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Key Objective of EE/Econ 458

¢ Understand the optimization processes undertaken by participants
in restructured wholesale power markets

¢ For Independent System Operators (ISOs), these processes include:

- Security-Constrained Unit Commitment (SCUC) to determine
which Generating Companies (GenCos) must be available to
produce energy (MWh) during designated future operating
periods in response to received ISO dispatch instructions.

— Security-Constrained Economic Dispatch (SCED) to determine
GenCo dispatch schedules and Locational Marginal Prices (LIMP)
(S/MWh) for grid-delivered energy (MWh) in short-run —i.e.,
day-ahead and intra-day — markets.



ISO Market Optimization on a Typical Operating Day D:
Timing from Midwest ISO (MISO)

Real-time
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for day D

Real-time
settlement
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Day-ahead market
for day D+1

ISO collects demand bids from LSEs
and supply offers from GenCos

ISO evaluates
LSE demand bids and
GenCo supply offers

ISO solves D+1 Security Constrained
Unit Commitment (SCUC) & Security
Constrained Economic Dispatch
(SCED) & posts D+1 commitment,
dispatch, and LMP schedule

Day-ahead settlement




Types of Model Representations
(from Bradley et al. [2])

Main focus of 458 (LT)

Human decision maker is
part of the modeling process
> .

Human decision maker is
external to the modeling process
A

Operational
exercise

Analytical
model
I

Gaming Simulation

———— Increasing degree

<«——— Increasing degree of realism and cost

Fig. 1.1 Types of model representation.




Classification of Modeling Tools
(from Bradley et al. [2])

Main focus
Table 1.1 Classification of Analytical and Simulation Models Of 45 8 ( LT)

Strategy evaluation Strategy generation

Certainty Deterministic simulation
Econometric models

near programming
Network models
Systems of simultaneofis | Integer and mixed-integer
equations
Input-output models

programming
Nonlinear programming
‘ontrol theory

Uncertainty Monte Carlo simulation ( Decision theory
=== Econometric models Togrammin
. - £ £ @me Theory
Stochastic processes Inventory theory

Queueing theory Stochastic programming
Reliability theory Stochastic control theory

Statistics and subjective assessment are used in all models to determine values for
parameters of the models and limits on the alternatives.




Optimization in Practice

(from Bradley et al. [2])

Table 5.1 Distinct Characteri
Operational Decisions

cs of Strategic, Ta

ical, and

Main focus
of 458 (LT)

/ Strategic Tactical Operations

Characteristics planning planning \ control
Objective Resource Resource

acquisition utilization
Time horizon Long Middle
Level of managemen
involvement Top Medium
Scope Broad Medium
Source of
information (External & Internal)
Level of detail Highly Moderately
of information aggregate aggregate
Degree of
uncertainty High Moderate
Degree of risk igh Moderate,

N



Source: M. Wachowiak, Optim Lecture Notes (On-Line)

Optimization Techniques

Global Local

Stochastic Deterministic Derivative Derivative-free

Simulated annealing Interval analysis ( Gradient descent Nelder-Mead simplex
Genetic algorithms Homotopy methods 1 'rust region methods Powell’s direction set
.|
i : Response surface .
Evolutionary strategies pe ) - N ewton-based methods Pattern search
- techniques

Main focus of 458 (LT)

Multidirectional
search




Optimization lllustration:
Economic Dispatch for a Designated Future Hour H

e Initial Problem Simplification

Ignore Generation Company (GenCo) capacity limits,

transmission constraints, line limit losses, and all costs

except variable costs.

e Problem Formulation for Future Hour H

Determine scheduled real-power dispatch levels P, (MW) to be maintained
by GenCosi=1, 2, ..., I during hour H that minimize total variable cost TVC,
subject to the constraint that total grid-delivered energy (MWh) during H
equals total energy demand Py, x 1h (MWh) during hour H, where P, (MW)
is the anticipated average demand for real power (MW) during H. 9




Economic Dispatch for the Future Hour H:
Mathematical Formulation

Variable cost of GenCo i

~

I

minimize TVC(Pg) = > VC(Ps) (S/h)
i=1

with respect to Pg = (Pg,...,Pc)T  (MW)

subject to the balance constraint

I
2 Pgi = Pp (MW)

i=1 \

Fixed (non-price-sensitive) demand as a
constraint constant for power dispatch 1w



5-Bus Transmission Grid Example

5 GenCos (I=5), Total Load P, = 500MW

Load=50MW
L SE 3
Bus 5 Bus 4
VC, G4
VC,
I
Bus 1 Bus 2 Bus 3

GD G2 Lse1 G seo

VC, VC, Load=toomw VC; Load=350MwW




lllustration of TVC Determination for hour H

I:)D
(S}Dl:/ili/\e/h) %0 64 64 MC(Pg)
2 Optimal
70 Dispatch
&3 P* ., = 200MW
G3
50 P*.,= 100MW
P* ;= 200MW
61
30 o1 P*c4=P* 5= OMW
10 G2
Power P
O | I

200 400 500 600 goo (MW)
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lllustration of TVC Determination for hour H

PD
Price G4 G4 MC(PG)
(S/Mwh) 90
G5 ,
Optimal
70 Dispatch
G3 P*., = 200MW
50 °3 P*_, = 100MW
P*_,= 200MW
Gl
30
G1 P*.,=P*. = OMW
10 L2 !
0 | Power P

20|O 400 500 600 goo  (Mw)
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Day-Ahead Supply Offers in MISO

Minimum acceptable price

Resource Offers (“sale reservation price”)
Energy Offer Curves for each AMW

« An Offer Curve is an offer to sell generation by a Resource
— Slope (“true”) vs. block (“false”) offer
— Monotonically increasing in price and non-decreasing in MW
— Can vary hourly by location (CPNode)
— Can submit up to 10 MW/price pairs

— Previous DA offer carries over to DA and the previous days RT offer
carries over to RT if no supply offer is submitted for the ngxt day

SIMW MW AMW
10 0 10
15 10 10
20 20 10
25 30 10
30 40 10
35 50 10
40 60 10
45 70 10
0 10 20 30 40 50 60 70 TEmergency 31

MidwestIS=* MW Maximum

gL ¥ Copyngnt £ 2008 Midwast Indzpanaent Transmission Syslem Operator, InG. Al Rghis reserved.
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Supply Offers in the MISO ... Cont’d

Resource Offers
Offer Curves Exercise Key

Offer MW to $/IMWh

Segment MW S/MWh
. . 1 75| 2450
» Diagram this data set as a 2 oo st
Block Offer and Slope Offer 2 05| _$25 50
] 125] $25.75
] 135] $26.00
BLOCK SLOPE
$/MWh [ Offer MW to SIMWh | SIMWh |-m— Offer MW to $/MWh |
$26.50 $26.50
$26.00 »— 52600 e
$25.50 i $25.50 =
$25.00 7 $25.00 / =
$24.50 ﬁ $24.50 - ;
524.00 +— 52400 | : o
70 85 100 115 130 mMw 70 85 100 115 130 Mw
MidwestIS< “'"

Efrap ot Ptk e’ Copyright © 2008 Midwest Indepengant Transmisslon System Operator, Inc. All ighis reserved.

15



Important Remark on the
Form of GenCo Supply Offers

Linear programming (LP) is used to handle economic dispatch
when supply offers have block (step-function) form.

Nonlinear Programming (NP) techniques are used to handle
economic dispatch when supply offers take a slope (piecewise
differentiable or differentiable) form. (Kirschen/Strbac assumption)

The remainder of these notes use NP techniques for economic
dispatch, assuming supply offers take a differentiable form.

When we later treat GenCo capacity constraints, we will need
to relax this to permit supply offers to take a piecewise
differentiable form.

16



Back to Economic Dispatch Problem for hour H

Variable cost of GenCo i

1

minimize TVC(Pg) = i=1vci(PGi) (S/h)
(MW)

with respect to Pg = (Pgq,...,Pc)T

subject to the power balance constraint

Po (MW)

™~

constraint constant (MW)

I
2 PG =
i=1
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Minimization with Equality Constraints:
General Solution Method?

e For a differentiable function f(x) of an n-dimensional
vector x = (X4,...,X,)7, @ necessary (but not sufficient)
condition for x* to minimize f(x) is that V f(x*) = 0.

e This multi-variable gradient condition generalizes the
first derivative condition for 1-variable min problems:

n-dimensional row vector !

- of (x) of (X) of (X)
OX; OX,  OX,

v (x) =

18




Minimization with Equality Constraints...Cont’d

e When a minimization problem involves equality constraints, we
can solve the problem using the method of Lagrange Multipliers

e The key idea is to transform the constrained minimization
problem into an unconstrained problem

19




Minimization with Equality Constraints...Cont’d

e n-dimensional choice vector x = (xy,...,x,)T =» n choice variables

e m-dimensional constraint vector ¢ = (cy,...,C,,)T = m constraint constants

e R" =all real n-dimensional vectors, R™ = all real m-dimensional vectors

e fRT SR > objective function mapping x - f(x) on real line

e h:R" > R™ 9 constraint function mapping x = h(x) = (h,(x),...,h, (x))T

Nonlinear Programming Problem:

(NPP) minimize f(x) with respect to the choice vector x
subject to the constraint h(x) = ¢

20



Minimization with Equality Constraints...Cont’d

e The Lagrange Function for this problem can be expressed
in parameterized form as

L(x, A,c)_= f(x) - ATe[h(x) —c]

Making explicit the dependence
of the Lagrange Function L on

or eqU|Va|ent|y, the constraint vector ¢

L(x,A,c) = f(x) + AT.[c — h(x)]

where AT= (A,,...., N, ) = vector of m Lagrange multipliers

21




Minimization with Equality Constraints...Cont’d
(cf. Fletcher [3])

Math Regularity Conditions : Suppose f, h are differentiable, and either

rank(V. h(x*)) =m or h(x) hasform A X..*b,,

mxn“*nx1
4 .
m by n matrix

\ - Ohy(z) Ohy(x) . Oh(x) ]
dxq dxo dap
Oha(x) Oho(x)  Jho(x)
dxy dao Dy
Vah(x) =
Ohm(x) Ohpy(x) o Ohp(x)
| du 22 " Oy (mxn)
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Minimization with Equality Constraints...Continued
(cf. Fletcher [3])

First-Order Necessary Conditions (FONC) for x* to solve Problem
(NPP), given math regularity conditions:

There exists a value A* for the vector A of Lagrange multipliers such

that (x*, A*) satisfies:
(1) 0 = V_L(x* A*,c),, = V. f(x*)-ATeV h(x*)

(2) 0 = V\L(x*, A%, €)y, = [e—h(x*)]T

23




Lagrange Multipliers as “Shadow Prices”?

= By construction, the solution (x*, A*) is a function
of the exogenously given constraint vector ¢ :

(x*, A¥) = (x(c), Alc))

* From FONC condition (2) on previous page:

f(x(c)) = L(x(c), Alc), c)

24




Lagrange Multipliers as “Shadow Prices”...
Total Differential

* Then from implicit function theorem, the chain rule,

and FONC (1), (2), fei"each constraint k,
Partial Differentials

d dL
KL};(& C — E(.’L(C) )\(C) C
0x O\ JL
— 7. [ — .= L =
Va dey. T VA dey. i dcy.
=04+ 04+ Ap(c)

This “+” sign follows from
our assumed form of the
Lagrange function L *




Lagrange Multipliers as “Shadow Prices”...

In summary, for each constraint k:

if
E(&S(C)) )\]{(C)

Thus, the Lagrange multiplier solution A (c) for the kth constraint
gives the change in the optimized objective function f(x*) = f(x(c))
with respect to a change in the constraint constant ¢, for the kth

constraint appearing in the constraint h(x) = c.
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Example: Economic Dispatch Again

For the economic dispatch we have a minimization
constrained with a single equality constraint

Constraint Constant

L(P5,A) = ZIVC,(PGi)+i(PD—iPGi) (no losses)
=1 i=1

The necessary conditions for a minimum are
oL(Pg.A) _ dvC(Py)
OP5; dPs;

I
Fo _ZPGi =0
i=1

—A1=0 (fori =1to1I)

27
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Economic Dispatch for a Future Hour H:
Numerical Example (Baldick/Overbye)

What is economic dispatch for a two generator

This requires
system I:)D — PGl + PGZ =500 MW and cost coefficients

VCl(PGl) = 1000 +20 PGl + OOlPGzl $/h to have units,

omitted here for

VC,(Ps,) = 400+5P;, +0.03R2, $/h  =mplict
Using the Lagrange multiplier method we know

$/MWh
av C;lF()PGl) 4 =204002Ps, -1 =0
Gl

dbC2(Fea) _; _15.006R,-2 =0

28



Economic Dispatch Example for Hour H ...Continued

We therefore need to solve three linear equations

20+0.02P;, -4 =0
15+0.06P;, -4 =0
500— Py, Py, = 0
002 0 -1][Py

-1 -1 0] 4
Pl [ 3125 MW
PS5 |= | 187.5 MW
2% | | 26.2$/MWh

Important Note: The power levels Pg; (MW) in
these expressions denote power levels to be
maintained during the future operating hour H.

Thus, these equations in power levels P;; (MW) are in
fact equations for determination of grid-delivered
energy amounts P;; x 1h (MWh) for hour H.

—20
-15

500

} Solution Values for Hour H

29



Economic Dispatch Example...Continued

" The solution values for this Economic Dispatch problem
for hour H are: Optimal Dispatch Vector

P* = (PGl*'PGZ*)T =(312.5MW, 187.5MW)'

A* = SZG.Z/MWh (common across all grid buses for hour H)

= By construction, the solution values Pc* and A* for the

dispatch vector P; and Lagrange multiplier A are
functions of the constraint constant P, = 500

" Thatis, a change in P, would result in a change in these
solution values. -



Economic Dispatch Example ... Continued

Applying previous developments for Lagrange multipliers as

shadow prices,
A* = OTVC(P;*) =: LMP(H) (measuredin$/MWh)
oP,

= Change in minimized total variable cost TVC(P;*) for hour H
(measured in $/h) with respect to a change in the total
power demand P, (MW) to be maintained during hour H,
evaluated at the optimal dispatch vector P*.

Recall that P is the constraint constant for the power balance
constraint for hour H, which takes the form Total Genco Dispatch = P,

31




Economic Dispatch Example ... Continued

Roughly stated, the Locational Marginal Price LI\MIP(k,H) at a grid
bus k for an operating hour H is the least cost of servicing a “next
unit” (MWh) of load (energy demand) at bus k during hour H.

Assume for simplicity that there are no losses of power from grid
transmission lines and no binding transmission constraints, hence
no LMP separation across grid buses. Then, given suitable math

regularity conditions:

A* = OTVC(P,*) (in $/MWh)
OP,

Locational marginal price (LMP) for grid-delivered
energy (MWh) at each grid bus k during hour H.

32



Extension to Inequality Constraints
(cf. Fletcher [3])

General Nonlinear Programming Problem (GNPP):

= X = nx1 choice vector;
= ¢ =mx1vector & d = Sx1 vector (constraint constants)
= f(x) maps xinto R (all real numbers)

= h(x) maps x into R™ (all m-dimensional vectors)

= z(x) maps x into R® (all s-dimensional vectors)

GNPP: Minimize f(x) with respect to x subject to
h(x) = ¢

z(x) > d




Important Remark on the
Representation of Inequality Constraints

Note: The inequality constraint for (GNPP) can equivalently be
expressed in a variety of ways, as indicated below:

(1) z(x) 2 d;

(2) z(x)-d =2 0;

(3) -z(x)—[-d] < O;
(4) r(x) — e <0
(5) r(x) <e

(r(x) =: -[z(x)], e =: -[d] )

34




Why Our Form of Inequality?

Our GNPP Form: Given suitable

Minimize f(x) with respect to x subject to regularity
conditions
h(x) = ¢

(*) z(x)>d

O Given this form, we know that an INCRE has to resultin a
new value for the minimized objective function f(x*) that is AT
LEAST AS GREAT as before:

O Why? When d increasé’s the feasible choice set for x SHRINKS,
hence [min f] either T/or stays same.

O => 0 < of(x*)/ad = u*T =Shadow price vector for (*)

35



Extension to Inequality Constraints...Continued

e Define the Lagrangean Function as

L(x, A,p,c,d) = f(x) +AT[c-h(x)]+ p'[d - z(x)]

e Assume Kuhn-Tucker Constraint Qualification (KTCQ)
holds at x*, roughly stated as follows:

The true set of feasible directions away from x*
= Set of feasible directions away from x* assuming

a linearized set of constraints in place of the

original set of constraints. 36




Extension to Inequality Constraints...Continued

" Given KTCQ, the First-Order Necessary Conditions (FONC) for x* to solve the

(GNPP) are as follows: There exist A* and W™ such that (x*, A*, u*) satisfy:
0 = V,L(x*, A*,u*,c,d)
= [V f(x*) -A*TeV h(x*) - u*TeV z(x*)];
h(x*) = c;

z(x*) > d; p*l.[d-z(x*)] =0, u*=>0

® These FONC are known as the Karush-Kuhn-Tucker (KKT) Conditions.

37



Solution Vector as a Function of (c,d)

By construction, the components of the solution

vector (x*, A*, u*) are functions of the constraint
constant vectors ¢ and d:

e x* = x(c,d)
e \* =A(c,d)

° u* =p(c,d)

38



GNPP Lagrange Multipliers as Shadow Prices

Given additional math regularity conditions...

e The solution A" for the m x 1 Lagrange multiplier vector
A is the derivative of the solution value f(x*) of the
objective function f(x) with respect to the constraint
vector ¢, all other problem aspects remaining the same.

of(x*)/oc = of(x(c,d))/dc = A*T

39



GNPP Lagrange Multipliers as Shadow Prices...

Given additional math regularity conditions...

e The solution u” for the s x 1 multiplier vector p is the
derivative of the solution value f(x*) of the objective
function f(x) with respect to the constraint vector d,
all other problem aspects remaining the same.

0 < of(x*)/od = of(x(c,d))/od = p*T

40



GNPP Lagrange Multipliers as Shadow Prices...

In this case...

e The solution A" for the multiplier vector A thus essentially gives
the prices (values) associated with unit changes in the
components of the constraint vector c.

e The solution u” for the multiplier vector p thus essentially gives
the prices (values) associated with unit changes in the
components of the constraint vectord .

e Each component of A" can take on any sign

e Each component of u* must be nonnegative

41



Sufficient Conditions for Minimization?

First-order necessary conditions for x* to solve NPP/GNPP are
not sufficient in general to ensure x* solves NPP/GNPP, or to
ensure x* solves NPP/GNPP uniquely.

® What can go wrong?

** (1) Local maximum rather than local minimization

*%* (2) Inflection point rather than minimum point

** (3) Local minimum rather than global minimum

** (4) Multiple minimizing solution points

® Conditions on second derivatives are needed to rule out 1 & 2,

IH

methods/conditions are needed torule out 3 & 4.

42
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Example: Local Max Rather Than Local Min

FIGURE 1. Local maximum of function f(xy,z5) = (i +23)

fix;.x2)

From: A. Hallam, “Simple Multivariate Optimization” (on-line)

43



Example: Inflection Rather than Minimum Point

FIGURE 2. Saddle point of the function f(xy, xo) =z} — 3

From: A. Hallam, “Simple Multivariate Optimization” (on-line)
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Example: Local Min Rather than Global Min
Note that both points satisfy the FONC given by df(x)/dx = 0.

f(x)

Local Min Global Min
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Example: Multiple Minimization Points

FIGURE 18. Graph of the function f(x1, x2) = —x122 , —

fix1.x2)

From: A.

Hallam, “Simple Multivariate Optimization” (on-line)
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