Standardized Contracts with Swing for the Market-Supported Procurement of Energy and Reserve

Leigh Tesfatsion^{a,*} and Deung-Yong Heo^b ^alowa State University and ^bKorea Institute of Local Finance *Corresponding author: (*tesfatsi@iastate.edu*)

FERC 2015 Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software Washington, D.C., June 22-24, 2015

Presentation outline

- Motivation & related research
- Potential advantages of standardized contracts with swing
- Example template for standardized contracts with swing
- Standardized contract trading via linked DAM/RTM markets
- Numerical example

Main Reference:

Deung-Yong Heo and Leigh Tesfatsion, "Facilitating Appropriate Compensation of Electric Energy and Reserve Through Standardized Contracts with Swing, *Journal of Energy Markets* 8(4), 2015, 93-121. Working Paper version: www2.econ.iastate.edu/tesfatsi/StandardizedContracts.HeoTesfatsion.WP13018.pdf

Motivation: Important needs in current power markets

- Need better ways to compensate flexibility in energy/reserve provision
 - Flexibility increasingly important with increased penetration of variable energy resources (VERs) such as wind and solar power
 - Appropriate compensation difficult under current market rules
- Need to ensure an even playing field for all market participants
 - VERs, energy storage devices (ESDs), load-serving entities (LSEs), demand response resources (DRRs), thermal generators, ...
 - Rigid requirements of service provision hinder market participation
- Need to reduce dependence on out-of-market (OOM) compensation
 - OOM increases the complexity of market rules
 - OOM increases opportunities for gaming of market rules

The importance of flexible energy/reserve provision

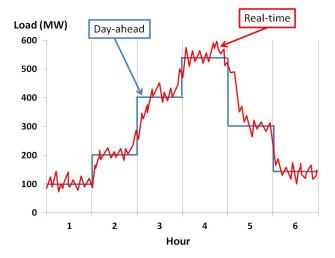


Figure 1: Day-ahead generation scheduling vs. real-time load-balancing needs

Previous related research

- 1 S.S. Oren, Generation adequacy via call options obligations: Safe passage to the promised land, *Energy J.* 18(9), 2005, 28-42.
 - Suggests heavier reliance on option contracts (two-part pricing)
- 2 L.S. Tesfatsion, C.A. Silva-Monroy, V.W. Loose, J.F. Ellison, R.T. Elliott, R.H. Byrne, R.T. Guttromson, New Wholesale Power Market Design Using Linked Forward Markets, *Sandia Report SAND2013-2789*, Sandia National Laboratories, April 2013.
 - Conceptual study
 - Proposes separate contract forms (with swing) for energy & reserve
 - Proposes linked forward markets to support contract trading

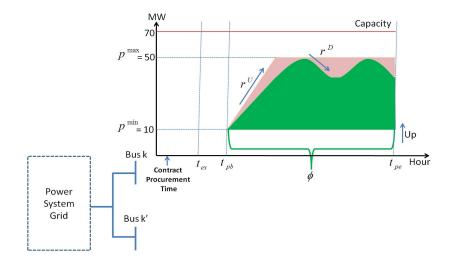
Potential advantages of standardized contracts with swing

Standardized contracts with swing (flexibility) in contractual terms

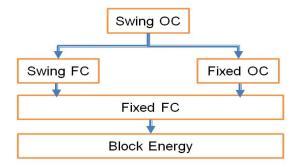
- Permit offering of flexibility in service provision
- Function as forward contracts for securing future availability of energy and reserve services
- Function as blueprints for efficient balancing of real-time net load
- Permit two-part pricing for appropriate market compensation of availability and performance
 - Compensation for service availability via contract offer price
 - Compensation for services *performed* via performance payment method included among contractual terms

Standardized contract with swing: Example template

 $SC = [k, d, T_{ex}, T_{pb}, T_{pe}, R_C, P_C, \phi]$


k =Location where down/up power delivery is to occur

d = Direction (down or up)


 $T_{ex} = [t_{ex}^{min}, t_{ex}^{max}] =$ Interval of possible exercise times t_{ex}

 $T_{pb} = [t_{pb}^{min}, t_{pb}^{max}] = \text{Interval of possible controlled power begin times } t_{pb}$ $T_{pe} = [t_{pe}^{min}, t_{pe}^{max}] = \text{Interval of possible controlled power end times } t_{pe}$ $R_{C} = [-r^{D}, r^{U}] = \text{Interval of possible controlled down/up ramp rates } r$ $P_{C} = [p^{min}, p^{max}] = \text{Interval of possible controlled power levels } p$ $\phi = \text{Performance payment method for real-time service performance}$

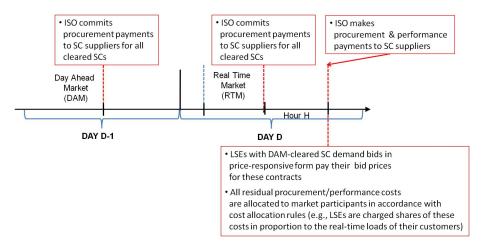
Example: Standardized contract with power & ramp swing

Hierarchical structure of SC forms

OC = Option Contract FC = Firm Contract

Figure 2: Nested hierarchy of SCs

• SC issuers can seek appropriate *ex-ante* compensation for *flexible service availability* through their *SC offer prices*


- SC issuers can seek appropriate *ex-post* compensation for *flexible service performance* through their *performance payment methods* ϕ
 - Each SC includes a performance payment method ϕ among its contractual terms

SC trading via linked day-ahead and real-time markets

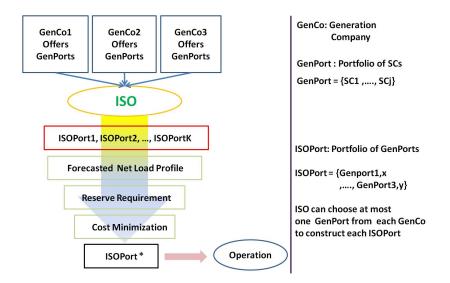

Market Type	Participants	Contracts	Decision Variables	ISO Optimization Method
Day-Ahead Market (DAM)	LSEs	SC Block-Energy Bids	LSE SC Bids; Disp. GenCo / DRR / ESD SC Offers; ISO SC Bids	Security-Constrained Unit Commitment (SCUC) & Security-Constrained Economic Dispatch (SCED)
	Disp. GenCos, DRRs, and ESDs	SC Offers		
	Non-Disp. VERs	_		
	ISO	SC Bids		
Real-Time Market (RTM)	Disp. GenCos, DRRs, and ESDs	SC Offers	Disp. GenCo / DRR / ESD SC Offers; ISO SC Bids	SCED
	Non-Disp. VERs	_		
	ISO	SC Bids		

Figure 3: Proposed ISO-managed day-ahead and real-time markets

SC settlement time-line for operating hour H

RTM operations with SC trading: Numerical example

DAM and RTM linkages: Numerical example

• Optimal ISOPort selection in the RTM takes the form

 $\mathsf{ISOPort}^* = \{\mathsf{GenPort}_1^*, \mathsf{GenPort}_2^*, \mathsf{GenPort}_3^* \mid \mathsf{Contract \ Inventory}\}$

- Contract Inventory = All SCs previously procured in the DAM.
- Expected total avoidable cost of ISOPort* consists of two parts:
 - Expected performance payments arising from the expected exercise and/or use of the SCs in the contract inventory;
 - Procurement payments and expected performance payments arising from the RTM-procurement of the SCs comprising GenPort₁^{*}, GenPort₂^{*}, and GenPort₃^{*}.

Note: The DAM procurement cost is a sunk cost at the time of the RTM.

Optimal RTM ISOPort selection: Numerical example

- RTM occurs immediately prior to operating hour H on day D
- For simplicity of exposition, assume no line congestion, no line losses, and no price-sensitive load

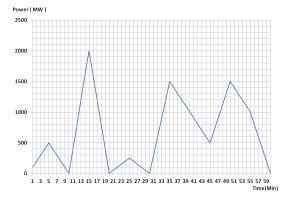


Figure 4: RTM ISO-forecasted net load profile for hour H of day D

RTM numerical example...continued

- RTM participants: Three dispatchable GenCos, non-dispatchable Variable Energy Resources (VERs), and an ISO
- Physical attributes of the three dispatchable GenCos:

$$\begin{array}{ll} {\rm G1:} & r_1^D = r_1^U = 120 {\rm MW}/{\rm min}, {\rm Cap}_1^{min} = 0 {\rm MW}, \ {\rm Cap}_1^{max} = 600 {\rm MW} \\ {\rm G2:} & r_2^D = r_2^U = 200 {\rm MW}/{\rm min}, {\rm Cap}_2^{min} = 0 {\rm MW}, \ {\rm Cap}_2^{max} = 700 {\rm MW} \\ {\rm G3:} & r_3^D = r_3^U = 300 {\rm MW}/{\rm min}, {\rm Cap}_3^{min} = 0 {\rm MW}, \ {\rm Cap}_3^{max} = 900 {\rm MW} \\ \end{array}$$

- ISO objective:
 - Minimize expected total costs subject to power balance constraints, reserve requirements, and ISO-forecasted net load profile

• Assume all SC performance payment methods take the simple form of a specified energy price ϕ (\$/MWh)

G1's supply offer includes two GenPorts, each with one SC:

$$\begin{aligned} & \mathsf{GenPort}_{1,1} = \{\mathsf{SC}_{1,1}\} \text{ at offer price } \mathsf{v}_{1,1}, \\ & \mathsf{SC}_{1,1} = [t_{pb} = 0, \ t_{pe} = 60, \ |r| \leq 100, \ 0 \leq p \leq 500, \ \phi = 100] \\ & \mathsf{GenPort}_{1,2} = \{\mathsf{SC}_{1,2}\} \text{ at offer price } \mathsf{v}_{1,2}, \\ & \mathsf{SC}_{1,2} = [t_{pb} = 0, \ t_{pe} = 60, \ |r| \leq 120, \ 0 \leq p \leq 500, \ \phi = 105]. \end{aligned}$$

RTM numerical example...continued

G2's supply offer includes three GenPorts with multiple SCs:

$$\begin{array}{ll} & {\rm GenPort}_{2,1}=\{{\rm SC}_{2,1,1},{\rm SC}_{2,1,2}\} \text{ at offer price } {\rm v}_{2,1}, & (3) \\ & {\rm SC}_{2,1,1}=[t_{pb}=10,\ t_{pe}=20,\ |r|\leq 200,\ 0\leq p\leq 600,\ \phi=135] \\ & {\rm SC}_{2,1,2}=[t_{pb}=30,\ t_{pe}=60,\ |r|\leq 200,\ 0\leq p\leq 600,\ \phi=130] \\ & {\rm GenPort}_{2,2}=\{{\rm SC}_{2,2,1},{\rm SC}_{2,2,2},{\rm SC}_{2,2,3}\} \text{ at offer price } {\rm v}_{2,2}, & (4) \\ & {\rm SC}_{2,2,1}=[t_{pb}=0,\ t_{pe}=10,\ |r|\leq 100,\ 0\leq p\leq 100,\ \phi=105] \\ & {\rm SC}_{2,2,2}=[t_{pb}=10,\ t_{pe}=20,\ |r|\leq 200,\ 0\leq p\leq 600,\ \phi=135] \\ & {\rm SC}_{2,2,3}=[t_{pb}=30,\ t_{pe}=60,\ |r|\leq 200,\ 0\leq p\leq 600,\ \phi=130] \\ & {\rm GenPort}_{2,3}=\{{\rm SC}_{2,3,1},{\rm SC}_{2,3,2},{\rm SC}_{2,3,3}\} \text{ at offer price } {\rm v}_{2,3}, & (5) \\ & {\rm SC}_{2,3,1}=[t_{pb}=0,\ t_{pe}=10,\ |r|\leq 100,\ 0\leq p\leq 100,\ \phi=105] \\ & {\rm SC}_{2,3,2}=[t_{pb}=10,\ t_{pe}=20,\ |r|\leq 200,\ 0\leq p\leq 700,\ \phi=140] \\ & {\rm SC}_{2,3,3}=[t_{pb}=30,\ t_{pe}=60,\ |r|\leq 200,\ 0\leq p\leq 700,\ \phi=135] \\ \end{array}$$

G3's supply offer includes two GenPorts, each with three SCs:

Power balance constraint for ISO

• ISO's forecasted net load profile for operating hour H must be balanced.

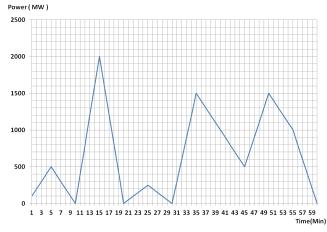


Figure 5: ISO-forecasted net load profile for hour H

Power balance constraint for ISO ... continued

• Cleared ISOPort must achieve a Zero Balance Gap (ZBG) for hour H

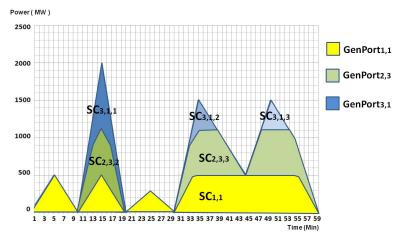


Figure 6: ZBG achieved by $ISOPort_2 = (GenPort_{1,1}, GenPort_{2,3}, GenPort_{3,1})$

Characterization of an optimal ISOPort

- Multiple ISOPorts might be able to achieve a ZBG.
- Attaining a ZBG is a necessary but not sufficient condition for an ISOPort to be optimal.
- ISO must also consider the "reserve range" and expected total cost of an ISOPort

Reserve Range (RR) inherent in ISOPorts with swing

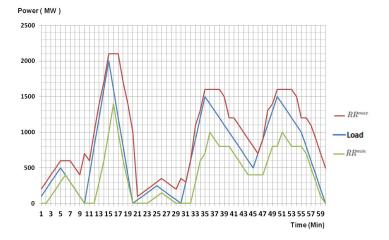


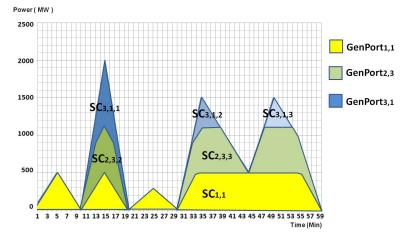
Figure 7: Reserve Range (RR) for ISOPort₂ during hour H of day D

Reserve range constraint for ISO

- Reserve Range $RR(\alpha^*)$ = Power corridor around ISO-forecasted net load profile L^F with width determined by $\alpha^* = (\alpha^{D*}, \alpha^{U*})$
- The required amount of down-power reserve is determined by α^{D*} and the required amount of up-power reserve is determined by α^{U*}
- For each operating minute M:

 $\mathsf{RR}_{M}(\alpha^{*}) = [\mathsf{RR}_{M}^{\mathsf{min}}(\alpha^{*}), \mathsf{RR}_{M}^{\mathsf{max}}(\alpha^{*})]$

 $\mathsf{RR}_{M}^{\mathsf{min}}(\boldsymbol{\alpha}^{*}) \leq [1 - \alpha^{D*}] \mathcal{L}_{M}^{\mathsf{F}} \leq \mathcal{L}_{M}^{\mathsf{F}} \leq [1 + \alpha^{U*}] \mathcal{L}_{M}^{\mathsf{F}} \leq \mathsf{RR}_{M}^{\mathsf{max}}(\boldsymbol{\alpha}^{*})$


• Expected total cost of ISOPort = (GenPort₁, GenPort₂, GenPort₃) satisfying ZBG and RR(α^*) constraints consists of:

(i) the *portfolio offer prices* $\{v_1, v_2, v_3\}$ paid to G1, G2, and G3 for GenPort₁, GenPort₂, and GenPort₃

(ii) the *expected total performance payments* to be paid to G1, G2, and G3 for energy to satisfy the ZBG constraint.

Calculation of expected total performance payments for an ISOPort

• Shaded Area(SC) $\times \phi(SC) =$ expected performance payment (SC)

- ISOPort expected total cost minimization subject to ZBG and RR(α*) constraints ensures energy/reserve co-optimization for hour H:
 - The ZBG constraint ensures balancing of the ISO forecasted net load profile for hour H
 - The RR(α^*) constraint ensures sufficient availability of generation capacity to cover a power corridor around the ISO-forecasted net load profile for hour H whose width is determined by α^*

Summary of key findings for the SC system

- permits full, separate, market-based compensation for service availability and service performance (FERC Order 755)
- facilitates a level playing field for market participation.
- facilitates co-optimization of energy and reserve markets
- supports forward-market trading of energy and reserve
- permits resource providers to offer flexible service availability.
- provides system operators with real-time flexibility in service usage

Summary of key findings for the SC system ... continued

- facilitates accurate load forecasting and following of dispatch signals
- permits resources to internally manage UC and capacity constraints
- permits the robust-control management of uncertain net load
- eliminates the need for out-of-market payment adjustments
- reduces the complexity of market rules

Future work

- Seek efficient solution methods for SC robust-control optimization
 - ISO's optimal choice of an SC portfolio (ISOPort) for an operating day D is a *topological covering problem*
 - Requires minimizing the expected total cost of covering an appropriate reserve range $RR_k(\alpha^*)$ around the forecasted net load profile for each bus k
- Undertake detailed SC system studies to test
 - feasibility
 - efficiency (non-wastage of resources)
 - reliability (security/adequacy)
 - robustness against strategic manipulation