + XNXrN] - l[p N - 1(#) "~" XNYN]. (5.15) 

The unique FLS estimates (bFLS(/~, N), . bFLS l, . ,  • ", N - ~ ' , N ) )  for the coefficient vectors b l , . .  bu-l ,  
conditional on the observations y~ . . . . .  yN, can then be determined as follows. 

In the course of  deriving the FLS estimate (5.15), certain auxiliary vectors e,(p) and matrices 
M,(/~), 1 ~< n ~< N - 1, were recursively generated in accordance with (5.7) and (5.8). Consider the 
sequence of  relationships 

bl = e , (# )  + M,(Iz)b2 ; 

b 2 = e2(/A ) + U2(/a)b3 , 

bu_ t = e N - I ( g )  + m n - t ( # ) b N .  (5.16) 

By (5.6) and (5.7), each vector bn appearing in the left column of (5.16) uniquely solves the 
minimization problem (5.3a) conditional on the particular vector b, +~ appearing in the correspond- 
ing right column of  (5.16). Let equations (5.16) be solved for b I . . . . .  bN_ t in reverse order, starting 
with the initial condition bN = bFLS(#, N). These solution values yieldt the desired FLS estimates 
for b~ . . . . .  bN_ ~, conditional on the observations y~ . . . . .  YN. 

Consider any time-point n satisfying K ~< n < N. Using (5.7b), (5.7c), and (5.12), it follows by 
a straightforward calculation that the vector e,(p) takes the form 

e,(#) = [I -- m,(/z)]b FLS(#, n ). (5.17) 

Thus, for any given observations y~ . . . .  , YN, the FLS smoothed estimate for b~ is a linear 
combination of  the FLS filter estimate for b, and the FLS smoothed estimate for b,+ I: i.e. 

b~LS(/z, N) - [I -- gn(/~)]bnFLS(/z, n)  + M,(g)bF,~+,(lz, N ) .  (5.18) 

Note that the prior dynamic specifications (2.1b) constitute only a smoothness prior on the 
successive coefficient vectors b t , . . . ,  b~. However complicated the actual dynamic relationships 
governing these vectors, their evolution as a function of  n is only specified to be slow• Nevertheless, 
given the measurement prior (2.1a), the smoothness prior (2.1b), and the incompatibility cost 
specification (3.4), together with observations { y t , . . . ,  YN}, the sequential FLS procedure generates 
explicit estimated dynamic relationships (5.16) for the entire sequence of  unknown coefficient 
vectors b~ . . . . .  bN for each successive process length N t> K. 

6. FLS AND OLS: A G E O M E T R I C  C O M P A R I S O N  

The FLS estimates for b~ . . . . .  b N can exhibit significant time-variation if warranted by the 
observations. Nevertheless, for every ~ >/0 and for every N I> K, the FLS estimates are intrinsically 
related to the OLS solution which results if constancy is imposed on the coefficient vectors 
bl . . . . .  bN prior to estimation. 

Specifically, the following relationships are established in Section A.2 of  Appendix A. First, 
as ~ becomes arbitrarily large, the FLS estimate for each of  the coefficient vectors bt . . . . .  bN 
converges to the OLS solution b°LS(N). 

tTo  see this, express the minimized time-N incompatibility cost function C(b; I~, N) in terms of 0(b~; #, N - 1), analogous 
to (5.14), and then use the basic recurrence relation (5.3) to expand O(bN,~t,N-1) into a recursive sequence of  
minimizations with respect to bt . . . . .  b~_ t. 
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Theorem 6.1 

Suppose the regressor matrix X(N)  has full rank K. Then 

lira b~LS(#, N) = b°LS(N), 1 <~ n ~< N. (6.1) 

Thus, OLS can be viewed as a limiting case of FLS in which absolute priority is given to the 
dynamic prior (2.1b) over the measurement prior (2.1a). As indicated in Fig. lb, the squared 
residual error sums corresponding to the OLS solution do lie on the residual efficiency frontier 
PF(N); but the investigator may have to pay a high price in terms of large residual measurement 
errors in order to achieve the zero residual dynamic errors required by OLS (see Section 8.4, below, 
for an empirical example). 

Second, the OLS solution b°LS(N) is a fixed matrix-weighted average of the FLS estimates for 
bl . . . . .  bu for every # >i 0. 

Theorem 6.2 

Suppose the regressor matrix X(N)  has full rank K. Then, for every # >i 0, 

bOLS(N) ~ v FLS = x,x ,b ,  (#, N). (6.2) 
n = l  

The OLS solution can thus be viewed as a particular way of aggregating the information 
embodied in the FLS estimates for b l , . . . ,  bu. A key difference between FLS and OLS is thus made 
strikingly apparent. The FLS approach seeks to understand which coefficient vector actually 
obtained at each time n; the OLS approach seeks to understand which coefficient vector obtained 
on average over time. 

Finally, the FLS estimates for bl . . . . .  bN are constant if and only if they coincide with the OLS 
solution and certain additional stringent conditions hold. 

Theorem 6.3 

Suppose X(N)  has full rank K. Then there exists a constant K x 1 coefficient vector b such that 

bnVLS(/~, N) = b, 1 ~< n ~< N, (6.3) 

if and only if 

b = b°LS(N) and [xTnb°LS(N) - y,]x, = 0, 1 ~< n ~< N. (6.4) 

7. R E G I M E  SHIFT:  A ROBUSTNESS STUDY FOR FLS 

The FLS solution reflects the prior belief that the coefficient vectors b, evolve only slowly over 
time, if at all. Suppose the true coefficient vectors actually undergo a time-variation which is 
contrary to this prior belief: namely, a single unanticipated shift at some time S. 

More precisely, suppose the observations y, for the linear regression model (2.1) are actually 
generated in the form 

fx~z, n = 1 . . . . .  S ;  
Y" = ~ T (7.1) 

t x ,w,  n = S + I , . . . , N ,  

where N, S, and K are arbitrary integers satisfying N > S I> 1 and N > K >I 1, z and w are 
distinct constant K x 1 coefficient vectors, and the N x K regressor matrix X(N)  has full rank K. 
Would an investigator using the FLS solution (3.6) be led to suspect, from the nature of the 
coefficient estimates he obtains, that the true coefficient vector shifted from z to w at time S? 
An affirmative answer is provided below in Theorems 7.1 and 7.2 (proofs are given in Section A.3 
of Appendix A). 

Consider, first, the scalar coefficient case K = 1. Suppose x, ¢ 0, 1 ~< n ~< N, and z < w. Then, 
as detailed in Theorem 7.1, below, the FLS estimates for bl . . . . .  bN at any time N > S exhibit the 
following four properties: (i) the FLS estimates monotonically increase between z and w; (ii) the 
FLS est imates  increase at an increasing rate over  the initial t ime points  1 . . . . .  S and at a decreasing 
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Fig. 2. (a) Qualitative properties of  the OLS solution at time N with unanticipated shift from z to w at 
time S, (b) qualitative properties of  the FLS solution for b~ . . . . .  bu at time N with an unanticipated shift 

from z to w at time S. 

rate over the final time points S + 1 . . . . .  N; (iii) the initial S estimates cluster around z, with tighter 
clustering occurring for larger values of S and for smaller values of #, and the final N - (S + 1) 
estimates cluster around w, with tighter clustering occurring for larger values of N - (S + 1) and 
for smaller values of/z; and (iv) if xu remains bounded away from zero as N approaches infinity, 
the FLS estimate for bu converges to w as N approaches infinity (see Fig. 2). 

The statement of Theorem 7.1 makes use of certain auxiliary quantities L.(/z), 1 ~< n ~< N, defined 
as follows. Recall definition (4.1e) for the positive definite K x K matrices A .~) ,  1 ~< n ~< N. Let 
positive definite K x K matrices L.(/~) be defined by 

(#A.(/~) -~ if n = 1 or N; 

L.(#) = '~2~An(//) - l  if 1 < n < N. 
(7.2) 

It follows immediately from the well-known Woodbury matrix inversion lemma that 
T T 

[ I -  L.(/~)] A.(U)  -~ T =  X.X./[Ia + X.X.] if n = 1 or N; (7.3) 
= x,,x,, (x .x~. /[2# + xV.x.] if 1 < n < N. 

In the special case K = 1, L.(/z) is a scalar lying between zero and one, strictly so if x. # 0. 
Moreover, L . ( # ) ~ I  a s / ~ o o  and L.(/~)~0 as #--*0. 

Theorem 7.1 

Consider the linear regression model (2.1) with K = 1 and with x, ~ 0 for 1 ~< n ~< N. Suppose 
the observations y.  in (2.1) are actually generated in accordance with (7.1), where z and w are scalar 
coefficients satisfying z < w, and S is an arbitrary integer satisfying 1 ~< S < N. Then the FLS 
solution (3.6) displays the following four properties for each/z > 0: 

(i) z < b~S(u, N) < ' "  < bu~S(/~, N) < w; 

(ii) (a) r~.FLSt. N)_hVLS~. N)]>[bF.Ls(Iz, N )  -- b ._  I(Ia,FLs N)]  for 1 ~<n ~<S; 
L U n +  I k / ~ ' ,  ~ n  ' , ~ )  

(b) [b.+,(/z, N ) V L S  -- I, w'st.~,, ,.~, N)] < [b.FLs(/z, N) -- b.r_t"s]( u, N)] for S + 1 ~< n < N; 
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EA l (iii) (a) [b,VLS~, N) - z] < Lk(~) [w -- z] for 1 ~< n ~< S; 

E.O+I (b) [w - b[LS(/a, N)] < [w - z] for S + 1 ~< n ~< N; 
k 

(iv) x~ w  - bV~LS(Iz, N)]-*0 as N--.oo. 

The next theorem establishes that, for the general linear regression model (2.1) with observations 
generated in accordance with (7.1), the FLS estimates for b~ through bs move successively away 
from z and the FLS estimates for bs+l through bN move successively toward w. 

Theorem 7.2 

Suppose the observations y. for the linear regression model (2.1) are generated in accordance 
with (7.1), where N, S, and K are arbitrary integers satisfying N > S >/1 and N > K t> 1, 
z and w are distinct constant K x 1 coefficient vectors, and the N x K regressor matrix X(N) 
has full rank K. Then the FLS solution (3.6) displays the following properties for each/~ > 0: (i) For 
l< .n<.S ,  

FLS [b~+ ~(/z, N) - z]T[b~S(/~, N) -- z] >I [b.FLS(/~, N) -- z]T[b.VLS0~, N) -- z], 

with strict inequality holding for n if strict inequality holds for n - 1; and (ii) for S + l ~< n < N, 

FLS T FLS [b.+l~,N)  . . . .  w][b.+l(l~,N) w]<~[b~LS(#,N) W]T[bVLS~,N) w], 

with strict inequality holding for n if strict inequality holds for n + 1. 

8. S I M U L A T I O N  AND E M P I R I C A L  ST UDIE S  

A F O R T R A N  program "FLS"  has been developed which implements the FLS sequential 
solution procedure for the time-varying linear regression problem (see Appendix 13). As part of  
the program validation, various simulation experiments have been performed. In addition, the 
program has been used in [2] to conduct an empirical study of  U.S. money demand instability 
over 1959:Q2-1985:Q3. A brief summary of  these simulation and empirical studies will now be 
given. 

8.1. Simulation experiment specifications 

The dimension K of the regressor vectors x, was fixed at 2. The first regressor vector, xm, 
was specified to be (1,1)x. For n >i 2, the components of  the regressor vector x, were specified 
as follows: 

xn~ = sin(10 + n) + 0.01; (8.1a) 

x,2 = cos(10 + n). (8.1b) 

The components of  the two-dimensional coefficient vectors b, were simulated to exhibit linear, 
quadratic, sinusoidal, and regime shift time-variations, in various combinations. The true residual 
dynamic errors [b,+~-b~] were thus complex nonlinear functions of  time. 

The number of  observations N was varied over { 15, 30, 90}. Each observation y, was generated 
in accordance with the linear regression model y , - -x r ,  b, + v,, where the discrepancy term v, 
was generated from a pseudo-random number generator for a normal distribution N(0, or). The 
standard deviation o was varied over {0, 0.5, 0.10, 0.20, 0.30}, where o = 0.x roughly corresponded 
to an x % error in the observations. 

8.2. Simulation experiment results: general summary 

The residual efficiency frontier Pr(N)  for each experiment was adequately traced out by 
evaluating the FLS estimates (3.6) and the corresponding residual error sums (3.7) over a rough 
grid of penalty weights/~ increasing by powers of ten: namely, {0.01, 0.10, 1, 10, 100, 1000, 10000}. 
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No instability or other difficult numerical behavior was encountered. Each of the residual efficiency 
frontiers displayed the general qualitative properties depicted in Fig. lb. 

In each experiment the FLS estimates depicted the qualitative time-variations displayed by 
the true coefficient vectors, despite noisy observations. The accuracy of  the depictions were 
extremely good for noise levels ~ ~< 0.20 and for balanced penalty weightings # ~ 1.0. The 
accuracy of  the depictions ultimately deteriorated with increases in the noise level ~r, and for 
extreme values of/~. However, the overall tracking power displayed by the FLS estimates was 
similar for all three sample sizes, N = 15, 30, and 90. Presumably this experimentally observed 
invariance to sample size is a consequence of the fact that FLS provides a separate estimate 
for each coefficient vector at each t i m e ,  rather than an estimate for the "typical" coefficient vector 
across time. 

8.3. Illustrative experimental results for sinusoidal time-variations 

Experiments were carded out with N = 30 and ~ = 0.05 for which the components of  the 
true time-n coefficient vector b," = (b,~, b~) were simulated to be sinusoidal functions of n. The 
first component, b,'n, moved through two complete periods of  a sine wave over {1 . . . . .  N}, 
and the second component, b,'~, moved through one complete period of a sine wave over 
{ l , . . . ,  N}. For the penalty weight /a = 1.0, the FLS estimates b,r~ s and ~',2AFLS closely tracked 
the true coefficients b,, and b,2. As # was increased from 1.0 to 1000 by powers of ten, the FLS 
estimates A FLS and A FLS ~,,', ,-',,2 were pulled steadily inward toward the OLS solution (0.03, 0.04); but the 
two-period and one-period sinusoidal motions of  the true coefficients b,'l and b,': were still reflected 
(see Fig. 3). 

Another series of  experiments was conducted with N = 30 and t~ varying over {0, 0.05, 0. I0, 0.20) 
for which the true coefficient vectors traced out an ellipse over the observation interval. The 
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OLS solution for each of  these experiments was approximately at the center (0, 0) of  the ellipse. 
For /~  = 1.0, the FLS estimates closely tracked the true coefficient vectors. As/~ was increased 
from 1.0 to 1000 by powers of  ten, the FLS estimates were pulled steadily inward toward the 
OLS solution; but for each /~ the FLS estimates still traced out an approximately elliptical 
trajectory around the OLS solution. The residual efficiency frontier and corresponding FLS 
estimates were surprisingly insensitive to the magnitude of  ~ over the range [0, 0.20]. The 
elliptical shape traced out by the FLS estimates began to exhibit jagged portions at a noise level 

= 0.30. Figure 4 plots the experimental outcomes for # = 1.0 and for /~ = 100 with noise 
level ~ = 0.05. 

A similar series of  elliptical experiments was then carried out for the smaller sample size N ffi 15. 
The true coefficient vector traversed the same ellipse as before, but over fifteen successive 
observation periods rather than over thirty. Thus the true coefficient vector was in faster motion, 
implying larger residual dynamic errors [b, + t - b , ]  would have to be sustained to achieve good 
coefficient tracking. For  each given /J the FLS estimates still traced out an elliptical trajectory 
around the OLS solution, with good tracking achieved for ~r ~ 0.20 and p ,,~ 1.0. However, in 
comparison with the corresponding thirty observation experiments, the elliptical trajectory was 
pulled further inward toward the OLS solution for each given #. 

The number of  observations was then increased to ninety. The true coefficient vectors traced out 
the same ellipse three successive times over this observation interval. The noise level G was set at 
0.05 and the penalty weight # was set at 1.0. The FLS estimates corresponding to/g = 1.0 closely 
tracked the true coefficient vectors three times around the ellipse, with no indication of  any tracking 
deterioration over the observation interval. 

Finally, the latter experiment was modified so that the true coefficient vectors traced out the same 
ellipse six times over the ninety successive observation points. Also, the noise level <7 was increased 
to O. 10. The FLS estimates corresponding to # = 1.0 then closely tracked the true coefficient vectors 
six times around the ellipse, with no indication of  any tracking deterioration over the observation 
interval. 
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Fig. 4. Ellipse experiment with parameter values a ffi 0.05, N ffi 30 and # = 1 and 100. 
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8.4. An empirical application: U.S. money demand instability 

In [2] two basic hypotheses are formulated for U.S. money demand: a measurement hypothesis 
that observations on real money demand have been generated in accordance with the well-known 
Goldfeld log-linear regression model [3]; and a dynamic hypothesis that the coefficients character- 
izing the regression model have evolved only slowly over time, if at all. 

Time-paths are generated and plotted for all regression coefficients over 1959:Q2-1985:Q3 for 
a range of points along the residual efficiency frontier, including the extreme point corresponding 
to OLS estimation. At each point of the frontier other than the OLS extreme point, the estimated 
time-paths exhibit a clear-cut shift in 1974 with a partial reversal of this shift beginning in 1983. 
Since the only restriction imposed on the time-variation of the coefficients is a simple nonparametric 
smoothness prior, these results would seem to provide striking evidence that structural shifts in the 
money demand function indeed occurred in 1974 and 1983, as many OLS money demand studies 
have surmised. The shifts are small, however, in relationship to the pronounced and persistent 
downward movement exhibited by the estimated coefficient for the inflation rate over the entire 
sample period. Thus the shifts could be an artifact of model misspecification rather than structural 
breaks in the money demand relationship itself. 

A second major finding of this study is the apparent fragility of inferences from OLS estimation, 
both for the whole sample period and for the pre-1974 and post-1974 subperiods. Specifically, the 
OLS estimates exhibit sign and magnitude properties which are not representative of the typical 
FLS coefficient estimates along the residual efficiency frontier. Moreover, the residual efficiency 
frontier is extremely attenuated in a neighborhood of the OLS solution, indicating that a high price 
must be paid in terms of residual measurement error in order to achieve the zero residual dynamic 
error (time-constant coefficients) required by OLS. 

For example, at the extreme point corresponding to OLS estimation for the 1974:Ql-1985:Q3 
subperiod, nominal money balances appear to be following a simple random walk Mt+ l~  M,, 
indicating the presence of a severe "unit root" nonstationarity problem. These findings coincide 
with the findings of many other OLS money demand studies. In contrast, along more than 80% 
of the frontier for this same subperiod the FLS estimates for the coefficient on the log of lagged 
real money balances remain bounded in the interval [0.59, 0.81]; and the FLS coefficient estimates 
for other regressors (e.g. real GNP) are markedly larger than the corresponding OLS estimates. 
Thus the appearance of a unit root in money demand studies could be the spurious consequence 
of requiring absolute constancy of the coefficient vectors across time. 

9. T O P I C S  F O R  F U T U R E  R E S E A R C H  

Starting from the rather weak prior specifications of locally linear measurement and slowly 
evolving coefficients, the sequential FLS solution procedure developed in Section 5 generates 
explicit estimated dynamic relationships (5.16) connecting the successive coefficient vectors 
bl . . . . .  bs for each process length N. How reliably do these estimated dynamic relationships reflect 
the true dynamic relationships governing the successive coefficient vectors? The regime shift results 
analytically established in Section 7 and the simulation results summarized in Section 8 both appear 
promising in this regard. 

More systematic procedures need to be developed for interpreting and reporting the time- 
variations exhibited by the FLS estimates along the residual efficiency frontier. As noted in 
Section 3, these estimates constitute a "population" characterized by a basic efficiency property: 
no other coefficient sequence estimate yields both lower measurement error and lower dynamic 
error for the given observations. Given this population, one can begin to explore systematically 
the extent to which any additional properties of interest are exhibited within the population. The 
frontier can be parameterized by a parameter dt _=/~/[1 +/~] varying over the unit interval. For 
properties amenable to quantification, this permits the construction of an empirical distribution 
for the property. Such constructs were used in [2] to interpret and report findings for an empirical 
money demand study; other studies currently underway will further develop this approach. 

Suppose y is actually a nonlinear function of x, and observations yl . . . . .  YM have been obtained 
on y over a grid xt . . . . .  XN of successive x-values. As the study by White [34] makes clear, the OLS 
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estimate for a single (average) coefficient vector in a linear regression of Yl . . . . .  YN on xl . . . . .  XN 
cannot be used in general to obtain information about the local properties of the nonlinear relation 
between y and x. Does the estimated relation y~ = x~b,Fta(#, N )  between y, and x, generated via 
the FLS procedure for n = 1 . . . . .  N provide any useful information concerning the nonlinear 
relation between y and x? Encouraging results along these lines have been obtained in the statistical 
smoothing splines literature (e.g. [21]). 

The geometric relationship between the FLS and OLS solutions established in Theorem 6.2 is 
suggestive of the "reflections in lines" construction for the OLS solution provided by D'Ocagne 
[35]. Can the D'Ocagne construction be used to provide a clearer geometric understanding of the 
FLS solution? 

Finally, starting from the prior beliefs of locally linear measurement and slowly evolving 
coefficient vectors, the estimated dynamic relationships (5.16) connecting the successive coefficient 
vector estimates b~LS(lt, N )  represent the "posterior" dynamic equations generated by the FLS 
procedure, conditional on the given data set {yl . . . . .  YM}. An important question concerns the use 
of these posterior dynamic equations for prediction and adaptive model respecification. 

These and other questions will be addressed in future studies. 
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A P P E N D I X  A 

Theorem Proofs 

A. 1. Proofs for Section 4 
It will first be shown that the matrix representation (4.2) for the FLS incompatibility cost function C(b(N); I~, N) is 

correct. The proof will make use of the following preliminary lemma. 

Lemma 4.1 

Let N and K be arbitrary given integers satisfying N t> 2 and K I> t, and let A(/~, N) be defined as in (4.t0.  Then, for 
any NK x t column vector w -- (w T . . . . .  w~) T consisting of N arbitrary K x t component vectors w,, t ~< n ~< N, 

N N - I  

wTA(/~, N)w = ~ w~x~x~w, + ~ ~ [w,+, - w~]TIw,+, - w~]. (A1) 
n - I  n = l  

Proof It is easily established, by straightforward calculation, that (At) holds for all 2K x 1 column vectors w. 
Suppose (A1) has been shown to hold for all NK x 1 column vectors w for some N >_, 2. Note that A(/z, N + t) can be 

expressed in terms of A (/t, N) as follows: 

.4(u,N + t)= 

A(Iz, N) 0 

+ 

I 0 0 i 

- 0 . "  . 0  0 0 

0 0 0 0 

0 0 M - # I  

0 . " 0  - M  AN+~(/*) 

(A2) 

- -  X T where, as in Section 4, As+ i(/~) - x s + l  ~., + M, and I denotes the K x K identity matrix. Let (w l , . . . ,  WN, w~v + I) denote 
an arbitrary sequence of N + 1 column vectors, each of dimension K x 1, and let 

w = (w T . . . . .  w~)T; (A3a) 

v -- (w T, w~+ l) T. (A3b) 

Then, using (A2), 

v r A ( # , N +  1)v =wrA(#,N)w +w~+ x ixt~+ tx~+ |wjv+ | + #[w~+ l - Wtl]T[wN+ I -- WN]. (A4) 

It follows by the induction step that (AI) holds for the arbitrary (N + I)K x 1 column vector v. Q.E.D. 

Theorem 4.1 

The FLS incompatibility cost function C(b(N); 1~, N) defined by (3.4) has the matrix representation 

C(b (N); lz, N) = b(N)r A (/~, N)b(N) - 2b(N)rG(N)y(N) + y(N)Ty(N). (A5) 

Proof Recall that b(N) = (b T ..... b~) T. It follows from Lemma 4.1 that 
N N-I 

b(N)TA(#,N)b(N)= ~, h~x~x~b, + # ~, [b,+j--b~]T[b~+,--bJ. (A6) 
n ~ l  nml 

Thus, 
N N 

[C(b(N); I~, N) - b(N)TA(I z, N)b(N)] = - 2  ~, [x~b~y, + ~, y2 = _2b(N)XG(N)y(N) + y(N)¢y(N). Q.E.D. (A7) 
n ~ l  n m l  

Theorem 4.2 

Suppose X(N) has full rank K. Then A (/~, N) is positive definite for every/~ > 0. 
Proof It must be shown that wTA(Iz, N)w > 0 for every nonzero NK x 1 column vector w. By I.emma 4.1, it is obvious 

T T T  that wTA(Iz, N)w >I O. Suppose wTA(I~, N)w = 0 for some nonzero NK × 1 column vector w = (w I . . . . .  w~,) , where each 
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component vector w. is K x 1. Then each of the nonnegative sums in (A1) must be zero; in particular, it must be true that 
w.+l - w., n = 1 . . . . .  N -  1. Thus 

0 = wrA (l~, N)w = w.xFc.w. = w r T = w~X(N)r X(N)wI, (A8) 

with w~ ¢: 0. However, (A8) contradicts the assumed nonsingularity of X(N)TX(N). Q.E.D. 

Corollary 4.1 

Suppose X(N) has full rank K, and/~ > 0. Then the FLS incompatibility cost function C(b(N); I~, N) is a strictly convex 
function of b(N) which attains its unique minimum at 

b FLS(~ ,  N) = A (/z, N)- t G (N)y (N), (A9) 

Proof Strict convexity of C(b(N);/a, N) follows directly from Theorem 4.1 and Theorem 4.2. Thus, the first-order 
necessary conditions for minimization of C(b(N); #, N) are also sufficient, and have at most one solution. By Theorem 4.1, 
these first-order conditions take the form 

0 = A(la, N)b(N) - G(N)y(N), (AI0) 

with unique solution (A9). Q.E.D. 

A.2. Proofs for Section 6 

Let N and K be arbitrary given integers satisfying N I> 2 and N I> K I> I. Suppose the N × K regressor matrix X(N) for 
the linear regression model (2.1) has full rank K. Define y(N) to be the N × I column vector of observations (Yl ..... YM) r. 
and let a constant K × I coefficient vector b replace b. in (2.1a) for n = I ..... N; Then the ordinary least squares (OLS) 
problem is to estimate the constant coefficient vector b thought to underly the generation of the observation vector y(N) 
by selecting b to minimize the sum of squared ~sidual measurement errors 

N 

S(b, N) = ~ [y. - xr.b] 2 = [y(N) - X(N)b]T[y(N) - X(N)b]. (AI I) 

The first-order necessary conditions (normal equations) for minimization of S(b, N) take the form 
N 

0 = ~ [y. - xrb]x. = X(N)ry(N) - X(N)rX(N)b. (AI2) 

The OLS solution for b is thus uniquely given by 

b°tS(N)=[.,,~ x,,xT.]-l U~= x .y .= [X(N)TX(N)]-'X(N)'ry(N). (AI3) 

Proof of Theorem 6.1. In component form, the first-order necessary conditions (4.3) for minimization of the incompati- 
bility cost function (4.2) take the following form: for n = 1: 

0 = [x~b t -y~]x I - ~[b 2 - bd; (Al4a) 

for l < n < N :  

for n = N: 

0 = [xT.b,, -- y,,],x,, -- uib.+, - b.] + #[b. - b. _ ,]; (Al4b) 

(Al4c) 0 = [x~bN - y~]xN + ~[b~ - b~_ ,]. 

By a simple manipulation of terms, the first-order conditions (A14) can be given the alternative representation 

/a[b.+ I - b . ] =  ~ [xr~bs-y~]x,, l<~n <N; (Al5a) 
Sml  

N 

o-- ~ t x ~ b . - y j x . ,  (AlSb) 
n - I  

Introduce the transformation of variables 

b. = b°t~(N) + lb. - b°LS(N)] i bOLS(N) + u., I ~ n ~< N. (AI6) 

Then, letting u denote the vector (ut . . . . .  uN), the FLS incompatibility cost function (4.2) can be expressed as 
N N - I  

c(b(N);#,N)--- ]~ [xr.b°LS(N)+ xr.u.-y.]2 + lt ~, [u.+,-u.]rIu.+L-u.] ffi - V(u;tt, N). (AI7) 
n = l  n- - I  

Using (AI5), the first-order necessary conditons for a vector u -- (ut . . . . .  uN) to minimize V(u; I~, N) take the form 

# [ u . + t - u , , ] =  ~ [xlb°LS(N) -- Y.lx, + ~. [x~xIlu,, l~<n < N ;  (Alga) 
s i l  s - I  

0 = ~ [x~x~u., (Algb) 

where use has been made of the fact that b°ta(N) satisfies the first-order necessary conditons (AI2) for the minimization 
of s(b, N). 

The proof of Theorem 6.1 now proceeds by a series of lemmas. 
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Lemma 6.1 
The FLS solution u*(/4, N) to the minimization of V(u;/4, N) defined by (AIT) satisfies 

[u*,+l(/4, N)-u*n(/4, N)]~O as /4--*oo, 1 ~<n ~ < N -  1. (AI9) 

Proof Suppose (A19) does not hold. Then for some n there exists ~ > 0 such that 

[u*+ [(/4, N) - u*(/4, N)IT[u*+ t(/4, N) - u*(/4, N)] I> 

for all sufficiently large/4. It follows from (AI7) that V(u*(/4, N);/4, N)I>/4~ for all sufficiently large/4, i.e. the minimum 
FLS incompatibility cost diverges to infinity as /4 approaches infinity. However, it is also clear from (AI7) that 
V(0;/4, N) -- S(b°ta(N)) < oo for all/4 > 0, a contradiction. Thus (AIg) must hold. Q.E.D. 

Lemma 6.2 

For each n, I ~< n ~< N, 

[u*(/4, N)--u*(/4, N)]--*O as /4--coo. 

Proof The proof is immediate from I.,cmma 6.1, since 

[u*(/4, N) - u ~'(/4, m)] --- [u,*(/4, N) - u~*_ ,(/4, N)] + [u*_ ,(/4, N) - u*_ ;(/4, N)] +... + lug'(/4, N) - u*(/4, N)]. Q.E.D. 

Lemma 6.3 

Suppose X(N) has full rank K. Then, for each n, 1 .<< n ~< N, 

u*(/4, N)--,O as /4--.0o. (A20) 

Proof By Lemma 6.1, Lemma 6.2, and the first-order necessary condition (A18b), 

0 = [x:~u*(/4, N ) ~  x,,x u~(/4, N) = X(N)rX(N)u~(/4, N) (A21) 
n = l  n 1 

as/4- '*o o ;  hence u*(/4, N)-"[X(N)TX(N)]-IO = 0 as/4--'oo. Claim (A20) then follows from Lemma 6.2. Q.E.D. 
The proof of Theorem 6.1 now follows from Lemma 6.3. Specifically, by construction 

u,*(/4, N) -- b~t's(/4, N) - b°LS(N); (A22) 

hence, u*~(/4, N)--¢O as/4~oo if and only if (6.1)holds. Q.E.D. 

Corollary 6.1 
Suppose X(N) has full rank K. Then, for each n, 1 ~< n ~< N, 

b vLs ~. [x~b°LS(N) - y,]x v (A23) lim/4[b,+,(/4,N)rts _ , (/4,N)]= 

Proof Corollary 6.1 follows from Theorem 6.1, given the form (A15) for the first-order conditions satisfied by the FLS 
solution brLS(/4, N). Q.E.D. 

Proof of Theorem 6.2. As earlier shown, the FLS estimates satisfy the first-order conditions (Al5b); i.e. 
N 

0 := ~ [x~bVLS(/z, N) - y~]x,. (A24) 
n = l  

Theorem 6.2 then follows immediately from (A24) and the analytical expression (AI3) for the OLS solution b°LS(N). Q.E.D. 
Proof of  Theorem 6.3. The proof that condition (6.3) implies condition (6.4) follows directly from the first-order conditions 

(A15) satisfied by the FLS solution and the first-order conditions (AI2) satisfied by the OLS solution. 
Conversely, condition (6.4) implies that the FLS cost function V(u;/4, N) defined in (AI7) reduces to 

N N - - I  

V(u; /4' N) -- E [x~u~2+/4 ~ [us+ t - u~]'r[u,+ , - u~] + S(b°LS(N), N) (A25) 
n - I  n - I  

for all u = (u, . . . . .  us). Thus, V(u;/4, N) >I S(b°LS(N), N) for all u, with V(0;/4, N) -- S(b°LS(N), N). To establish that (6.4) 
implies (6.3), it thus suffices to show that u*(/4, N) = 0 is the unique minimizer of V(u; 14, N), given condition (6.4); for 
u*(/4, N) ffi [bV~(/4, N) - b°LS(N)] by construction. 

Suppose there exists a nonzero t~ such that V(a;/4, N) = S(b°LS(N), N). Then, by (A25), it must hold that 

[~+ [ -  t~,] = 0, l ~ n < ~ N - l ,  (A26) 

hence 

t~, = ,3, # 0, l ~ n ~ N .  (A27) 

Again using (A25), it follows that 

V(t~;/4, N) = '~l x,,x ut + S(b°ta(N), N) ffi aTX(N)TX(N)~t + S(b°ta(N), N), (A28) 
I 

with t~ I #, 0. Thus, in order to have V(,~;/4, N) = S(b°LS(N), N), it must hold that X(N)TX(N) is singular. However, X(N) 
has full rank K by assumption. It follows that no such nonzero a exists. Q.E.D. 

A.3. Proof a for Section 7 

The following preliminaries are needed for the proof of Theorem 7.1. Let/4 > 0 be given. For the particular observation 
sequence (7.1), the FLS incompatibility cost function (3.4) reduces to 

8 U N 

c(b, ..... b,,;/4,N)= Y. (x',[z-bJ)2 + Y (:,[w-b~D2 + /4 Y [b,+,-b,Fib,+,-b,]. (A29) 
n - I  n - $ + l  s - I  
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The first-order conditions for a vector (bl . . . . .  b/v) to minimize C(bl . . . . .  b/v; #, N) in (A29) take the following form: 
for n ---I: 

for 1 <n  ~<S: 

for S +  1 ~<n < N :  

for n = N: 

#[b 2 - bl] = x tx~b  I -- z]; 

u[b.+ i - b,,] = #[b. - b,, _ 1] + x,,xr.[ b, - z]; 

u[b.+ ~ - b.] ffi u[b. - b._ 1] + x , , x r . [b .  - w]; 

IA[b N - -  b / v _  I] ---- X/VXTN[ W - -  b/v]. 

Combining terms, the first-order conditions (A30) take the form: for 1 ~< n ~< S: 

#[b,,+l-b,,] ffi ~ x~c~bk--z]; 
k = l  

for S +  1 ~<n < N :  

for n = N: 

N 
t~[b.+l-b,,]--- ~ x ~ [ w - b d ;  

k - n + l  

(A30a) 

(A30b) 

(A30c) 

(A30d) 

(A31a) 

(A31b) 

(A31c) 

f o r S + l ~ < n < N :  

for n = N: 

[b. - w] ffi L.(p ) ([b.+ t - w] + [b._ I - w])/2; 

[b/v - w ]  ffi L N O ,  ) [b / v_  , - w] .  

By (A32b) and property (i), for n ffi S one has 

bs = [1 - Ls(~)]z + Ls~)[bs+ t + bs- t]/2 < [1 - Ls(~)]z + Ls(~)w. (A33) 

If S ffi 1, this completes the proof of part (a) of property (iii). Suppose S > 1 and, for some n satisfying 1 < n ~ S, one 
has shown that 

Lk - • d 

Combining property (i), (A32) and the induction step (A34), 

b~_ 1 < [ 1 - - L . _ l ~ ) ] z  + L._10a)b. < [ 1 - I ! . _ t L , ( p ) ] z  + [ ,  *-IS_ i L ,~) ]w.  (A35) 

Thus, part (a) of property (iii) holds by induction for all n, I ~ n ~ S. 
The proof of part (b) of property (iii) is entirely analogous. 
Proof o f  property (iv). By property (i), the solution vectors b I . . . .  , bs for the first-order conditions (A3 I) are bounded 

between z and w for all N ~ 1. It follows that the fight-hand sum in (A31c) is bounded below by a finite negative number 
as N--*oo. By property (i), the right-hand sum in (A31c) is a monotone decreasing function of hr. A bounded monotone 
decreasing ~luence must converge to a finite limit. A neces~ry condition for the fight.hand sum in (A31c) to converge 
to a finite limit as N ~ o v  is x ~ b / v -  w]--*0 as N--,oo. Q.E.D: 

Proof o f  Theorem 7.2 
Proof o f  property (i). It follows immediately from the th'st-order necemmry condition (A32a) and the definition (7.3) for 

Lt(#) that the FLS solution satisfies 

[b 2 - z]T[b2 - -  z ]  •ffi [b I - Z ] T [ / +  V1(/4)][  / + Vl ( /4 ) ] [b l  _ z ] ,  ( A 3 6 )  

(A32a) 

(A32b) 

(A32c) 

(A32d) 

S N 

o = E x~x~tb,- :]  + E ~ b ~ -  ,~]. 
k ~ l  k - $ + l  

If X(N)  has full rank K, it follows from Section 4 that the solution to conditions (A30) [equivalently, (A31)] yields the 
unique FLS solution corresponding to the particular observation sequence (7.1). 

Proof o f  Theorem 7. I 

The four properties listed in Theorem 7.1 will be proved in order. 
Proof o f  properties (i) and (ii). Suppose z < bl and b/v < w. Then properties (i) and (ii) follow directly from (A30) and 

(A31), respectively. Suppose bt ~ z. Then it follows directly from (A31a) that b m ~ z for 1 ~ n ~ S + I. In order for (A31c) 
to hold, it must then be true that b/v~ w, implying b, ~ w for S + 1 g n ~ N by (A31b). However, one then obtains 
bs+l<~ z < w <~ bs+ i, a contradiction. A similar contradiction is obtained if one supposes that bs >~ w. 

Proof o f  property (iii). Recall definition (7.2) for the matrices L,(#). In the special case K ffi 1, with x~ ~ 0, 1 ~< n ~ N, 
each L,(#) is a scalar lying strictly between zero and one. Moreover, L,(#)--*I as # ~ o v  and L~(#)--,0 as #--*0. The 
first-order necessary conditions (A30) can be expressed in terms of the matrices L,(#) as follows: for n = 1 

[b,  - z ]  ffi L , ( U ) t b ,  - z]; 

for 1 <n  ~<S: 

[b. - z] = L.0t)([b.+ t - z] + [b._, -- z])/2; 
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where the K x K positive semideflnite matrix Vt(/~) is given by 

Vl(l~) = x,xrl/#. (A37) 

If S = I, this completes the proof of property (i). 
Suppose S/> 2, and suppose for some n - 1 satisfying I ~< n - I < S it has been shown that the FLS solution satisfies 

[b. - z]r[b. - z] = [bn_ i - z]T[ I + V. _ i(/a)][l + V~_ ,(/~)][b~ _ t - z], (A38) 

where V~_ t ~ )  is a K x K positive semidefinite matrix. Then there must exist a scalar k.(~) t> I, and a symmetric orthogonal 
K × K matrix [reflection] of the form P~(~) = [I - 2un~)u.~)r],  where U.(,u)Tu.~) = 1, such that 

[b~ - z] = k . ~ ) P . ~ ) [ b . - t  - z]. (A39) 

If strict inequality holds in (A38), then k . ~ )  > 1. 
Let R ~ )  denote the inverse of the matrix L.(,u) defined by (7.2). Thus, R n ~ )  = A.~)/21~ = [xnx r + 2g/]/2/~. By (A32b), 

2R~0~)[/ ,~ - z ]  = Ibm+, - z ]  + Ibm_, - z] .  ( A 4 0 )  

Combining (A39) and (A40), and noting that Pn~)  - t =  P .~ ) ,  

[/,~ + ,  - z ]T[bn  + t - -  z ]  = [ / 'n - z ] r 2 R . C u ) 2 R . 0 ~ ) [ b ~  - -  z ]  - -  2 I t , . _ ,  - -  z ] r 2 R . 0 ~ ) [ b .  - z ]  + I t , . _ ,  - z ] r [ t , n _ ,  - z ]  

= [b~ - z]r[l + V.(/z)][l + V~(~)] [b. - z], (A41) 

where the positive semidefinite K x K matrix V ~ )  satisfies 

1 + V.~)  = I + [I - kn~) -~] l  + 2 k ~ ) - l u ~ ) u . ~ )  r + x~xrJp = [2R.~) - k . (~)- 'P .~)] .  (A42) 

Note that /InCa) is positive definite if k . ~ )  > !. It follows that 

[bn + i - z]T[b~ + l -- z] >. [b~ - z]T[b~ -- z], (A43) 

with strict inequality holding if k . ~ )  > I. Hence, by induction, property (i) holds for 1 ~ n ~< S. 
Proof  o f  property (ii). The proof of property (ii) is entirely analogous. Q.E.D. 

A P P E N D I X  B 

A F O R T R A N  Program for  Finding the F L S  Solution 

A FORTRAN program "FLS" has been developed which implements the sequential FLS solution procedure developed 
in Section 5. FLS consists of a main program together with four subroutines: INPUT, WOOD, INV, and FOCTST. The 
main program and subroutines are currently dimensioned for regressor vectors with dimension K ~< 10, and for a number 
of observations N ~< 1 I0. 

The main program begins with a call to subroutine INPUT, which provides all the needed inputs to the program. 
Subroutine INPUT is the only part of the program requiring actions on the part of the user, aside from the write and format 
statements which appear in the main program and the dimension statements which appear at the beginning of each 
subroutine and the main program. (These write, format, and dimension statements should be tailored to conform to the 
specific dimensions of the user's problem.) 

Specifically, subroutine INPUT initializes the penalty weight/~, the dimension K of the regressor vectors, and the number 
of observations N. It also fills a double precision array X(10,110) with the K × N matrix of regressor values [xt . . . . .  XN], 
and a double precision array Y(II0) with the N × 1 vector of observations (Yl . . . . .  yN) r. For simulation studies, the 
observations (y~ . . . . .  yN) r are generated in accordance with the linear regression model y. = xr.b. + vn, n -- 1 . . . . .  N,  
for a K × K matrix of true coefficient values [bl . . . . .  bN] and a specified sequence (vt . . . . .  VN) of residual measurement 
errors. Subroutine INPUT stores the true coefficient values in a double precision array TRUEB(IO,  110) for later 
comparison with the numerically generated FLS coefficient estimates. 

The main program next initializes a certain auxiliary array R. A DO loop for n -- I, N then commences. The DO loop 
evaluates and stores the matrices M, and vectors en in equations (5.7b) and (5.7c). The inversion required for the evaluation 
of Mn is accomplished in part by a call to subroutine WOOD, which implements the well-known Woodbury matrix inversion 
lemma. Subroutine WOOD in turn calls the matrix-inversion subroutine INV. 

The main program next evaluates the FLS filter estimate b~LS(~, N) for the final coefficient vector bN, using equation 
(5.15), and stores this K × 1 vector in column N of a double precision array BOO, 110). The FLS smoothed estimates for 
the K × 1 coefficient vectors b~ . . . . .  bN_ t are then determined in accordance with equations (5.16), and stored in columns 
l through N - I of the array BOO, 110). The entire array B of FLS coefficient estimates for time 1 through N is printed 
out. For simulation studies, the array T R U E B  of true coefficient values for times I through N is also printed out for 
comparison with B. 

Using the array B of FLS coefficient estimates, the main program then evaluates and prints out the sum of squared 
residual measurement errors (3.1), the sum of squared residual dynamic errors (3.2), and the total incompatibility cost (3.4). 

The next portion of the main program consists of a validation check. The K-dimensional OLS solution b°LS(N) for the 
linear regression model (2.1a) is first evaluated as a matrix-weighted average (6.2) of the FLS estimates. This evaluation 
is stored in an array BOLSE(IO) .  The OLS solution b°LS(N) is then evaluated by means of the usual formula (A13). This 
evaluation is stored in an array BOLS(IO) .  Theoretically, the two expressions (6.2) and (AI3) for b°tS(N)  are equivalent. 
Thus, if the program is correct, the two evaluations should be in close agreement. Both of these evaluations are printed out. 

The final portion of the main program consists of a second validation check. A call is made to subroutine FOCTST 
to determine how well the numerically generated FLS coefficient estimates satisfy the first-order necessary (and sufficient) 
conditions (A 14) for minimization of the incompatibility cost function (3.4). Using the numerically generated FLS coefficient 
estimates stored in B, together with the inputs provided by subroutine INPUT, subroutine FOCTST evaluates the 
right-hand expression for each of the first-order conditions (AI4) and prints out the resulting calculation. 

A third validation check can be undertaken by letting /~ increase over successive runs. As established in Section 6, 

CAMWA 174/9-,-F 
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Theorem 6.1, the FLS estimate bFLS(fl, N) for the coefficient vector b, converges to the OLS solution b°LS(N) as the penalty 
weight # approaches infinity, for each n = 1 . . . . .  N. Thus, the numerically generated FLS estimates should approach the 
numerically generated OLS solution b°LS(N) for large p values. 

The FORTRAN statements for program FLS are listed below. The logical progression of the program statements, 
explained in the preceding paragraphs, is summarized in comment statements interspersed throughout the program. 
Print-out is given for one of the ellipse experiments discussed in Section 8.3. 

C 
C FLS: A FORTRAN PROGRAM FOR TXME-VARYXNG LXNEAR REGRESSXON 

ii:i!i!i~iii~i!ii~i!i!i~!i!iil ii:i:iiii'i iiii:!iiii: i!~i:ii ~ii:i .i: !iiii~ Ii!:!I~C !:! ~!iii!!il iii ll ~ii~!ii .i:.: :i ! : Y i  A":.F ~.~x ~ 8 ~ : L ~ A S ~  ~I!SQU A~ ~ S:: ~ i, ~:i:i :::i~:i :~i::: :!:i: : ~ii ~!~.i K!I:: :!: ~i: :i i i i : i~:: ii 
i iiiiiiiiiiiiiiii!iiii:i:i: i ii~i!~i!!:: i~!!:!i:ii! i~i :~ iii!:i :~ : i:i:i:¢ iii~i::i:?iq:iif!i~::ii!::i! :i :~:~ ii ~ i: ( : i :  ~f:: :ill: i~: {.~:::: :i~!i!i~:: i i:i i:i~i :~: ~: ~i i: i ~i ~:ii: ?Li: :ill:?: :~i~: ii:~:ii ~i : !i~:i i:: : . . . . . . .  
iiii:i!iii:!ili!i~:ii~ ii :11~:~i:! i~i!~!f~!iiii:: ~! il i:i : i ~ .... 

0 0 0 1  IMPLICIT REAL*B(A-HoO-Z) 
0002 REAL*SM 

0003 OXMENSXON X( tO,  I 1 0 ) , Y ( I t O ) , R ( I O ,  tO) 
0004 DXMENSION X N ( I O ) , Z ( I O , 1 0 ) , M ( 1 0 , 1 0 , 1 1 0 ) , V ( 1 0 )  
0005 DIMENSION U ( q O ) , E ( 1 0 .  I I O ) . W ( I O ) , Q ( t O .  I O ) . A ( l O . 1 0 )  

0009 OXMENSION XTBOLS(t10) .OLSR(110)  
0010 DIMENSION TRUE8(10.110)  

C THE FOLLOV|NG SUBROUTINE IN IT IAL IZES THE PENALTY VE|GHT 

NCAP BY I VECTOR Y OF SCALAR OBSERVATIONS. 
0011 CALL XNPUT(ANU,K,NCAP,X,Y,TRUEB) 

INXTIALXZAT~ON FOR THE AUXILIARY MATRXX RN • QN-I ÷ AMU*I 

0014 R ( Z , d )  - 0.013+00 
0 0 t 5  XF(X.EQ.J)  R ( X , J )  - AMU 
0016 40 CONTINUE 

C OBSERVATION YN 
oot9  0o so Z - t . K  
0020 X N ( Z ) - X ( X . N )  

0023 
THE N#OODBURY NATRXX INVERSXON LE#~qA 
CALL t ~ ) O ( K . R , X N , Z )  
CALCULATE & STORE THE K BY K MATRICES NN AND THE K BY 1 

0026 N( ][ ,  d ,  N ) - A I d U * Z (  ; ,  d )  
0 0 2 7  8 0  CONTINUE 
0 0 2 8  7 0  CONT][NUE 

' i i  i ~ 2 9 : 1 : ~  i i i l  : : i: : i 
i:::;i i i~SO Z:I ~ il iii:.i i :. ::.i~:(iI~:~XN(-X ]~vma: ~ : i i .  i~ i :. ! i : : ~::. i 

0032 DO 100 X ' I , K  
0 0 3 3  ] [ F ( N . E Q .  t )  U ( ; ) ' O . O 0 + O 0  
0034 I F ( N . G T . I )  U ( X ) ' A M U * E ( X , N - I )  

f::: i:::!:.!! i:i!~B ' :.i:i::i::!::i!ii:i:.::i!:'i!i:il :~ii :,!!: i :.!11:: i : " : :i::i: i::: ii i :  : '~ i i::::: ~ : :: 
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0 0 3 8  t l O  CONTINUE 
0 0 3 9  00  120 1 " 1 , K  

i l i ! i i i i : ~ '~OO40 :  ~ : i : ' i : : ! ' ( ( ~ ; : N ) - O . O O + O O  
i : : D O  I~O d - 1 K  : :  

i!ilil : : 00~2  E { I , N ) ' E ( I . N ) ÷ Z ( i , J ) * ~ ( d )  
0 0 4 3  130 CONTINUE 
0 0 4 4  120 CONTINUE 

0 0 4 9  150 CONTINUE 
0 0 5 0  t 4 0  CONTINUE 

. ~ 5 1  . . . . . . . .  50. CONTINUE 

0 0 5 3  00  170 d ' l . K  
0 0 5 4  O ( I ,  J ) " - A M U * M ( I .  d. NCAP- 1 ) 
0 0 5 5  I F ( I  . E Q . d )  G ( l  , d ) ' O ( I  ,J)+AMU 

i l i i i i i i i l i :~54; :~: : : ' : i : : : '  : : ; : ~ b N T : | N U E I  :; : : . : : .  : : :: : . : :  : : .  : : . : i  :.!i! i:i : i : : : i i '  

: : : i ,  0 B T ~ : | N : T H E : I N y E R S E  C O F : T H E : M A T R | X : A : * ( ~ - ~  :~- : X N X ~ ) :  i::: 
C IN  EQUATION ( 5 .  t 5 )  

0 0 5 8  DO 180 I - t , K  
0 0 5 9  DO 190 d ' l , K  

: : : : : :  :{ i: : :  : : :  : i i : : : i ! : ! i i : i i i i i ! : i i i i : i i : : i i : i i : i i : : i ! i ! : :  i : : / : :  
i : : i : . i i i i i i i i~ : : : : i : :~ ! : : : : :  : :  ; ~ : :~0  j ~ I : ( : 0N i~ I~E : I~ : :~ : : : : i  : :: :: : : :  :. : :  

0 0 6 3  CALL I N V ( K .  A , C )  
C FORM THE VECTOR D - ( P N - t  ÷ XNYN) IN  EQUATION ( 5 . t 5 )  

0 0 6 4  O0 200  I - t , K  

iiiiii!i:ii::i:ii~(; i ::i::::::::: :: : ~ ~ I :CONI : ;NuE : i:: ::i : ii ::: 
iiii!iii!~i:i:,;'ii :.: : i!: C S ~ ; |  ~i,~y:~.~ :BY D : : T o  OB TA ~[ N:::BN~A~ ::: :::: : : ::: :: : :: 

0 0 6 7  DO 2 1 0  I " t , K  
0 0 6 8  B ( I ,  NCAP ) " 0 . 0 0 + 0 0  
0 0 6 9  O0 2 2 0  U " I . K  

iiiiiii!!ii:.!!i!i! ~ ? 0  ~:: ::, : :~ i :  :: ( i  : : ; ~ A P ) ~ B  { i :~I~CAP) ~:C ( 1:i d ) :~b  ( ~ ) :  i:i:. ::! :: ; : . '  i:: ii::i: ~ii:!:ii: ii :: :::!i :: :!: ~ ! :i ~ :: 

C USE EQUATIONS ( 5 . 1 6 )  TO OBTAIN SMOOTHED FLS ESTIMATES 
C FOR Bt  . . . . .  BNCAP- 1 

0 0 7 3  NCAP t "NCAP- 1 

OO77 B ( I , L ) - E ( I , L )  
OO7B DO 2 5 0  d - l , K  
0 0 7 9  B ( I , L ) - B ( I , L ) + M ( I , U , L ) * B ( d , L + t )  

iiii:i!i!:iii!ii~:,~O :::i: :i::i :i ~':: :! :i~ !~ :::: 2 5 0  :i!i !!:ili:CONT ! NU E :: :i) i:iii i: :ill::: :i :ii~ i! i ! :~ !! : :ii ~ i~i :ii:!:i:i:~i~:i~i~:?i :!!!!;:i:i:i/i!:i!!!i!:ii!-.i!::! :!ii:ii:ii!il ::!!i: !! !: ! ii:i::i~!i i i 
i!ii:ii:i:i!iOOB: ~ ! : : i  i :  i i : i  2 4 0  ! : ~ONT]NUE ii: i:::: i : : : : : i !  : :i!:!i:!:: !!:i :: : 
ii::~ili:ii!~ii:~B2 i : : : 2 3 0  !!~ ~ O N Y | N u E  :i ~::!: : :!i : : : i f :  ,!~i !i: :i,:ili:~ !:~: i!: ,~ 

0 0 8 3  W R I T E ( 6 , 2 0 2 0 )  
OOB4 2 0 2 0  FORMAT(1X, 'HERE ARE THE FLS ESTIMATES FOR B1 AND THE 

& TRUE B I ' )  

& TRUE B 2 ' )  

0091  DO 5 0 0  N " I  ,NCAP 
0 0 9 2  SUM t " 0 . 0 0 + 0 0  
0 0 9 3  00  5 1 0  d ' l , K  

0 0 9 7  0 1 F S Q ' O I F * O Z F  
0 0 9 8  SUM" SUM+O I F SQ 
0 0 9 9  5 0 0  CONTINUE 
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: :4 :.. : 
: "  : 0 i 0 1  SUM-O. OD÷OO 

O102 DO 520 N-t ,NCAP1 
O103 DO 530 J " I , K  
0104 D] FVEC(,0)"B( ,J, N+ t ) - 6 ( 0 , N )  

: : : ' : : i ! ' : i :~i~ ': ~ " :~  i " :  .... S ~ O  I~:~,ONi"INUE . 
!: i : : .~10~; . . . . . . .  : : $ U M t - O . O 0 ~ : ~ . : :  : . :  
: :  0 i 0 7  : :  i DO 1140 ~ i * t , l c  :: 

0 1 o s  . . . . . . . .  suNt -su~ I~oz  FV[C(O)*OZ #VEC(O) 
0109 540 CONTI[NUE 
O110 SUM" SUM+SUM 1 

C CALCULATING RSUBD FROM EGUAT;ON ( 3 . 2 )  

0113 COST'AMU*RSUBO÷RSUBN 
0114 ~RITE(G,580)  RSUBM,RSUBJ),COST 
0115 580 FORMAT(1HO,'HERE ARE RSUBN.RSUBO.COST'/ IXo3020.10) 

0116 DO 810 ~ ' I . K  
0117 VVV( I ) 'O .O0+O0 
0118 DO ~20 N=I,NCAP 

i!~:!:!:~!:~!~!~2~:/~i~iii~:~i:i~i!!~!~i~£i~:!i!~0~:~..1:~K]!p~!i~i~i~!:ii!i~i:i:i:~;~/~!!~:~i~i~: ii:41 
iii!iiiii!i!iiiii~ii!O ~ t; iiili: !i!i{: i::ii ::£ibii::: :il i:i!i!iill :ii i!;~ ~ !ili:iii~ t ~ $ ~  ~ ~X ( ~ ;  N) ~B (O i  N ).~ ::i!! ::!]i i! i:i] !:: i,il iil i]il !ii!'~ ~,]: i] iiiii!!~i!i:i ili!:'!ii~ :i I~ ~:i: ii:i iiii! iii :.i: :: i i ii!ii.ill 

0122 620 V V V ( I ) - V V V ( Z ) ÷ X ( Z , N ) * S U N I  
0123 610 CONTINUE 
0124 00 840 Omt,K 

£;i iiiii~iiiii:Olld~ i;i ii~ii%iKiiii~ ~ili~iii:ZZ(k,~ ~i) ~ , ~  i~£ii: iiiiiiiiii%illiiii~ili,; iiiiiili;i:ii!ii! !i 2i~i ~!i~iii% ~i iii,:ii~:~ii;iiii!ii£%ii;iii~iilKii£i% ii i~!ii ;;! i ~ ~!i iii : 

O128 DO 660 N-I ,NCAP 
0129 DO 870 ; ~ t , K  
0 t 3 0  DO 880 d - l . K  

IK::I!I:I 

0134 CALL ~NV(K.ZZ,ZZ~NV) 
0 t 3 5  DO ~90 Z - I , K  
0136 BOLSE(Z)-O.O0÷00 

i ~llD 
! '  i 10:i:Pg 

0140 
0141 910 

WRITE(G,910) 
FORMAT( tHO. 'COMPONENTS OF 50LSE' ) 

C FORMULA BOL5" ( XXT ) - t *XY 
0144 00 1600 I - I o K  
0145 SUM'O. 00+00 

::! 0~41; i i ::~i 

0149 00 t620 I - t . K  
0150 DO 1630 d ' l , K  

0 t 5 5  1620 CONTTNUE 
0156 CALL |NV(K,XXT,XXTINV)  
0157 DO 1650 X " I , K  

0161 1650 CONTINUE 
0162 VRITE(6,  1670) 
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C 
0166 
0167 

CALCULATING THE SUN or  SQUARED RESIDUAL MEASUREMENT 
ERRORS OLSRH FOR OL$ 
00 1800 N-I.NCAP 
XTBOLS(N)-O.O0÷O0 

0171 DO 1820 N'I .NCAP 
0172 1820 OLSR(N)'Y(N)-XTBOLS(N) 
0173 OLSRN'O.O0+O0 

0177 1840 FORMAT(IHO,'SUM OF SOUARED RESIDUAL NEASURENENT ERRORS 
& FOR OLS')  

0178 ~RITE(6 .1841)  OLSRN 

0 1 8 0  . . . . . . . . . . . .  cALL FOCTST(AMU,K,NCAP.x,Y.B) 
0 t81 STOP 
0182 END 

C WITH NORMAL NOISE N(O,SIGNA) IN THE OBSERVATIONS 
0004 K '2  
0005 AMU" 1.00+00 

0009 A I 'DFLOAT( I )  
0010 P I ' ( D A T A N ( t . 0 0 + 0 0 ) ) * 4 . 0 0 + O 0  
0011 TRUEB(1. I ) ' .SD+OO*DSIN((2 .00÷OO*PI /30.OOvOO)*AI )  

00t5  x(2.1) - t .0o+00 
0016 DO 3010 I"2,NCAP 
0017 AI 'OFLOAT( I )  

0021 4020 CONTINUE 
0022 DO 3020 I ' I .NCAP 
0023 Y ( I ) ' X (  1. !)*TRUEB( 1. I )+X(2,  I )*TRUEB(2.  I)~51GMA*GNORM(O) 

~ 2 5  REtUI~N :"i; I ~':: El : : i l  : ~: i 
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C 
0001 SUBROUTINE WOOD(K.R.X.Z) 

, : . :  : C CALCULATES THE INVERSE Z OF A ~ATR;X OF THE FOR~ R÷XXT 
!:! . C  .! : V I A  THE t~DOOBURY MATRIX INVERSION LEMMA • : 
iii:::; 0002 ..... . • " ::: : :  i i l P L I C I T  R E & L ~ e ( A ' H * O ' Z )  

0003  DIMENSION R ( I O .  I O ) . X ( I O ) . Z ( I O .  I O ) . S ( I O .  I O ) . V ( I O )  
0004  DIMENSION XNUM(tO, I O ) , U ( t O .  IO) 

C CALCULATE THE |NVERSE $ OF THE K BY K MATR|X R 
[~ii:~ii;~ii!ii:f~ i:i'iii::~i:i::E:::il i::!: :~:L:f:il i:i!i:!::~:{ii!i ::i ::i:::::.Ti:!i::i$il;~:Aiit'! :~ i ; J l~  k~.i ~ L T:" :! : i :: : :: : : 

0007  V( I ) ' 0 . 0 0 ÷ 0 0  
0008  DO 20 J m I , K  
00o9 v( I ) - v (  I )÷S( x, o ) * x ( J )  

( . :  

0012  00 30 I ' t . K  
0013  DO 40 O ' I , K  
0014 XNU~( ! . O ) - V (  I ) *V ( , J )  

iiiii!i ii:il : i i~ ' ; l l l  : : 
i:,:.i:!:i::i~:: ii!::ii:i~i : :,!~ii:ii!~ii~:i!i:~iii:iii:.:~:!::ii~,:e:::,~!:;~i:.F,::@i:,!:e~(~u~Ai:i~:: Y , , : ( ? ! ~ v ' r y ) . ( : ! ~ X ~ . l ~ : - ' l * x )  : .  

0 0 t 7  Y ' I .  00+00  
0018  O0 50 Z - I , K  
0019  Y - Y + X ( I  ) * V ( I  ) 

):::::::.i~ii ~ :  :i)~:.~::i:. iiii:.iiiii:, iiTii:::.i:/:::::~i~:i::::ii::!:.ii~l~l~:::::: !if: !:,i ii: ~ii:.!:: i::iLii:.ii : : : ~  : ::: :.i :~ ::.~ : 

0022  DO 70 ~ I - I , K  
0023  U ( I ,  O)mXNUM( I , O ) / Y  
0024 70 CONTINUE 

i)i !:.::.! ~ : : ~ i i  :!f i)!!;: il);)i::i! !i:.~T: :::.: ii ] i ii::::~:i:!ii;i~:~:~;ii:!i::i~\!"~i~::: :: :i :. ~! !:::. :2 i:: :: :: : : i i : ~.: ii !! :.!: :: ::: 
iiiili:.::!ii!~{:i~:i!: i :il :~liE~l.: i i~li:Ti"j i !~T~tJ--- - i ::::: :::t :: 

0027 DO 90 d - l . K  
OO28 Z ( I , O ) ' S ( I . O ) - U ( l  , ~ )  
0029  90 CONTINUE 

i i:i::ii~i : . : ~ :  ~ii~ iiii::ili i::~:.! ::. : ~ii:.i)!iii:i~i~i::.i::~:iii~i"|~i! :i::: i i i  : : :: : i :: : : :  

• :::: :p 

0004  DO 5 J - t . K  
0005  DO 6 ] ' I , K  

0 0 t 0  DO 8 I - t , K  
0011 B( X ,K÷U)=O.OD÷O0 
0012 X F ( I . E Q . d )  B ( I  , K + J ) "  1 . 0 0 ÷ 0 0  

0 0 t 5  DO 9 L ' I . K  
0016  PIVOT'B ( L,  L ) 
0 0 t 7  DO 13 tJ -L .K2 

0 0 2 0  I F ( I . E Q . L )  GO TO t4  
0021 A Z L ' B ( !  . L )  
0022  DO 15 O-L ,K2  

~i:iFi ! ! i ~ . ! ; i i i ; i ; i i ; i  : i : i '  : : m : i i i i ! ! ~ l ~ t ~  : ;:. : .  ' .  " 
0026  DO 45 I - I . K  
0027  DO 46 LJ- I ,K  
0028  46 C ( I  , d ) - B ( l  ,K+~I) 

:d. :& ii! ~ 3 0  iliF:!F.i!ilF.!:::!:!ii~;/!;il F:ii!ili:ii:i~i :: :. ::ii ili ~ i ) : : ) ~  . . . . . . .  :: 
ii:!~'i i !i;i. i ::ii:~!4~!!!#!l~Nl~.:,:i:.. : ;::: ......... ;: .............. .... 
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C 
0001 SUBROUT I NE FOCTST ( Ali~J, K. NCAP. X. y .  B ) 

0 0 0 3  : i  :i::i !; ; ; : : ~ : ; i ;  i D l l i i E N $ I O N ; X ( l O ; I t O ) , Y ( t i O ) . B ( 1 0 . 1 1 0 ) * D I F ( 1 0 )  : : 

0005  100 FORMAT(1HO,'HERE ARE THE FOC TEST RESULTS FOR EQUATIONS ( A . 1 4 ) ' )  
0006  O0 1 N ' I . N C A P  
0007  ]IF ( N . N E . 1 )  GO TO 9000 
~ i  :':::~; ;:.~!T; i::Zi!:i~,:.i'~i~. ~ :::~ i ::~ ~ i~:~, i:"~:i ~i! ~ i ~ !i :i;, ~ : : i  ~ : 

001 t 2 CONTINUE 
0012  SUIII 'SUM'Y (N)  
0013  DO 3 J I " I , K  
~ i  :::: :~;~i:. ~!:! ;~;i!i~i!:; :;:!i ii !ii !ii iiili! ii]i:.i :.i!i!:~:::i !i!:ii D::fl * ( ~  ~ ) ; ;  ~ * ' ~ ( ;~ '~ :~ '~ )  ~ '~U ~;(O{~ ~'iN~ ~)~1 ( f l~  ~'~i ) : !  

i ~ t ~  i ~; :;:, 

o o 1 7  2oo  F O R , A T ( t X . ' F O R  N EQUAL T O ' . I S / I X . S O t 2 . 3 )  
0018  GO TO 1 
0019  9000  IF  (N.EQ.NCAP) GO TO 900 t  

0023  4 CONTINUE 
0024 SUN" SUN- Y ( N ) 
0025  DO 5 d 1 - l . K  

0028  W R I T E ( 6 , 2 0 0 )  (N,  ( D ] [ F ( d t ) .  d1,, 1 .K)  ) 
0029  GO TO 1 
0 0 3 0  9001 SUM'O. 00+00  

: , i ~ :~  ~ : ii~::i ii ~ 'i!i i~ ~!i:: i:,!:, :: i i iii~iiii:~iiiiiiii::i;iiiiili~,~!:~iii~ii~:~;~ i ~  :~ii:,!!ii:ii ii;ii~!ili;i ~ii!!i;iiiii::i i i::i~i ~: i~: ill ii ?:,;ii ~!ii i i i ;i!! ii! i ;:~:,! i::il iiii :,~i;:, ~ i il i~,il i flail 

0034  SUN- SUl4- Y ( N ) 
0035  DO ? d l - l . K  
0036  O I F ( d l ) - S U N * X ( J I  , N ) + A M U * ( B ( J t  , N ) - B ( O 1 , N -  1 ) )  

0 0 4 0  RETURN 
0041 ENO 
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HERE ARE THE FL$ ESTIMATES FOR 6 1 A N ~  THE 
0 .26645136620 00 0 .10395584540 O0 
0 .26947311810 O0 0 .20336832150 00 
0 ~ 3 i 6 4 0 2 2 6 t 0  O0 0 .293692G~6t0  O0 

~ ~ O . ~ O ~ I S g S D  O0 0 . 3 7 1 5 7 2 4 1 2 7 0 0 0  
: i ~ 0 ; 2963842~0~0 ,00  i 0 .43301~70q90 O0 

0 .43262367600 O0 0 .47552825610 O0 
0 .46050307360 00 0 .49726094770 00 
0 .46297936690 O0 0 .49726094770 00 

0 .26071973460 00 0 .29399262610 O0 
0 .17296674190 O0 0 .20336832150 00 
0 .10615021120 O0 0 .10395984940 O0 

-0 .29382687190  00 
-0 .34417022160  O0 
-0 .39590573140  O0 

-0 .43298201040  O0 
-0 .38436277050  O0 
-0 .34608108120  00 

TRUE B1 

i ̧ ill !i 

-0 .29389262610  O0 
-0 .3715724127D O0 
-0 .43301270190  O0 

-0 .475528258 tD  O0 
-0 .43301270190  O0 
-0 .37157241270  O0 

-0 .13668706120  O0 - 0 . 3 4 8 7 8 6 6 4 9 8 0 - t 5  
HERE ARE THE FLS ESTXMATES FOR 92 ANO THE 

0 .91865983180 O0 0 .97914760070 O0 
TRUE 62 

0 .44374926870 O0 
0 .28622222350 O0 
0 .96371341910-01  

-0 .60802189970  O0 
- 0 . 7 4 5 t 0 3 7 8 7 2 0  00 
-0 .81823937110  O0 

ii~:ii:iii!i!!i!:ii!ii!ii!i!i!iii!iii::i::i~iiiiiiiiii!!i: 

o .  s o o o o o o o o o o  o o  
o. 30g01699440 O0 
o. 10462846350 oo 

-0 .669 t30G0640  O0 
-0 .8090169944D O0 
-0 .91354545760  O0 

:~ :ii~ ¸ ~!~ ~i! ¸ ~:!~i~iii~iil 
~i:~:~,~:il ~ ~I i ~i:~:~/: ~ 

- 0 . 8 1 3 3 8 8 5 t 3 0 0  O0 
-0 .7401421998D O0 
-0 .61390965200  O0 

-0 .91354545790  00 
-0 .8090169944D 00 
-0 .66913060640 O0 

0 .92531431970-01  
0 .2865775361D O0 
0.4503972622D O0 

0 .94551774770 00 
0 .84543276290 O0 

0 .10452846330 O0 
0 .30901699440 O0 
0 .50000000000 O0 

0.9761476007D 00 
0 .10000000000 0 t  

HERE ARE RSUBMIRSUBO.COST 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :i.i~i.::i:ii:i::iii:::i:ii-!iiii!i:i:iiiiiii: 

0 . 3 8 4 6 2 6 1 ~ 3 1 D - 0 t  
0 . 3 7 4 3 9 1 0 t 9 ~ - 0 t  

i l i ~ ~  ~! ~ :~:iii:iiiiii:iiii iiii!iiiiiiiiiii !i!i!ii?ii'ii: ~211i;ii i;::'i ~i!i;i!!i iii iiiiiiiiii!i! iiiili i!ii!: il iil ii !ii; ;iiiii;i! !ii!!!i~iiii ii:! :ii !i!ili:iiiiii!:iliiiiiiill i i !iil iiiii 
: :::i!ziai !illi:iii ? i2ilii ~! i ~ g ~  ~''I ......... ~"i":}tD 0 t  

SUM OF SQUAREO RESXDUAL MEASUREMENT ERRORS FOR OLS 
0 .8969611?990  0 t  
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: . t~ t  A~t T.E ~oc TEST rESULtS ~OA tOUATtO.S (A.t4) . .  
I~ORIN EQUAL rO . t  ~i . . . . . . . . .  

- 0 . 1 1 1 0 - 1 5  -O.  1 1 1 0 - 1 5  
FOR N EQUAL TO 2 

0 . 1 3 0 0 - 1 6  O. t 5 3 D - 1 5  

:~!~ i i ~ 0 .  i0 tD~- i~16 i i l ; i~O, i=St ) . -~ jS ; i l ;  i ? i  ~i ~iil ~ i~:: i : i i  i / i i i l i  i : i : ;  i : i i  

- 0 . 2 0 0 0 - 1 5  O. 1 1 t D - 1 5  
FOR N EQUAL TO 5 

0 . 2 2 G D - I G  0 . 2 7 8 D - t G  

- 0 . 5 7 2 D - 1 6  0 . 0  
FOR N EQUAL TO 8 

- 0 . 6 3 3 D - 1 6  0 . 4 1 6 D - 1 6  
i i~O~ ~i~ i l i~u~i~i!it~ i:i i i~ii:i i!::~/~iiiiii!ii~i i!il iiiii~:iii::iiiii~:!!ii! ~iiii~ii:: ii::i:i!!:~ ~i:':ili ::: iil i~iii ii: ~i 

]i ~ Od. I N  ~ ~ OUAL: i ]~O ].i~] i~ ] ] ~: ]]]] i]!i:][][ ]::]i:::]]] ::~!:]] i ] ]/][]]:][[:.;:i:]::] ]] ]]:: i :i:~] ] ]:[::[]:: []]i :: !i]~ i: [ i]~, []]!~]::! ] ] ]: 
- 0 , 8 5 9 D -  16 - 0 . 9 7  I D -  16 

FOR N EQUAL TO | 
- 0 . 4 1 6 D - 1 6  - 0 . 1 3 9 D - 1 5  

if:.:: ~o  ~ ' : ~ ! ~ A ~ I  i ~,~i~i~i!ill ~.:ili~!~ ~ i i i:.i]iiii! i!'. iiii~ii[iiiii!:i ~ :.i!::i::ii:iiiil: :~:~]~: :/.i ii! i~:i:/:'/ili i~i:ii~: iii !i!!~ :i!:i!:i ~iiii :/.i!ii ii/.'i! i ~i/~ii:/ 
]:]: ~ ] ~  i ] d ?Ot~ ~ ~ 8::[~ ~iii; O.~ O ~ S ~  '~: i~]  []i ii]]i!i[:]]:i ~ :] :: !:: ] ~ :~]]]]:. ]~i i!]i[ ]:]~: ]i]i: ~]i][i: ]]i: : ] . / :  : :  :] ~ :~]:]:[ ][]]] .!]. :]] : ! ]  ]: 
iiii~F~ ]:~: ]k ~ : i ~ ] ~  ][ i ][]i~ ~ ] ]  :]i i~][]:/:]::]! ii::i ii~!ii ::if! ]]i! ]]ii::]]i ]]] :%]::!~ ~i! :i~ ] !]:.ii] ]~:] i~iiii::][[ii']] ]~]:]]:: ] []] : : :  ]][]]: Ji] ::~:~ ~:] 

- 0 , 5 5 5 D -  tS - 0 ,  1 8 0 0 - 1 5  
FOR N EQUAL TO 14 

- 0 . 4  t E D - t 6  - 0 . 7 2 0 0 - 1 6  
::~ ~b i~  i11~i ! ~ ! ~ 0 1 1  i]:.'.i~.~ i:~i:::. :.[?.i:.i:ii![:;ii:::::::::::::iii:ili~i ~:,! :. !i i!~!i~:::.i i:.:.i::.iii::~i. :::! :::~! ~!i~i i].: i!]~il ::: i~i:.i i: i~ ~i::.:: i ~ ~ 
] [ ] ] i ] ]  Q i i i 3 g D ~  .~i 6 .  [::]i [ ~ ~ ] i ~  ]:6!]]ii i] ]i[]]i!~,]ii]i: ! ]]i]] ]]i: i:.]]][]:]]]]]][i []] ]]~ii[] ~]:]]]]i !]] []ii]:]i:!] [::i ~!]][i!i];i[]!: il]] []]] ]: .] ] ! []:::i :]]!]i[ .]]:i[i::]][[ ]: 
i] ~ ] ~ ] ] ~  ]i] ~ t ,  ] ! "0 ::/]:i:::]]] i ~  ii[ii i ii]i[!]]::ii!ii:,] ]i i!i::ii ii]'![]i]]i]] ~]!][~::]i ]i![i~:i:ii~]iii] ]!][]~!i~!::~?:/: ] :.]i:]:::~]:]]!]:i] []:[:: ]i]' [ ~]:::!]:[::i ~:]ii ~:; ]] ;i ~:~i]:::]i 

- 0 .  5 5 5 D -  16 - 0 .  2 0 0 0 - 1 5  
FOR N EQUAL TO 17 

O. 1 3 9 D - 1 6  - 0 .  1 1 1 D - 1 5  
:~i:, ~ ~ ~i~ ~ 0LiA i~ i!~ 0 ]i~i i~i~ i l i  ~i ii::ii i!i ii:.i! ::ili:: ~:i:: iii! :.i::il :.! ii]:.i.i~ i:.~ i~: ii:.ii:: !:: ~i :: :.:.;:!ii:i i '  i~ :~ ii ~i::i :.:: i:.:~ ~i:: ~i::i ~ 
/.:[]i[[] i~i~]O~:=?en~ie ii ~.i,]] ~.o]. d? e ~  ]~ii]~i:iii~::il !~iii]i:/]:~i]i ilia:!? :i ~ ii]]]~ ] il]i:i~; ii::~[ ]]:.;i]~,i[ [ i i ! ]  ]~: ] i ]  ~ ] :  ~ []~ :i i il i] [ i ]  

O. t 3 9 0 -  16 - 0 .  1 6 7 0 -  15 
FOR N EQUAL TO 20  

0 . 2 3 1 D - 1 5  0 . 5 5 5 D -  16 
: : i ~  iN.! ~ ~ X ~  i~011il ~. :/-!~i ~ ~:/.i:~i i~!i!i i~;i:~ili]i i iiii:/i::i~/• ii i::i !ii~:! ii/i:i!i:ii! i i~/i~'i~ii~:':~!:i :::i ]::i~ ii!ii ~!i!i ~i~ii: if:::: ~! if: 
]: : ~ • 4 S 6 0 ~ i i  G [ : :  : O  i ~ ? 8 D ~  ! 6]]][:] ]]]i [] ]]:i]]]: ]:: : : : ! .~ ] [  i[ii!ii[!i]]][ [~ ]][~][i] : ] ]  ]] [.[]~:]]]]]i] :~[ii~ ][ ~]i]]~ [~i] :]]: [: ]]][]]:: [:ii: [ 
![ ~0~ ]  N : E Q U A L  '~O ~: [ [dJ  ::i]]:]:]~::[:] ]:[]]:.[:/]::i:ii!]i::: ]]:[}]]] :][i.: []:] 

- 0 . 2 6 9 D -  16 0 . 4 1 6 0 - 1 6  
FOR N EQUAL TO 23 

0 . 1 6 9 0 - 1 5  0 . 4 t 6 0 - t 6  
FOR N EQUAL TO 24 

FOR N EQUAL TO 26 
0 .  t 0 4 D - 1 5  0 . 1 6 7 D - 1 5  

FOR N EQUAL TO 2 7  

FOR N EQUAL TO 29 
0 . 5 5 5 D -  tG~ 0 . 8 0 7 D -  tG 

FOR N EQUAL TO 30 
ii!~ii!i i:iili ( )  1il i ~ 0 ~  ~ i i  : i ~ . 0 .  2521~ ~ :~ B :i! : z::.i i: i? i~:i ~ i i : :  i ! 


