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Topic Outline

⚫ ISO Market Optimization on a Typical Operating Day D

⚫ Alternative modeling formulations

⚫ Optimization illustration: Real-time economic dispatch

⚫ Classic Nonlinear Programming Problem (NPP): Minimization subject to 
equality constraints

⚫ NPP via the Lagrange multiplier approach

⚫ NPP Lagrange multipliers as shadow prices

⚫ Real-time economic dispatch: Numerical example

⚫ General Nonlinear Programming Problem (GNPP): Minimization subject to 
equality and inequality constraints 

⚫ GNPP via the Lagrange multiplier approach

⚫ GNPP Lagrange multipliers as shadow prices

⚫ Necessary versus sufficient conditions for optimization

⚫ Technical references



Key Objective of EE/Econ 458

◆ Understand the optimization processes undertaken by participants 
in restructured wholesale power markets

◆ For Independent System Operators (ISOs), these processes include:

̶ Security-Constrained Unit Commitment (SCUC) to determine 
which Generating Companies (GenCos) must be available to 
produce energy (MWh) during designated future operating 
periods in response to received ISO dispatch instructions. 

̶ Security-Constrained Economic Dispatch (SCED) to determine 
GenCo dispatch schedules and Locational Marginal Prices (LMP) 
($/MWh) for grid-delivered energy (MWh) in short-run – i.e., 
day-ahead and intra-day – markets.
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ISO Market Optimization on a Typical Operating Day D:

Timing from Midwest ISO (MISO)
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Types of Model Representations
(from Bradley et al. [2])

Main focus of 458 (LT)
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Classification of Modeling Tools
(from Bradley et al. [2])

Main focus
of 458 (LT)

Game Theory
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Optimization in Practice
(from Bradley et al. [2])

Main focus
of 458 (LT)
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Source: M. Wachowiak, Optim Lecture Notes (On-Line)

Main focus of 458 (LT)
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Optimization Illustration:

Economic Dispatch for a Designated Future Hour H

⚫ Initial Problem Simplification

Ignore Generation Company (GenCo) capacity limits,

transmission constraints, line limit losses, and all costs

except variable costs. 

⚫ Problem Formulation for Future Hour H
Determine scheduled real-power dispatch levels PGi (MW) to be maintained

by GenCos i = 1, 2, … , I during hour H that minimize total variable cost TVC, 

subject to the constraint that total grid-delivered energy (MWh) during H 

equals total energy demand  PD   x  1h  (MWh) during hour H, where PD (MW) 

is the anticipated average demand for real power (MW) during H.
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Economic Dispatch for the Future Hour H: 
Mathematical Formulation

minimize TVC(PG) = ∑ VCi(PGi)

with respect to PG = (PG1,…,PGI)
T

subject to the balance constraint

∑ PGi =   PD

i=1

I

i=1

I

($/h) 

(MW)

(MW)

Fixed (non-price-sensitive) demand as a 
constraint constant for power dispatch

Variable cost of GenCo i
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5-Bus Transmission Grid Example
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Illustration of TVC Determination for hour H
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Illustration of TVC Determination for hour H
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Day-Ahead Supply Offers in MISO
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Supply Offers in the MISO … Cont’d
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Important Remark on the 
Form of GenCo Supply Offers

⚫ Linear programming (LP) is used to handle economic dispatch 
when supply offers have block (step-function) form.

⚫ Nonlinear Programming (NP) techniques are used to handle 
economic dispatch when supply offers take a slope (piecewise 
differentiable or differentiable) form.  (Kirschen/Strbac assumption)

⚫ The remainder of these notes use NP techniques for economic 
dispatch, assuming supply offers take a differentiable form.  

⚫ When we later treat GenCo capacity constraints, we will need 
to relax this to permit supply offers to take a piecewise 
differentiable form.
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Back to Economic Dispatch Problem for hour H 

minimize TVC(PG) =  ∑ VCi(PGi)

with respect to PG = (PG1,…,PGI)
T

subject to the power balance constraint

∑ PGi =   PD

i=1

I

i=1

I

($/h)

(MW)

(MW)

constraint constant (MW)

Variable cost of GenCo i
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Minimization with Equality Constraints:
General Solution Method?

⚫ For a differentiable function f(x) of an n-dimensional 
vector x = (x1,…,xn)

T, a necessary (but not sufficient) 
condition for x* to minimize f(x) is that ∇xf(x*) = 0.

⚫ This multi-variable gradient condition generalizes the 

first derivative condition for 1-variable min problems:

1 2

( ) ( ) ( )
( ) , , ,

nx x x

   
     

f x f x f x
f xx

n-dimensional row vector !

=
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Minimization with Equality Constraints…Cont’d

⚫ When a minimization problem involves equality constraints, we 
can solve the problem using the method of Lagrange Multipliers

⚫ The key idea is to transform the constrained minimization 
problem into an unconstrained problem
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Minimization with Equality Constraints…Cont’d

⚫ n-dimensional choice vector x = (x1,…,xn)T
➔ n choice variables

⚫ m-dimensional constraint vector c = (c1,…,cm)T
➔m constraint constants

⚫ Rn = all real n-dimensional vectors, Rm = all real m-dimensional vectors

⚫ f:Rn → R ➔ objective function mapping   x → f(x)  on real line

⚫ h:Rn → Rm
➔ constraint function mapping x → h(x) = (h1(x),…,hm(x))T

Nonlinear Programming Problem:

(NPP) minimize f(x) with respect to the choice vector x  
subject to the constraint h(x) = c
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Minimization with Equality Constraints…Cont’d

• The Lagrange Function for this problem can be expressed 
in parameterized form as

L(x, λ,c)  =  f(x)  - λT
•[h(x) – c ]

or equivalently, 

L(x,λ,C) = f(x) + λT
•[c – h(x)] 

where λT = (λ1,…., λm) = vector of m Lagrange multipliers

Making explicit the dependence 
of the Lagrange Function L on 
the constraint vector c
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Minimization with Equality Constraints…Cont’d
(cf. Fletcher [3])

Math Regularity Conditions: Suppose f, h are differentiable, and either

rank(∇xh(x*)) = m   or   h(x) has form Amxnxnx1 + bmx1.

m by n matrix
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Minimization with Equality Constraints…Continued
(cf. Fletcher [3])

First-Order Necessary Conditions (FONC) for x* to solve Problem 

(NPP), given math regularity conditions: 

There exists a value λ* for the vector λ of Lagrange multipliers such 

that (x*, λ*) satisfies:

(1)   0 =  ∇x L(x*, λ*, c)1xn =  ∇xf(x*) - λT•∇xh(x*)

(2)   0 =  ∇λ L(x*, λ*, c)1xm =  [c – h(x*)] T
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Lagrange Multipliers as “Shadow Prices”?

▪ By construction, the solution (x*, λ*) is a function    

of the exogenously given constraint vector c :

(x*, λ*)  = (x(c), λ(c) )  

▪ From FONC condition (2) on previous page:  

f(x(c))  = L(x(c), λ(c), c)
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Lagrange Multipliers as “Shadow Prices”…

▪ Then from implicit function theorem, the chain rule, 
and FONC (1), (2), for each constraint k,

Total Differential

Partial Differentials

h

This “+” sign follows from 
our assumed form of the
Lagrange function L

h
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Lagrange Multipliers as “Shadow Prices”…

In summary, for each constraint k:

Thus, the Lagrange multiplier solution λk(c) for the kth constraint 

gives the change in the optimized objective function f(x*) = f(x(c)) 

with respect to a change in the constraint constant ck for the kth 

constraint appearing in the constraint h(x) = c .
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Example: Economic Dispatch Again
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Economic Dispatch for a Future Hour H: 
Numerical Example (Baldick/Overbye)

D 1 2
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Economic Dispatch Example for Hour H …Continued

1

2

1 2

1
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1
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We therefore need to solve three linear equations
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




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− −     
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 
   h

 
 
 
  

*
*
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Solution Values for Hour H

Important Note:  The power levels PGi (MW) in 

these expressions denote power levels to be 
maintained during the future operating hour H.  
Thus, these equations in power levels PGi (MW) are in 
fact equations for determination of grid-delivered 
energy amounts PGi x 1h (MWh) for hour H.
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Economic Dispatch Example…Continued

▪ The solution values for this Economic Dispatch problem 
for hour H are:

PG* =  (PG1*,PG2*)T = (312.5MW, 187.5MW)T

λ*  = $26.2/MWh  (common across all grid buses for hour H)

▪ By construction, the solution values PG* and λ* for the 
dispatch vector PG and Lagrange multiplier λ are 
functions of the constraint constant PD =  500.  

▪ That is, a change in PD would result in a change in these 
solution values.

Optimal Dispatch Vector
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Economic Dispatch Example … Continued

Applying previous developments for Lagrange multipliers as 

shadow prices,

λ*  = ∂TVC(PG*) =: LMP(H)

∂PD
=  Change in minimized total variable cost TVC(PG*) for hour H

(measured in $/h) with respect to a change in the total
power demand PD (MW) to be maintained during hour H,
evaluated at the optimal dispatch vector PG*.

Recall that PD is the constraint constant for the power balance 
constraint for hour H, which takes the form Total Genco Dispatch = PD

(measured in $/MWh)
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Economic Dispatch Example … Continued

Roughly stated, the Locational Marginal Price LMP(k,H) at a grid 
bus k for an operating hour H is the least cost of servicing a “next 
unit” (MWh) of load (energy demand) at bus k during hour H.

Assume for simplicity that there are no losses of power from grid 
transmission lines and no binding transmission constraints, hence 
no LMP separation across grid buses.  Then, given suitable math 
regularity conditions:

λ*  = ∂TVC(PG*)

∂PD

(in $/MWh)
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Extension to Inequality Constraints
(cf. Fletcher [3])

General Nonlinear Programming Problem (GNPP):

▪ x = nx1 choice vector;  

▪ c = mx1 vector &  d = sx1 vector (constraint constants)

▪ f(x) maps x into R  (all real numbers) 

▪ h(x) maps x into Rm (all m-dimensional vectors)

▪ z(x) maps x into Rs  (all s-dimensional vectors)

GNPP: Minimize f(x) with respect to x subject to

h(x) =   c

z(x)   ≥   d
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Important Remark on the

Representation of Inequality Constraints

Note: The inequality constraint for (GNPP) can equivalently be 

expressed in a variety of ways, as indicated below:

(1)  z(x)  ≥  d ;  

(2)  z(x) - d ≥  0 ;

(3)  - z(x) – [-d] ≤   0 ;

(4) r(x)  – e ≤   0 (r(x) =:  -[z(x)],  e =:  -[d] )

(5) r(x)  ≤ e



35

Why Our Form of Inequality?

Our GNPP Form:

Minimize f(x) with respect to x subject to

h(x) =   c

(*)  z(x) ≥ d

 Given this form, we know that an INCREASE in d has to result in a 
new value for the minimized objective function f(x*) that is AT 
LEAST AS GREAT as before.

 Why?  When d increases the feasible choice set for x SHRINKS, 
hence [min f] either  or stays same.

 ➔ 0   ≤   ∂f(x*)/∂d =  *T = Shadow price vector for (*)

Given suitable 
regularity 
conditions

hh
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Extension to Inequality Constraints…Continued

• Define the Lagrangean Function as

L(x, λ,,c,d)  =  f(x)  + λT[c - h(x)] + T[d - z(x)]

• Assume Kuhn-Tucker Constraint Qualification (KTCQ) 

holds at x*, roughly stated as follows:

The true set of feasible directions away from x*

=  Set of feasible directions away from x* assuming

a  linearized set of constraints in place of the 

original set of constraints.
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Extension to Inequality Constraints…Continued

▪ Given KTCQ, the First-Order Necessary Conditions (FONC) for x* to solve the 

(GNPP) are as follows:  There exist λ* and * such that (x*, λ*, *) satisfy:

0  =  ∇xL(x*, λ*,*,c,d)

=  [ ∇xf(x*)  - λ*T•∇xh(x*) - *T•∇xz(x*) ] ;

h(x*)  =  c ; 

z(x*)  ≥  d;    *T
•[d - z(x*)]  =  0; * ≥ 0

▪ These FONC are known as the Karush-Kuhn-Tucker (KKT) Conditions.
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Solution Vector as a Function of (c,d)

By construction, the components of the solution 
vector (x*, λ*, *) are functions of the constraint 
constant vectors c and d:

• x*  =  x(c,d) 

• λ* = λ(c,d)

• * = (c,d)
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GNPP Lagrange Multipliers as Shadow Prices

Given additional math regularity conditions…

• The solution λ* for the m x 1 Lagrange multiplier vector 

λ is the derivative of the solution value f(x*) of the 

objective function f(x) with respect to the constraint 

vector c, all other problem aspects remaining the same.

∂f(x*)/∂c = ∂f(x(c,d))/∂c = λ*T
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GNPP Lagrange Multipliers as Shadow Prices…

Given additional math regularity conditions…

• The solution * for the s x 1 multiplier vector  is the 

derivative of the solution value f(x*) of the objective 

function f(x) with respect to the constraint vector d, 

all other problem aspects remaining the same. 

0   ≤   ∂f(x*)/∂d = ∂f(x(c,d))/∂d =  *T
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GNPP Lagrange Multipliers as Shadow Prices…

In this case…

• The solution λ* for the multiplier vector λ thus essentially gives 
the prices (values) associated with unit changes in the 
components of the constraint vector c . 

• The solution * for the multiplier vector  thus essentially gives 
the prices (values) associated with unit changes in the 
components of the constraint vector d .

• Each component of  λ* can take on any sign

• Each component of  * must be nonnegative
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Sufficient Conditions for Minimization?

First-order necessary conditions for x* to solve NPP/GNPP are 
not sufficient in general to ensure x* solves NPP/GNPP, or to 
ensure x* solves NPP/GNPP uniquely.

• What can go wrong?

❖ (1) Local maximum rather than local minimization

❖ (2) Inflection point rather than minimum point

❖ (3) Local minimum rather than global minimum

❖ (4) Multiple minimizing solution points

• Conditions on second derivatives are needed to rule out  1 & 2, 

and “global” methods/conditions are needed to rule out 3 & 4 .
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Example:  Local Max Rather Than Local Min

From: A. Hallam, “Simple Multivariate Optimization” (on-line)
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Example:  Inflection Rather than Minimum Point

From: A. Hallam, “Simple Multivariate Optimization” (on-line)
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Example:  Local Min Rather than Global Min
Note that both points satisfy the FONC given by df(x)/dx = 0 .

f(x)

x
Local Min Global Min
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Example:  Multiple Minimization Points

From: A. Hallam, “Simple Multivariate Optimization” (on-line)
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