Facilitating Flexible Service Provision in Electric Power Markets via Swing Contracting

Presenter

Leigh Tesfatsion

Professor of Economics Courtesy Professor of Mathematics and Electrical & Computer Engineering Iowa State University, Ames, IA 50011 <u>tesfatsi@iastate.edu</u>

IMA Workshop U of Minnesota, Minneapolis, MN May 9-13, 2016 (Refs Updated: 2 Feb 2017)

Presentation Outline

- Motivation
- □ What is a *Swing Contract*?
- Swing Contract Market Design: Distinct Features
- Optimal Market Clearing Formulation
- Numerical Illustration
- Conclusion
- References

Motivation

- Need for flexible service provision is increasing
 - Increased penetration of variable energy resources
 - Greater uncertainty in customer demand
- Swing contracts permit flexible service provision
 - Permit bundling of multiple services (power, ramp, duration...)
 within a single contract
 - Permit each service to be offered with flexibility (swing) in its implementation range
 - Permit separate market-based compensation for service availability and for actual real-time service performance

Illustrative Swing Contract (SC)

Offered Contractual Terms

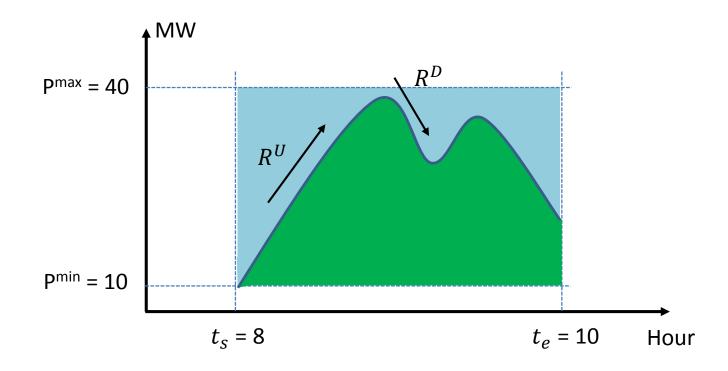
SC = $[b, t_s, t_e, \mathcal{P}, \mathcal{R}, \phi]$ b = location where service delivery is to occur; t_s = power delivery start time; t_e = power delivery end time; $\mathcal{P} = [P^{min}, P^{max}]$ = range of power levels p; $\mathcal{R} = [-R^D, R^U]$ = range of down/up ramp rates r; ϕ = Performance payment method for real-time services. =: Payment requested by contract issuer for ensuring service availability Swing (flexibility) is offered in both the power level p and the ramp rate r

Numerical Example:

Note: A very simple type of performance payment method ϕ is illustrated here.

α = \$100

b = bus b;


 $t_s = 8:00 \text{am};$

$$t_e = 10:00 \text{am};$$

$$\begin{split} \mathcal{P} &= [P^{min},\,P^{max}] = [10\text{MW},\,40\text{MW}];\\ \mathcal{R} &= [-R^D,\,R^U] = [\text{-}38\text{MW/h},\,28\text{MW/h}];\\ \phi &= \$35/\text{MWh}. \end{split}$$

 α =: Availability price

Depiction of SC Numerical Example

$$b = bus b;$$

 $t_s = 8:00$ am;

$$t_e = 10:00$$
am;

$$\begin{split} \mathcal{P} &= [P^{min}, \ P^{max}] = [10\text{MW}, \ 40\text{MW}]; \\ \mathcal{R} &= [-R^D, \ R^U] = [\text{-}38\text{MW/h}, \ 28\text{MW/h}]; \\ \phi &= \$35/\text{MWh}. \end{split}$$

Note: The above figure depicts one possible power path a day-ahead market operator could dispatch in real time, in accordance with the terms of this SC. The green area is the resulting delivery of energy (MWh), compensated ex post at \$35/MWh.

Day-Ahead Market (DAM) Comparison

		Current DAM	Proposed SC DAM						
Si	milarities	 Conducted day-ahead to plan for next-day operations ISO-managed MPs can include DRAs, LSEs, GenCos, ESDs, & VERs Subject to same physical constraints: e.g. transmission capacity, ramping, & power-balance constraints 							
	Optimization formulation	SCUC & SCED	Contract clearing						
	• Settlement	Locational marginal pricing	Contract-determined prices						
Differences	• Payment	Payment for next-day service before actual performance	Payment for availability now & performance ex post						
	Make-whole payments	Make-whole payments are paid (e.g., for UC)	No make-whole payments are needed or paid						
	 Information released to MPs 	UC, DAM LMPs, & next-day dispatch schedule	Which contracts have been cleared						

DAM Comparison Continued...Optimization Formulations

			SCUC	SCED	SC Contract Clearing								
Simi	larities		 Both SCUC & SC contract clearing are solved as mixed integer linear programming (MILP) problems subject to system constraints 										
	• Objectiv	ve	Min {Start-Up /Shut- Down Costs + No-Load Costs + Dispatch Costs + Reserve Costs}	Min {Dispatch Costs + Reserve Costs}	Min {Availability Cost + Expected Performance Cost}								
Differences	• Start-up shut-do constra	wn	Yes	No	Start-up/shut-down constraints are implicit in submitted contracts								
	 Key decisior variable 		Unit Commitment vector	Energy dispatch & reserves	Cleared contracts								
	• Settlem	ent		LMPs calculated as SCED dual variables	Availability prices paid for cleared contracts								

MILP Optimization Formulation (Ref. [2] Li & Tesfatsion, IEEE PES GM 2016)

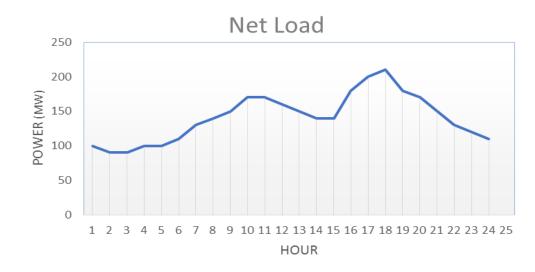
ISO's Optimization Formulation for SC Market:

- Unit commitment constraints
- Line power constraints
- Transmission constraints
- Power balance constraints
- Resource capacity constraints
- Resource ramp-up and ramp-down constraints
- System-wide reserve requirement constraints

- *m*: Index for market participants with dispatchable services
- t: Hour index

Input data:

- α_m : Availability price for m's SC offer
- $\phi_m(t)$: Hour-t performance price in m's SC offer
- $NL_b(t)$: Net load forecast for bus b in hour t
- *RR^D(t), RR^U(t):* System-wide down/up reserve requirements for hour t


ISO Decision variables:

 c_m : *m*'s SC offer cleared or not (1/0) $p_m(t)$: Power output for m in hour t

Illustrative 3-GenCo Example: Input Data

SCS SUBMITTED BY THE THREE GENCOS IN THE ILLUSTRATIVE EXAMPLE

GenCo	Service Period	Power Range	Ramp Rate Range	Performance Price	Availability Price
	$[t_s,t_e]$	$[P^{min},P^{max}]~(\mathrm{MW})$	$[-R^{D}, R^{U}]$ (MW/h)	ϕ (\$/MWh)	α (\$)
1	[1, 24]	[0, 80]	[-60, 60]	25	1500
2	[1, 24]	[0, 200]	[-30, 30]	10	2000
3	[8, 24]	[0, 120]	[-50, 50]	20	1000

Hour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
NetLoad	100	90	90	100	100	110	130	140	150	170	170	160	150	140	140	180	200	210	180	170	150	130	120	110

Illustrative 3-GenCo Example: Results

Contract Clearing:

GenCo	Cleared Contract
1	0
2	1
3	1

Info released to GenCos

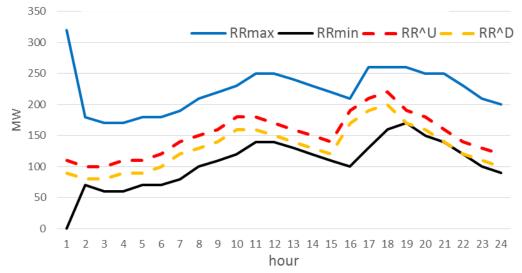
Unit Commitment:

GenCo	Hours																							
Geneo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Optimal Dispatch Schedule:

GenCo										Н	ours													
Geneo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	100	90	90	100	100	110	130	140	150	170	170	160	150	140	130	160	190	200	180	170	150	130	120	110
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	10	10	0	0	0	0	0	0

Illustrative 3-GenCo Example: Results...Cont'd


Inherent Reserve Range

$$RR^{max}(t) = \sum_{m \in \mathcal{M}} \overline{p}_m(t) \qquad \forall t \in T$$
$$RR^{min}(t) = \sum_{m \in \mathcal{M}} \underline{p}_m(t) \qquad \forall t \in T$$

The terms RR^{max}(t) and RR^{min}(t) are the maximum and minimum power levels available for the system in hour t *along*

The *inherent reserve range* for hour t can then be calculated as the interval RR(t) =: [RR^{min}(t), RR^{max}(t)].

the solution path.

- **Solid Lines** =: Inherent reserve range around the solution path, due to swing
- **Dotted Lines** =: Down/up reserve requirements, specified in advance

In conclusion, swing contracts...

- Permit <u>multiple</u> types of services (power, ramp, duration,...) to be bundled together and offered in one contract
- Permit each type of service to be offered with <u>swing</u> (flexibility) in its implementation range
- Permit market-based compensation of service <u>availability</u> through SC availability (offer) prices
- Permit market-based ex-post compensation of actual service <u>performance</u> thru contractual performance payment methods
- Contracts can be optimally cleared within a market context using a Mixed Integer Linear Programming (MILP) optimization formulation

Previous Swing Contract Research

[1] Wanning Li & Leigh Tesfatsion, "A Swing-Contract Market Design for Flexible Service Provision in Electric Power Systems," Economics Working Paper No. 17020, Department of Economics, Iowa State University, February 2017.

https://www2.econ.iastate.edu/tesfatsi/SwingContractMarketDesign.LiTesfatsion.WP17020.pdf

- Wanning Li & Leigh Tesfatsion, "Market Provision of Flexible Energy/Reserve contracts: Optimization Formulation," *Proceedings of the IEEE Power and Energy Society General Meeting* (Electronic), Boston, MA, July 17-21, 2016.
- [3] Deung-Yong Heo & Leigh Tesfatsion, "Facilitating Appropriate Compensation of Electric Energy and Reserve Through Standardized Contracts with Swing," *Journal of Energy Markets* 8(4), December 2015, 93-121 (Presented at FERC Technical Conferences 2014/2015) <u>https://www2.econ.iastate.edu/tesfatsi/SwingContractsJEMPreprint.HeoTes2015.pdf</u>
- [4] Leigh S. Tesfatsion, César A. Silva-Monroy, Verne W. Loose, James F. Ellison, Ryan T. Elliott, Raymond H. Byrne, and Ross T. Guttromson, "New Wholesale Power Market Design Using Linked Forward Markets: A Study for the DOE Energy Storage Systems Program," Sandia Report, SAND2013-2789, Unlimited Release, April 2013. (Sandia/ARPA-E Project)

https://www2.econ.iastate.edu/tesfatsi/MarketDesignSAND2013-2789.LTEtAl.pdf