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Abstract

Real-world decision-makers are forced to be locally constructive; that is, their decisions are

necessarily constrained by their interaction networks, information, beliefs, and physical states.

This study transforms an otherwise standard dynamic macroeconomic model into an open-

ended dynamic game by requiring consumers and �rms with intertemporal utility and pro�t

objectives to be locally constructive. Tested locally-constructive decision processes for the

consumers and �rms range from simple reactive reinforcement learning to adaptive dynamic

programming (ADP). Computational experiments are used to explore macroeconomic perfor-

mance under alternative decision-process combinations relative to a social planner benchmark

solution. A key �nding is that simpler decision processes can outperform more sophisticated

decision processes such as ADP. However, memory length permitting some degree of adaptive

foresight is critical for good performance.
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1 Introduction

Decision-makers in real-world macroeconomies are necessarily limited to locally-constructive ac-

tions, that is, to actions constrained by their interaction networks, information, beliefs, and physical

states. In contrast, the actions of agents in current macroeconomic models are typically not lo-

cally constructive because they are constrained by externally imposed coordination and optimality

restrictions. Key examples include the global market clearing conditions and strong-form ratio-

nal expectations postulates imposed in standard dynamic stochastic general equilibrium (DSGE)

models based on Smets and Wouters (2003).

These observations raise the following important challenge. Suppose all actions within an otherwise

standard macroeconomic model are required to be locally constructive, unsupported by externally

imposed coordination and optimality restrictions. What form could these locally-constructive

actions take to ensure good outcomes, not only for the individual participants but also for the

macroeconomy as a whole?

This study addresses this challenge for a relatively simple macroeconomic model, referred to as the

Dynamic Macroeconomic (DM) Game. Consumers and �rms in the DM Game interact over time

in labor and goods markets modeled as double auctions with uniform pricing rules. Each consumer

desires to maximize his expected intertemporal (lifetime) utility subject to budget constraints, and

each �rm desires to maximize its expected intertemporal pro�t subject to technology constraints.

However, in a departure from standard macroeconomic modeling, consumers and �rms in the DM

Game are required to be constructively rational in the following sense. First, the speci�cation

by these agents of their objective functions, decision domains, and decision rules mapping deci-

sion domains into decision selections must be locally-constructive actions. Second, the successive

determination of DM-Game outcomes must be a purely historical process, unaided by externally

imposed coordination and optimality restrictions.

To investigate the implications of constructive rationality for the DM Game, the decision domains

for consumers and �rms are expressed in stationary form, as vectors of possible parameter selec-

tions. In each successive time period an agent's selection of a decision (parameter vector) maps

into a sequence of parameterized supply and demand functions for current and future markets,

conditional on the agent's current information, beliefs, and physical state.

Computational experiments are then conducted in which consumers and �rms make successive

selections from their decision domains in accordance with decision processes ranging from simple

adaptation to sophisticated anticipatory learning. These decision processes include: (i) a modi-

�ed version of a reactive reinforcement learning method originally developed by Roth and Erev

(1995) and Erev and Roth (1998) on the basis of �ndings from human-subject experiments; (ii) a

forward-looking learning method developed by Watkins (1989), called Q-learning; (iii) a forward-
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looking rolling-horizon learning method (Alden and Smith (1992)); and (iv) an adaptive dynamic

programming (ADP) learning method based on value-function approximation.

A key issue of interest is which decision-process combinations come closest to achieving the bench-

mark optimal solution obtainable by a fully informed social planner. In particular, do the decision

processes involving relatively more sophisticated use of information tend to result in relatively

higher welfare outcomes, either for the individual decision-makers or for the economy at large?

Since previous experimental �ndings have shown that minimally-informed traders using relatively

unsophisticated decision processes can match or exceed the performance of better informed traders

in some market contexts (Gode and Sunder (1993); Smith (2008)), the answer to this question is

not obvious a priori. A related issue of interest is which (if any) decision-process combinations

constitute Nash equilibria and/or Pareto optimal solutions for the DM Game.

A key �nding of this study is that good performance in the DM Game requires decision-makers to

engage both in the exploitation of their current information and in searches for new information.

Simpler decision processes can outperform more sophisticated decision processes, but only if the

simpler processes entail memory lengths permitting some degree of adaptive foresight. Overall, the

best performance is achieved when the consumers and �rms use rolling-horizon learning methods.

This study is organized as follows. The relationship of our work to previous research is more

carefully considered in Section 2, with a particular focus on learning in macroeconomic contexts.

Section 3 sets out the basic structure of the DM Game together with its market and payment

processes. Section 4 explains the decision processes implemented by the DM-Game consumers

and �rms, and Section 5 introduces and solves the social planner model used as a benchmark

of comparison for our computational experiments. The sensitivity design for our computational

experiments is described in Section 6, and key �ndings from these computational experiments are

reported in Section 7. Section 8 concludes. Technical implementation aspects are relegated to the

Appendix, and the code is available at https://github.com/wilfeli/DMGameBasic.

2 Relationship to Previous Research

Numerous previous researchers have emphasized the importance and complexity of modeling real-

world decision processes. Examples include Simon (1978), Dosi and Egidi (1991), Stiglitz (2002),

Smith (2008), Howitt (2008), Kahneman (2011), Kirman (2011), Hommes (2013), and Arthur

(2015). Practitioners have also been interested in obtaining an improved understanding of these

processes; see, e.g., a recent report issued by Trichet (2010), a former President of the European

Central Bank.

Current macroeconomic models are surely complex. For example, standard DSGE models typically

include consumers and �rms that solve intertemporal utility and pro�t maximization problems
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subject to intertemporal constraints, conditional on announced government policy rules; see, for

example, Sbordone et al. (2010) and Tovar (2009). Yet, to avoid aggregation and coordination

issues, these models also typically assume the existence of representative consumer and �rm agents

with strong forms of rational expectations. This reliance on representative agents with rational

expectations has been criticized on the grounds it prevents the study of learning and coordination

issues critical for understanding the operation of real-world macroeconomies (Howitt (2012)).

Recently, however, a growing number of researchers have become interested in the study of dy-

namic macroeconomic systems for which agents are forward-looking optimizers with incomplete

knowledge about the structure of the economy. As surveyed in Honkapohja et al. (2012) and Evans

and Honkapohja (2013), the standard context assumed in this literature is that a representative

consumer1 with learning capabilities resides in a dynamic world consisting of itself, a representative

�rm, and a government policy-maker. The representative consumer has incomplete information

about the structure of its world, and it behaves as an econometrician in its attempts to learn about

its world from observed data.

Speci�cally, the representative consumer is assumed to make consumption and labor decisions

in each successive time period conditional on intertemporal budget constraints. These budget

constraints depend on current state variables (e.g., �nancial and physical asset values), on current

and forecasted future values for system variables (e.g., goods prices, wages, and interest rates),

and on current and forecasted future values for government policy variables (e.g., tax rates). The

consumer's system variable forecasts are obtained from a reduced-form econometric model. The

consumer estimates and updates the parameters of this econometric model over time, often by

means of a least-squares or Bayesian learning method. The consumer's government policy variable

forecasts are generated by means of the latest announced government policy rule, assumed to be

credible common knowledge.

Functional forms and calibrated maintained parameter values are speci�ed in the initial time

period to guarantee the existence of a steady-state solution, assumed to be common knowledge.

A temporary equilibrium solution for the macroeconomic model is then approximately determined

in di�erenced form (i.e., di�erenced from steady-state values) in each successive time period.

The approximate temporary equilibrium solution in any current time period is generally obtained

as follows. Consumer and �rm �rst-order necessary conditions for optimality are linearized around

steady-state values subject to transversality, no-arbitrage, and no-ponzi-game restrictions. This

permits di�erenced demand and supply decision variables to be expressed as linear a�ne functions

of di�erenced current state variables, di�erenced current system variables, di�erenced current gov-

ernment policy variables, and current exogenous random shocks. For the representative consumer

1Some researchers assume a compact continuum of consumers exhibiting some degree of heterogeneity in their
preferences for consumption versus leisure; see, e.g., Milani (2005). However, e�cient risk-sharing arrangements are
then typically assumed so that the consumers in fact face identical intertemporal budget constraints and behave
the same in equilibrium, e�ectively reducing the economy to a representative consumer economy.
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with forward-looking learning capabilities, the linearized expressions for its di�erenced decision

variables also include additive terms depending on forecasted di�erenced values for future system

variables, future government policy variables, and future shock realizations.

Period-t market clearing conditions are then imposed to obtain temporary equilibrium solutions for

di�erenced period-t decision and system variables as linear a�ne functions of di�erenced period-

t state variables and realized period-t shock terms. These solutions are used in turn to derive

di�erenced state variable solutions for period t+1, in preparation for the determination of an

approximate temporary equilibrium solution for period t+1.2

One key issue addressed in this literature is whether the temporary equilibrium solution path condi-

tional on a particular learning speci�cation exhibits convergence or escape dynamics (Honkapohja

et al. (2012); Evans and Honkapohja (2013)). That is, will it converge over time to the steady-

state solution (in either a global or local stability sense), or will it persistently deviate from this

solution?

A second key issue is how di�erent learning speci�cations a�ect the dynamic properties (e.g., per-

sistence and volatility) of the temporary equilibrium solution path, taking the dynamic properties

of this solution path under rational expectations as a benchmark of comparison (Milani (2005,

2007)). A third key issue, studied in Mitra et al. (2013) for a real business cycle model, is how

the temporary equilibrium solution path is a�ected by a sudden, permanent, credibly-announced

switch in the government's policy rule. A fourth key issue, explored at length in Hommes (2013), is

how temporary equilibrium solutions are a�ected when agents are modeled as adaptive forecasters

with heterogeneous beliefs and expectations.

Clearly this literature takes an important step towards more realistic macroeconomic modeling by

recognizing the constrained information and computational capabilities of decision-making agents.

Nevertheless, external coordination and optimality conditions are still imposed on agents (both

intertemporally and cross-sectionally) in order to obtain model solutions. Examples of such con-

ditions include: single representative consumer (or �rm) assumptions; the assumed coordination

of agents on a single solution; non-constructive transversality conditions; the assumed absence of

interest-rate arbitrage opportunities; the assumed absence of ponzi-game opportunities such as

persistent debt roll-over; and the assumed absence of excess supplies and demands in markets.

An alternative approach permitting the systematic study of locally-constructive decision processes

in macroeconomic contexts without reliance on the external imposition of coordination and op-

timality conditions is Agent-based Computational Economics (ACE). Under the ACE approach,

economic processes (including whole economies) are computationally modeled as open-ended dy-

namic systems of interacting agents (Tesfatsion and Judd (2006); LeBaron and Tesfatsion (2008);

2Researchers in this dynamic macroeconomic learning literature are increasingly resorting to models expressed
directly in terms of these reduced-form linear a�ne relationships. For example, compare the working paper (Milani,
2005) with its later published version (Milani, 2007).

5



Tesfatsion (2015c); Arthur (2015)). Here �agent� can refer to any physical, biological, social, or

institutional entity residing within the system.

An ACE model is an historical process model in the following sense: Outcomes are determined in

each successive time period based solely on current agent interactions, conditional on current state

conditions and current exogenous shock realizations. These successive agent interactions give rise

to global regularities characterizing the system as a whole, which in turn a�ect agent interactions.

ACE macroeconomic research to date has typically postulated decision rules for decision-making

agents that are not explicitly derived as solutions for optimization problems, although they are

sometimes motivated as heuristic approximations for such solutions. Examples include Oe�ner

(2008), Dosi et al. (2010), Mandel et al. (2010), Kirman (2011), Salle et al. (2013), Salle and

Seppecher (2013), and Dawid et al. (2015).3 This has led some macroeconomists to dismiss ACE

modeling based on the incorrect belief that ACE decision-making agents must necessarily be reac-

tive stimulus-response agents with myopic objectives.

To the contrary, however, the behaviors expressed by decision-making agents in ACE models can

range all the way from simple rule-based actions to intertemporal optimization with sophisticated

anticipatory learning capabilities.4 We thus argue that it would be a Pareto improvement to

expand the standard macroeconomic toolkit to include ACE as another potentially useful modeling

approach.

More precisely, any modeling approach will have both advantages and disadvantages for a particu-

lar purpose at hand. For some purposes, imposing external coordination and optimality conditions

on decision-making agents could be a perfectly acceptable short-cut. For other purposes it could be

important to understand potential outcomes when decision-making agents are constrained to op-

erate within a purely historical process subject to realistically rendered informational and physical

limitations. The adoption of ACE modeling for these latter purposes does not require decision-

makers to be �irrational�.

The primary goal of the current study is to provide concrete support for the above assertions within

the context of a relatively simple ACE macroeconomic model, which we refer to as the Dynamic

Macroeconomic (DM) Game. As will be demonstrated more carefully in subsequent sections, the

DM Game di�ers from existing macroeconomic models in four key respects:

(D1): Each consumer and �rm in the DMGame is a learning agent with an intertemporal objective

that it attempts to achieve by successive implementation of a decision process.

3See Chen (2012) for a survey of ACE agent modeling, and see Tesfatsion (2015a) for extensive annotated
pointers to ACE macroeconomic research.

4For an extensive collection of annotated pointers to research on learning algorithms for ACE agents, including
approximate dynamic programming and other forward-looking methods for intertemporal optimization, see Tesfat-
sion (2015b).
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(D2): The decision process used by each learning agent in the DM Game is locally constructive.

(D3): The DM Game is an historical process model.

(D4): In the DM Game, heterogeneity in the information, beliefs, and physical states of agents

changes endogenously over time through the natural course of market participations.

A �nal note on terminology is in order. Our conception of constructive rationality does not

necessarily entail the pursuit of goals solely through the solution of optimization problems. Con-

sequently, it di�ers from the concept of procedural rationality introduced by Simon (1978, p. 9),

in which decision-making agents are assumed to pursue the most e�ective possible processes for

the choices of their actions, given their limited information and cognitive powers. Similarly, it

di�ers from the concept of constructivist rationality introduced by Smith (2008, p. 2), de�ned as

�the deliberate use of reason to analyze and prescribe actions judged to be better than alternative

feasible actions that might be chosen.�

Rather, our conception permits procedural uncertainty (Dosi and Egidi (1991); Howitt (2008)),

in the sense that decision-makers might be uncertain how to use their limited decision-making

resources in an attempt to achieve their goals. In this case they might engage in a combined

learning and decision process in an attempt to reduce their uncertainty about their world even as

they attempt to survive and prosper within that world.

Indeed, the operative question for a reader of this study is as follows: If you were to be suddenly

transported into the DM Game as a consumer or �rm, forced to implement your decisions in a

locally-constructive manner, what decision process would you use in an attempt to achieve your

utility or pro�t goal?

3 The Dynamic Macroeconomic Game

3.1 Overview

This section develops the Dynamic Macroeconomic (DM) Game, a relatively simple dynamic

macroeconomic model that will permit us to investigate the e�ects on micro and macro out-

comes when consumers and �rms with intertemporal utility and pro�t goals implement various

types of decision processes in an attempt to achieve these goals. The basic structure of the DM

Game is similar to the structure of standard dynamic macroeconomic models. However, as noted

in Section 2, the DM Game di�ers from these standard models in four key respects: (D1) multi-

ple consumers and �rms with learning capabilities; (D2) locally-constructive decision rules; (D3)

absence of externally-imposed coordination and optimality conditions; and (D4) endogenous het-

erogeneity.
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Conditions (D1) through (D3) imply that events must proceed through historical time from cause to

e�ect, with no non-causal looping permitted. In particular, the standard determination of market

outcomes, in which labor and goods markets are simultaneously cleared at correct equilibrium

prices with correct matching of buyers and sellers, with no risk to the traders, must be replaced by

market processes permitting risky trades to proceed even if transactions are based on imperfectly

informed demands and supplies.

Regarding (D4), heterogeneity among the DM-Game consumers and among the DM-Game �rms

arises endogenously over time from three sources. One source is that all of the decision processes

tested for consumers and �rms in this study are adaptive processes involving stochastic aspects

in their implementations. A second source is that consumers and �rms use �coin �ips� to resolve

indi�erence among decision options. A third source is that the rules governing labor and goods

market operations include stochastic rationing rules to resolve excess demand and supply situations.

Section 3.2 provides a big-picture understanding of the basic DM-Game structure. Sections 3.3

through 3.5 then explain in greater detail the market and payment processes in the DM Game,

as well as the structure of the intertemporal optimization problems for consumers and �rms. A

detailed description of the particular locally-constructive decision processes to be tested for the

consumers and �rms by means of computational experiments is given in the following Section 4.

3.2 Basic DM-Game Structure

As depicted in Fig. 1, the DM Game consists of a �nite number I of utility-seeking in�nitely-lived

consumers and a �nite number J of pro�t-seeking in�nitely-lived corporate �rms that interact in

market and payment processes over discrete time periods t ≥ 0, where period t = [t, t+ 1).

Figure 1: Decision-making agents and institutions for the DM Game

Each consumer and �rm has an initial money balance at time 0, measured in book credit; and all

subsequent payments and receipts take the form of changes in consumer and �rm money balances.

The consumers derive utility from leisure and from the consumption of a durable good q purchased

from �rms. The �rms earn pro�ts from the sale of good q to consumers, where q is produced by

means of labor services purchased from consumers.
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Both the labor market and the goods market are organized as automated double-auction exchanges

in which demands and supplies are matched to determine market-clearing prices and quantities.

Firm pro�ts are distributed back to consumers in the form of dividend payments. The goal of

each consumer is to maximize his expected intertemporal utility subject to budget constraints,

where this optimization problem is expressed in locally-constructive terms. The goal of each �rm

is to maximize its expected intertemporal pro�ts subject to technology constraints, where this

optimization problem is expressed in locally-constructive terms.

Each consumer at time 0 is structurally identical to each other consumer; that is, each consumer

has the same initial money balance, human capital endowment, and intertemporal utility function.

Also, each consumer owns an equal share of each �rm, �xed through time, and hence receives the

same stream of dividend payments. Similarly, each �rm at time 0 is structurally identical to each

other �rm, meaning that each �rm has the same initial money balance, goods stock, production

function, intertemporal pro�t function, and dividend allocation rule.

Market trades in the DM Game are risky in the following sense. In each period the labor market

occurs prior to the goods market. Firms engage in forward contracting with consumers for labor

services, and carry out goods production using these labor services, prior to the realization of

actual goods demands. Firms thus risk bankruptcy if insu�cient goods are sold to permit them

to meet their wage obligations, and bankrupt �rms must exit the DM-Game economy. Since there

is no entry mechanism for �rms, the bankruptcy of �rms can ultimately lead to the collapse of the

economy.

When �rms are forced to exit the DM Game due to bankruptcy, the remaining �rms do not

immediately modify their behavior to take into account that they now have a larger share of the

market. However, as will be seen in Section 4, all of our tested decision processes involve adaptation

to changing state conditions. Consequently, the exit of bankrupt �rms will eventually result in

changes in the decisions of the remaining �rms to the extent that this bankruptcy a�ects their

state conditions.

Consumers risk non-payment for labor services rendered if �rms become bankrupt. Since all goods

demands must be backed by actual purchasing power, this can reduce the goods demands of the

consumers in the next trading period, exacerbating �rm cash-�ow problems. However, consumers

can survive even if their market purchases of consumption goods are zero because they can obtain

their basic subsistence needs through non-traded means (e.g., a garden patch).

A key question to be addressed is therefore as follows. Given the potential riskiness of market

trading, and the restriction to locally-constructive decision processes, is it worthwhile for the

consumers and �rms to use relatively sophisticated decision processes derived from intertemporal

optimizations? Or should they instead proceed cautiously with simpler forms of decision processes

based on incremental adaptations to past trading outcomes?
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3.3 Market and Payment Processes in the DM Game

All transactions in the DM Game are accompanied by corresponding payments, hence the payment

system is an important underlying institution. For simplicity, this payment system is taken to be a

simple clearing house that instantaneously clears each transaction. Although consumers and �rms

can carry forward savings in the form of money (book-credit), there is no banking system, hence

no borrowing/lending opportunities and no interest paid on savings.

A consumer is not permitted to spend more than his current money balance, hence all consumer

demands for goods must be backed by actual purchasing power. A �rm is declared bankrupt, and

removed from the economy, if its current money balance is insu�cient to meet its wage-payment

obligations to its workers.5

The consumers and �rms use decision processes in each period t in an attempt to take actions that

satisfy their intertemporal utility and pro�t goals, conditional on current expectations for future

wages and goods prices. These actions consist of both labor and goods market decisions, such as

whether or not to participate in these markets and what speci�c quantity and price terms to seek

if they do.

The consumers and �rms receive feedback from the economy as a result of their period-t actions,

and they update their decision processes on the basis of this feedback in preparation for period t+1.

This feedback includes market-clearing wages and prices for the period-t labor and goods markets,

and their own private utility or pro�t outcomes as a result of their period-t market transactions.

Figure 2: Sequential market decisions during a typical period t.

As depicted in Fig. 2, the labor market occurs before the goods market in each period t. Each

consumer participating in the labor market submits a labor supply o�er, and each �rm participating

in the labor market submits a labor demand bid. A labor market clearing solution is then calculated

based on these o�ers and bids. This solution consists of a set of forward labor contracts (supply

5Any money held by a bankrupt �rm is divided equally among its workers in partial ful�llment of its wage-
payment obligations. However, goods stocks of bankrupt �rms are assumed to be lost to the economy.
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now, get paid later) that determine the amount of labor to be supplied now by each consumer to

each �rm, and the (common) wage to be paid later by the �rms to the consumers for each unit of

supplied labor.

After the close of the period-t labor market, the consumers perform labor for the �rms in accordance

with their forward labor contracts, which results in produced amounts of goods. Next, each

consumer participating in the period-t goods market submits a goods demand bid, and each �rm

participating in the period-t goods market submits a goods supply o�er. A goods market clearing

solution is then calculated based on these bids and o�ers. This solution consists of a set of spot

contracts that determine the amount of good to be received now by each consumer from each �rm,

and the (common) goods price to be paid now by the consumers to the �rms for each unit of good

received.

After the close of the period-t goods market, each �rm proceeds to deliver goods to its customers

in return for goods payments in accordance with its period-t goods market spot contracts. Each

�rm then settles its period-t wage-payment obligations to its workers as determined by its period-t

forward labor contracts, if it has a su�cient money balance to cover these obligations. Otherwise,

the �rm is bankrupt and must exit the economy.

At the end of period t, each consumer calculates its period-t utility on the basis of its period-t

consumption of market-procured goods and leisure. Also, each (non-bankrupt) �rm calculates

its period-t pro�t as its period-t goods-sales revenues minus its period-t wage payments. These

period-t utility and pro�t outcomes are used by the consumers and �rms to update their decision

processes for period t+ 1.

A portion of any positive pro�ts accrued by a �rm during period t is distributed to the �rm's

consumer-owners as dividend payments at the end of period t. The wage and dividend payments

received by a consumer from the �rms at the end of period t, together with any other unspent

monies held by the consumer at the end of period t, constitute the money balance of the consumer

at the start of period t+ 1 to be used for goods purchases in period t+ 1.

This �ow of events is illustrated in Fig. 3. Note the use of internal times t:1 through t:6 for events

occurring within each period t = [t, t + 1). The money balances held by consumers and �rms at

the end of period t (i.e., at time t + 1) are determined by the money balances held by consumers

and �rms at the start of period t together with the additions and subtractions to these money

balances arising from period-t market and dividend payments.

Finally, as detailed below in Sections 4.2 and 4.3, reservation wages and prices are used to determine

demand and supply functions in the DM Game. Agents thus abruptly enter or drop out of the labor

and goods markets as the wage and price increase from 0, which induces vertical and horizontal

portions in the aggregate demand and supply functions.

If the aggregate demand and supply functions coincide along a vertical portion, there will be
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Figure 3: Flow of events during a typical period t.

multiple possible equilibrium prices corresponding to a unique equilibrium quantity. In this case,

market rules impose the selection of the maximum possible equilibrium price.

If the aggregate demand and supply functions coincide along a horizontal portion, there will be

multiple possible equilibrium quantities corresponding to a unique equilibrium price. In this case,

market rules impose a simple stochastic rationing mechanism: namely, the agents that are willing

to trade at this unique equilibrium price are allowed to trade in random order. Trading stops when

no more trades are possible, at which point the maximum possible equilibrium quantity has been

cleared. At such equilibrium points there will typically be traders willing but unable to purchase

more goods (excess demand) or traders willing but unable to supply more goods (excess supply).

3.4 Consumer Constraints and Goals in the DM Game

Consumers in the DM Game are structurally identical at the initial time 0. Each consumer i is

endowed with the same initial positive money balance M c
−1 (in book credit form). Each consumer

i also has one unit of time in each period r ≥ 0 that can be divided between labor lci,r:1 and leisure

[1− lci,r:1]. To simplify the analysis, it is assumed that this one unit of time is allocated either all

to labor or all to leisure.

Ignoring uncertainties (for the moment), the budget constraints faced by each consumer i in each

period r ≥ 0 take the following form:

si,r:3 = M c
i,r−1 − pr:3qci,r:3 (1)

M c
i,r = si,r:3 + wi,r:4l

c
i,r:1 + divcr:5 (2)

si,r:3, q
c
i,r:3 ≥ 0 (3)

lci,r:1 ∈ {0, 1} (4)

HereM c
i,r−1 denotes consumer i's money balance at the start of period r, pr:3 denotes the goods price
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determined in the goods market at time r:3 (same for all consumers), qci,r:3 denotes the amount

of good purchased by consumer i in the goods market at time r:3, si,r:3 denotes the savings of

consumer i immediately subsequent to the goods market at time r:3, wi,r:4l
c
i,r:1 denotes the actual

wage payment received by consumer i at time r:4 arising from its forward labor contract cleared

in the labor market at time r:1, and divcr:5 denotes the dividend payment (same for all consumers)

received by consumer i at time r:5. The non-negativity constraint si,r:3 ≥ 0 ensures that consumer

i's goods purchase qci,r:3 is backed by actual purchasing power (money holdings).

The goal of each consumer i at the start of each period t ≥ 0 is to maximize his expected intertem-

poral utility over periods r ≥ t subject to budget constraints (1)-(4) for periods r ≥ t. If the labor

service and consumption levels of consumer i in periods r ≥ t are given by
{
lci,r:1, q

c
i,r:3

}∞
r=t

, then

the intertemporal utility attained by consumer i over periods r ≥ t is given by

Ui,t =
∞∑
r=t

βr−tu
(
qci,r:3, 1− lci,r:1

)
, (5)

where β ∈ (0, 1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the consumers in the DM Game depend

commonly on the speci�c settings for (M c
−1, u(·), β) at the initial time 0. However, consumers do

not know in advance the decision processes in use by �rms and other consumers, hence they

do not know in advance the market-clearing values for future goods prices and wages nor the

extent to which their own future goods demands and labor supplies will be ful�lled. How each

consumer i might address this uncertainty through various alternative speci�cations for its own

locally-constructive decision process will be explained in Section 4.

3.5 Firm Constraints and Goals in the DM Game

Firms in the DM Game are structurally identical at the initial time 0. Each �rm j is endowed with

the same initial positive money balanceM f
−1 (in book credit form) and the same initial goods stock

qstock−1 . Also, each �rm j has the same stationary production function q = F (l) for the production

of good q using labor services l. Ignoring uncertainties (for the moment), the constraints faced by

each �rm j in each period r ≥ 0 are derived as follows.

Let qstockj,r−1 denote �rm j's goods inventory at the start of period r ≥ 0. Suppose �rm j purchases

labor services lfj,r:1 in the time-r:1 labor market and uses these labor services to produce a goods

amount qfj,r:2 = F (lfj,r:1) at time r:2. The goods amount qfj,r:3 that �rm j sells in the time-r:3 goods

market cannot exceed its time r:2 goods inventory, qstockj,r:2 , which is given by its goods inventory at

the start of period r plus its time r:2 goods production qfj,r:2:

qstockj,r:2 = qstockj,r−1 + qfj,r:2 ≥ qfj,r:3 (6)
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Firm j's goods inventory qstockj,r at the start of period r + 1 is then determined from the following

inventory accumulation equation:

qstockj,r = qstockj,r:2 − qfj,r:3 (7)

In addition, �rm j must worry about avoiding bankruptcy, since bankrupt �rms (i.e., �rms unable

to meet their wage obligations) must exit the DM-Game economy. Consequently, �rm j only

distributes dividends in period r if its goods market revenues pr:3q
f
j,r:3 earned at time r:3 exceed

its wage obligations wj,r:1l
f
j,r:1 incurred in the forward labor market at time r:1 for settlement at

time r:4. Moreover, �rm j limits its dividend distributions to its pro�ts (if any). Speci�cally, �rm

j's total dividend payments divfj,r:5 at time r:5 are determined in accordance with the following

allocation rule:

divfj,r:5 =

κdiv ·
[
pr:3q

f
j,r:3 − wr:1l

f
j,r:1

]
if pr:3q

f
j,r:3 − wr:1l

f
j,r:1 ≥ 0

0 otherwise
(8)

where κdiv ∈ [0, 1]. Given (8), the no-bankruptcy condition for �rm j in period r guaranteeing its

period-r wage obligations can be ful�lled takes the form

M f
j,r−1 + pr:3q

f
j,r:3 − wr:1l

f
j,r:1 ≥ 0 (9)

The money balance M f
j,r held by a non-bankrupt �rm j at the end of period r (i.e., at the start of

period r + 1) is determined by the money balance M f
j,r−1 held by �rm j at the start of period r

adjusted to re�ect �rm j's market activities and dividend payments during period r, as follows:

M f
j,r = M f

j,r−1 + pr:3q
f
j,r:3 − wr:1l

f
j,r:1 − div

f
j,r:5 (10)

Finally, the following non-negativity restrictions on �rm j's labor demand lfj,r:1 at time r:1 and

goods supply qfj,r:3 at time r:3 must be satis�ed for physical meaningfulness:

lfj,r:1, q
f
j,r:3 ≥ 0 (11)

The goal of each �rm j at the start of each period t ≥ 0 is to maximize its expected intertemporal

pro�t over periods r ≥ t subject to the technological and feasibility constraints (6)-(11) for periods

r ≥ t. For any given sequence
{
wr:1, l

f
j,r:1, pr:3, q

f
j,r:3

}∞
r=t

of wage levels, labor service purchases,

goods prices, and goods purchases for periods r ≥ t, the intertemporal pro�t attained by �rm j
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over periods r ≥ t is given by

Πj,t =
∞∑
r=t

µr−t
[
pr:3q

f
j,r:3 − wr:1l

f
j,r:1

]
(12)

where µ ∈ (0, 1) is a time-preference discount parameter.

In summary, as detailed above, the constraints and goals of the �rms in the DM Game depend

commonly on the speci�c settings for (M f
−1, q

stock
−1 , F (·), µ, κdiv) at the initial time 0. However, �rms

do not know in advance the decision processes in use by consumers and other �rms, hence they

do not know in advance the market-clearing values for wages and goods prices nor the extent to

which their own future labor supplies and goods demands will be ful�lled. How each �rm j might

address this uncertainty through various alternative speci�cations for its own locally-constructive

decision process will be explained in the following Section 4.

4 Locally-Constructive Decision Processes

4.1 Overview of Decision Processes

The locally-constructive decision processes speci�ed for consumers and �rms in the DM Game are

procedures for the adaptive determination of demand bids and supply o�ers for the labor and goods

markets in each successive period t. These decision processes consist of three distinct components,

as follows.

First, decision domains are speci�ed for consumers and �rms that consist of possible selections of

�tuning� parameters for demand and supply functions. To permit more meaningful comparisons

among decision processes, the decision domain for each consumer at the start of each period t is

speci�ed as a cross-product Dc of �nite sets, the same for each consumer. Similarly, the decision

domain for each �rm at the start of each period t is speci�ed as a cross-product Df of �nite sets,

the same for each �rm.

Second, state-conditioned transformation functions are speci�ed for consumers and �rms. The

state of a consumer or �rm at any time t consists of the time-t information, beliefs, and physical

attributes of this agent. The transformation function for each consumer at the start of each period

t ≥ 0 maps each of his possible decisions dc in Dc into a collection of labor supply and goods

demand functions for periods r ≥ t, parameterized by dc, and conditional on the consumer's time-t

state. Similarly, the transformation function for each �rm at the start of each period t ≥ 0 maps

each of its possible decisions df in Df into a collection of labor demand and goods supply functions

for periods r ≥ t, parameterized by df , and conditional on the �rm's time-t state.
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Third, Reactive Learner (RL), Forward-looking Learner (FL), and Explicit Optimizer (EO) decision

rules are speci�ed for each consumer and �rm that determine how this agent selects decisions from

its decision domain in each period t. These three types of decision rules cover a range of decision-

making behaviors roughly ordered from less to more sophisticated with regard to information

utilization, expectation formation, and forward-looking behavior. A summary description of these

decision-rule types is given in Table 1.

Agent Decision-Rule Type Decision-Rule Description

Consumer Reactive Learner (RL) Adaptively updates decisions in response to
realized utility outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to maximize
expected intertemporal utility

Explicit Optimizer (EO) Maximizes expected intertemporal utility using
adaptively updated probabilities

Firm Reactive Learner (RL) Adaptively updates decisions in response to
realized pro�t outcomes

Forward-Looking Learner (FL) Uses Q-learning in an attempt to maximize
expected intertemporal pro�t

Explicit Optimizer (EO) Maximizes expected intertemporal pro�t using
adaptively updated probabilities

Table 1: Types of decision rules for consumers and �rms in the DM Game.

The construction of the decision domains and the state-conditioned transformation functions for

consumers and �rms is explained more carefully in Section 4.2 and Section 4.3. Detailed descrip-

tions of the three decision-rule types RL, FL, and EO listed in Table 1 are provided in Section 4.4

through Section 4.6.

4.2 Decision Domain and Transformation Function for Consumers

The decision domain Dc for each consumer i at the start of each period t is given by a cross-product

of �nite sets having the form

Dc = Lc ⊗ Ω⊗Θ (13)

where:

� Lc = {0, 1}

� the elements of Ω = {ω1, . . . , ωG} satisfy 0 < ω1 < . . . < ωG

� the elements of Θ = {θ1, . . . , θH} satisfy 0 ≤ θ1 < . . . < θH ≤ 1
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Consumer i selects a decision d = (lc, ω, θ) from Dc at each time t ≥ 0 by means of its particular

RL, FL, or EO decision rule. The selection of d at time t is then transformed into a sequence

TRc
i,t(d) of labor supply and goods demand functions (lci,r:1(w, d, t), qci,r:3(p, d, t))r≥t, parameterized

by d and conditional on consumer i's time-t state.

Speci�cally, the labor supply lci,r:1(w, d, t) as a function of the time-r:1 labor market wage w is

determined as follows. If lc = 0, then lci,r:1(w, d, t) = 0 for all wages w, meaning that consumer

i does not plan to participate in the time-r:1 labor market. On the other hand, if lc = 1, the

reservation wage of consumer i for the time-r:1 labor market, calculated from the vantage point

of the current time t, is given by

wci,r:1(d, t) = ω · Ei,t[wr:1] (14)

where Ei,t[wr:1] denotes the time-r:1 labor market wage expected by consumer i, based on his state

at time t.6 The parameter ω in (14) determines the scale of each consumer's reservation wage

relative to his expected wage.

The reservation wage wci,r:1(d, t) in (14) has the standard meaning that it is the lowest wage

that consumer i expects at time t to be willing to accept for his o�ered labor at time r:1. If

w < wci,r:1(d, t), then lci,r:1(w, d, t) = 0, meaning that consumer i does not plan to participate in

the time-r:1 labor market at the labor market wage w. On the other hand, if w ≥ wci,r:1(d, t), then

lci,r:1(w, d, t) = 1, meaning that consumer i plans to o�er his 1 unit of labor into the time-r:1 labor

market at the labor market wage w.

Also, the goods demand qci,r:3(p, d, t) as a function of the time-r:3 goods market price p takes the

form

p · qci,r:3(p, d, t) = θ ·M c
i,r−1 (15)

Thus, consumer i plans in period t to spend a fraction θ of his time-r money balance M c
i,r−1 on

consumption goods at time r:3, and he speci�es his time-r:3 goods demand as a function of the

time-r:3 market price p in accordance with this plan. Note that M c
i,r−1 will be known to consumer

i at time r, prior to the opening of the goods market at time r:3.7

The decision domain Dc depends on the grid speci�cations for Ω and Θ; these grid speci�cations

are explained in Appendix A. The transformation function TRc
i,t depends on the wage expectation

in (14). The method used by consumers to form and update their wage expectations is explained

in Appendix B.

6Without loss of generality, the reservation wage (14) could be expressed in real terms by dividing each side of
(14) by the expected goods price at time r:1, where this price expectation is formed at the current time t.

7Recall that consumer i receives no money payments between time r (the start of period r) and the settlement
of labor market contracts at time r:4. Thus, consumer i's purchases in the time-r:3 goods market cannot exceed
his money balance M c

i,r−1 at time r.
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4.3 Decision Domain and Transformation Function for Firms

The decision domain Df for each �rm j at the start of each period t is given by a cross-product of

�nite sets having the form

Df = Lf ⊗ Γ⊗ Λ⊗Ψ (16)

where:

� the elements of Lf = {lf1 , . . . , l
f
L} satisfy 0 ≤ lf1 < . . . < lfL

� the elements of Γ = {γ1, . . . , γM} satisfy 0 < γ1 < . . . < γM

� the elements of Λ = {λ1, . . . , λN} satisfy 0 < λ1 < . . . < λN

� the elements of Ψ = {ψ1, . . . , ψR} satisfy 0 ≤ ψ1 < . . . < ψR ≤ 1

Firm j selects a decision d = (lf , γ, λ, ψ) from Df at each time t ≥ 0 by means of its particular RL,

FL, or EO decision rule. The selection of d at time t is then transformed into a sequence TRf
j,t(d)

of labor demand and goods supply functions (lfj,r:1(w, d, t), qfj,r:3(p, d, t))r≥t, parameterized by d and

conditional on �rm j's time-t state.

Speci�cally, the labor demand lfj,r:1(w, d, t) as a function of the time-r:1 labor market wage w is

determined as follows. If lf = 0, then lfj,r:q(w, d, t) = 0 for all w, meaning that �rm j does not

plan to participate in the time-r:1 labor market. If lf > 0, the reservation wage of �rm j for the

time-r:1 labor market is given by

wfj,r:1(d, t) = γ · Ej,t[wr:1] (17)

where Ej,t[wr:1] denotes the time-r:1 labor market wage expected by �rm j, based on its state at

time t.8 The parameter γ in (17) determines the scale of �rm j's reservation wage relative to its

expected wage.

The reservation wage (17) has the standard meaning that it is the highest wage that �rm j expects

at time t to be willing to pay for its demanded labor at time r:1. If w > wfj,r:1(d, t), then lfj,r:1(w, d, t)

= 0, meaning that �rm j does not plan to participate in the time-r:1 labor market at the labor

market wage w. On the other hand, if w ≤ wfj,r:1(d, t), then lfj,r:1(w, d, t) = lf , meaning that �rm j

plans to demand lf units of labor in the time-r:1 labor market at the labor market wage w.

Also, the goods supply qfj,r:3(p, d, t) as a function of the time-r:3 goods market price p is determined

as follows. The reservation goods price of �rm j for the time r:3 goods market is given by

pfj,r:3(d, t) = λ · Ej,t[pr:3] (18)

8Without loss of generality, the reservation wage (17) could be expressed in real terms by dividing each side of
(17) by the expected goods price at time r:1, where this price expectation is formed at the current time t.
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where Ej,t[pr:3] denotes the time-r:3 goods market price expected by �rm j, based on its state at

time t. The parameter λ in (18) determines the scale of each �rm's reservation goods price relative

to its expected goods price.

The reservation price (18) has the standard meaning that it is the lowest price that �rm j expects

at time t to be willing to accept for its supplied goods at time r:1. If p < pfj,r:3(d, t), then

qfj,r:3(p, d, t) = 0, meaning that �rm j does not plan to participate in the time-r:3 goods market at

the goods market price p. On the other hand, if p ≥ pfj,r:3(d, t), then

qfj,r:3(p, d, t) = ψ · qstockj,r:2 (19)

That is, �rm j plans to supply a fraction ψ of its time-r:2 goods stock into the time-r:3 goods

market at the goods market price p. The parameter ψ in (19) determines the scale of each �rm's

goods supply relative to its current stock of goods. Note that qstockj,r:2 will be known to �rm j at time

r:2, prior to the opening of the goods market at time r:3.

The decision domain Df depends on the grid speci�cations for Lf , Γ, Λ, and Ψ; these grid spec-

i�cations are explained in Appendix A. The transformation function TRf
j,t depends on the wage

expectation in (17) and the price expectation in (18). The method used by �rms to form and

update their wage and price expectations is explained in Appendix B.

4.4 RL Decision Rule for Consumers and Firms

Reinforcement learning embodies the basic common-sense principle that the propensity to select

relatively good decisions should be reinforced and the propensity to select relatively poor decisions

should be discouraged. Immediate rewards �owing from decisions are typically used to update the

propensities for choosing these decisions in an appropriate up or down direction.

The reinforcement learning (RL) decision rule used for consumers and �rms in the DM Game is

an RL algorithm developed by Nicolaisen et al. (2001). This algorithm is referred to as Modi�ed

Roth-Erev Reinforcement Learning (MRE-RL) because it introduces modi�cations to correct for

two potentially problematic aspects of an RL algorithm originally developed by Roth and Erev

(1995) and Erev and Roth (1998).9 The RL decision rule is reactive in the sense that it asks the

following backward-looking question: Given past events, what decision should I make now?

For the DM Game, the immediate reward Rc
i (d, t) received by a consumer i as a result of selecting

a decision d in Dc at the start of any period t is taken to be consumer i's realized period-t utility.

Similarly, the immediate reward Rf
j (d, t) received by a �rm j as a result of selecting a decision d

in Df at the start of any period t is taken to be �rm j's realized period-t pro�t.

9As detailed in Nicolaisen et al. (2001), the two problematic aspects of the original Roth-Erev RL algorithm are
solution degeneracy for some parameter con�gurations and no updating of relative choice propensities in response
to zero-reward outcomes.
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Below we explain the RL decision rule for an arbitrary decision-maker v who selects a decision d

from a �nite decision domain D in each period t, receiving an immediate reward R(d, t), where v

could represent either a consumer or a �rm in the DM Game. Let the �nite cardinality of D be

denoted by D, and let the elements of D be indexed by d = 1, . . . ,D.

Suppose it is the start of the initial period 0, prior to decision selection, and suppose decision-maker

v must select a decision from its decision domain D for period 0. Suppose the initial propensity

of v to select decision d in D at time 0 is exogenously given by q(d, 0) for d = 1, . . . ,D. Let the
vector of these initial propensities be denoted by q(0) = (q(1, 0), . . . , q(D, 0)).

Now suppose it is the start of any period t ≥ 0, prior to decision selection, and suppose the current

propensity of decision-maker v to select decision d in D is given by q(d, t) for d = 1, . . . ,D. The
choice probabilities that v uses to select a decision for period t are then constructed from these

propensities as follows:

Prob(d, t) =
exp(q(d, t)/C)∑D
k=1 exp(q(k, t)/C)

, d = 1, . . . ,D (20)

In (20), C is a cooling parameter that a�ects the degree to which v makes use of propensity values

in determining his choice probabilities. As C → ∞, then Prob(d, t) → 1/D, so that in the limit

v pays no attention to propensity values in forming his choice probabilities. On the other hand,

as C → 0, the choice probabilities (20) become increasingly peaked over the particular decisions d

having the highest propensity values q(d, t), thereby increasing the probability that these decisions

will be chosen by v.

At the end of period t, the current propensity q(d, t) that decision-maker v associates with each

decision d in D is updated in accordance with the following rule. Let dt in D denote the decision

that v actually selected and implemented during period t. Also, let R(dt, t) denote the reward

attained by v at the end of period t as a result of the implementation of dt. Then, for each decision

d in D,

q(d, t+ 1) = [1− ρ]q(d, t) + Response(d, t) , (21)

where

Response(d, t) =


[1− e] ·R(dt, t) if d = dt

e · q(d, t)/[D − 1] if d 6= dt

(22)

Note d 6= dt implies D ≥ 2. The recency parameter ρ ∈ [0, 1] appearing in (21) controls the relative

weighting of past versus current rewards in the updating of the propensities. The experimentation

parameter e ∈ [0, 1) appearing in (22) permits reinforcement to spill over from a chosen decision

to other decisions to encourage experimentation with various decisions in the early stages of the
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learning process.10

In summary, the RL decision rule is fully characterized once values are speci�ed for the vector of

parameter values (D,q(0), C, e, ρ). Note that the RL decision rule is well-de�ned for any decision

domain with �nite cardinality D; the exact form of the decisions constituting this decision domain

is irrelevant. Note, also, that the decision-maker does not need to know his reward function;

the RL decision rule only makes use of realized rewards, not potential rewards. The versatility

and low-information requirements of the RL decision rule, together with its demonstrated robust

performance in diverse situations, have led to its widespread use in learning applications.

4.5 FL Decision Rule for Consumers and Firms

The forward-looking (FL) decision rule used for consumers and �rms in the DM Game is a �greedy�

variant of the Q-learning algorithm developed by Watkins (1989) that permits decisions to be taken

in accordance with dynamic programming policy functions in approximate form. The FL decision

rule is forward looking in the sense that it asks the following anticipatory question: If I make this

decision now, what will happen in the future?

The key conceptual construct underlying Q-learning (and stochastic dynamic programming in

general) for a decision-maker v is the value function Vt(x), de�ned to be the optimum expected

total reward that can be obtained by v, starting at time t in state x. An important derived

conceptual construct is then the policy function expressing the optimal decision for v as a function

of the time t and state x. Below we provide an intuitive derivation of ε-greedy Q-learning as a

policy-function approximation method, without consideration of technical details regarding the

existence and uniqueness of optimal solutions.

Suppose a decision-maker v is in state x at some current time t. Suppose v implements a decision

d, observes a random event realization ω, obtains an immediate reward Rt(x, d, ω), and transits

to a new state x′ = St(x, d, ω). Then the best that v can do, starting from time t+ 1, is Vt+1(x′).

Consequently, letting E[·] denote expectation with respect to the random event ω, the best that v

10The use of q(d; t) in the response (22) in place of R(dt, t) is a key modi�cation of the original Roth-Erev RL
algorithm that was introduced by Nicolaisen et al. (2001) in order to correct a potentially serious �zero reward-zero
updating� feature of the original algorithm. With R(dt, t) in place of q(d; t) in (22), if a selected action dt results in
a reward R(dt, t) = 0, then the Response(d, t) in (22) is zero. This implies that the choice propensities q(d, t) in (21)
are uniformly changed by a factor of [1−ρ], hence their relative sizes are unchanged. As reported in Nicolaisen et al.
(2001), this failure to update the relative sizes of the choice propensities in response to zero-reward outcomes can
result in a substantial loss of market e�ciency in auction markets because participants whose bids and o�ers fail to
clear do not learn from their mistakes. The use of q(d; t) in (22) ensures that any selected action dt with a positive
propensity that results in a reward R(dt; t) = 0 will have its propensity (hence choice probability) reduced relative
to other actions with positive propensities, thus encouraging the decision-maker to move away from zero-reward
actions towards better actions.
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can do, starting in state x at time t, is

Vt(x) = max
d
E [Rt(x, d, ω) + βVt+1(St(x, d, ω))] (23)

Finally, let d∗(t, x) denote the optimal policy function expressing the optimal decision d in (23) as

a function of the current time t and state x. Then (23) can equivalently be written as

Vt(x) = E [Rt(x, d
∗(t, x), ω) + βVt+1(St(x, d

∗(t, x), ω)] (24)

The recursive relationships (23) and (24) provide simple illustrations of Richard Bellman's cele-

brated principle of optimality for stochastic dynamic programming problems. As detailed in Powell

(2011, 2014), one practical di�culty is how to compute the value function Vt(x) and the optimal

policy function d∗(t, x). Another practical di�culty is that the reward function Rt(x, d, ω) and/or

the state transition function St(x, d, ω) might not be known.

The Q-learning method provides a way to implement decisions in approximate accordance with

optimal policy functions for certain classes of decision problems. Below we provide a simple

exposition of Q-learning that is applicable for the DM Game.

Suppose a decision problem has an in�nite planning horizon, random events ω are governed by

a stationary probability distribution, and the reward, state transition, and value functions have

time-invariant forms R(w, d, ω), S(x, d, ω), and V (x). For each state x and decision d, de�ne

Q(x, d) = E [R(x, d, ω) + βV (S(x, d, ω))] (25)

where the expectation in (25) is taken with respect to the stationary probability distribution

governing ω. If the Q-values in (25) can be learned, then the optimal policy function d∗(x) is

determined as follows: For any state x,

d∗(x) = arg max
d

Q(x, d) (26)

Hence, the learning of the Q-values in (25) avoids the need for separate learning or knowledge of

the reward, state transition, and value functions.

In its simplest form, Q-learning uses the following iterative procedure to determine estimates

Q̂(x, d) for the Q-values Q(x, d) in (25), conditional on a user-speci�ed recency parameter α and

a user-speci�ed discount factor β:

Step 1: Initialize Q̂(x, d) to a random value for each possible state x and decision d.

Step 2: Observe an actual state x′.
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Step 3: Pick a decision d′ and implement it.

Step 4: Observe the next state x
′′
and the next reward R

′′
.

Step 5: Update the estimate Q̂(x′, d′) as follows:

Q̂(x′, d′) ← [1− α]Q̂(x′, d′) + α
[
R
′′

+ βmax
d
Q̂(x′′ , d)

]
(27)

Step 6: Loop back to Step 2 and repeat.

The above procedure does not specify how the decision in Step 3 is to be picked. Let ε be any

number in (0, 1). The ε-greedy variant of Q-learning replaces the above Step 3 with an alternative

Step 3′ incorporating a speci�c decision selection process that accommodates two goals: (i) Exploit

current information for maximum possible current gain; and (ii) seek new information to improve

opportunities for future gains. This decision selection process is as follows: With probability ε

the decision-maker v in Step 3′ experiments by selecting a random decision d′. However, with

probability [1− ε] the decision-maker v instead �greedily� chooses a decision d̂ that maximizes the

current estimator Q̂(x′, d) for Q(x′, d).

In summary, the ε-greedy Q-learning method for a decision-maker v is fully characterized once

values are speci�ed for the initial Q-value estimates Q̂(x, d) and the three parameters (α, β, ε).

4.6 EO Decision Rules for Consumers and Firms

Each EO agent (consumer or �rm) at the start of each period t ≥ 0 attempts to maximize an

explicit expression for their expected reward (utility or pro�t) over current and future periods

r ≥ t, subject to constraints. The EO agents use a combined open-loop/closed-loop optimization

approach in the following sense: They undertake their maximization problems in each period t

conditional on updated state information, yet in these maximizations they ignore the fact that

they will re-optimize their decision selections at the start of each future period r > t. They also

ignore that rationing can occur on the margin in the market clearing processes.

Speci�cally, at the start of each period t ≥ 0 an EO consumer i selects a decision d in Dc that

maximizes his expected intertemporal utility over current and future periods r ≥ t. In this

maximization, consumer imakes use of the transformation function TRc
i,t(d) detailed in Section 4.2

to map each possible decision d in Dc at time t into a collection of current and future labor supply

and goods demand functions (lci,r:1(w, d, t), qci,r:3(p, d, t))r≥t.

Formally stated, an EO consumer i's maximization problem at the start of each period t ≥ 0 takes

the following form:

max
d∈Dc

Ei,tUt(TR
c
i,t(d),wt:1,pt:3) (28)
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subject to the budget and feasibility constraints (1)-(4) for r ≥ t, where

wt:1 = (wr:1)∞r=t (29)

pt:3 = (pr:3)∞r=t (30)

divt:5 = (divr:5)∞r=t (31)

and

Ut(TR
c
i,t(d),wt:1,pt:3) =

∞∑
r=t

βr−t
[
u
(
qci,r:3(pr:3, d, t), 1− lci,r:1(wr:1, d, t)

)]
(32)

Similarly, an EO �rm j's maximization problem at the start of each period t ≥ 0 takes the following

form:

max
d∈Df

Ej,tΠt(TR
f
j,t(d),wt:1,pt:3) (33)

subject to the technological and feasibility constraints (6)-(11) for r ≥ t, where wt:1 and pt:3 are

de�ned as in (29) and (30), and

Πt(TR
f
j,t(d),wt:1,pt:3) =

∞∑
r=t

µr−t
[
pr:3q

f
j,r:3(pr:3, d, t)− wr:1lfj,r:1(wr:1, d, t)

]
(34)

As explained in Appendix B, the expectations in the maximization problems (28) and (33) for

each period t are based on estimated probability distributions for future labor market wages,

future goods market prices, and future dividend payments (for consumers), conditional on the

states of consumer i and �rm j at time t.

As explained in Appendix C, approximate solutions for the maximization problems (28) and (33)

are derived using two di�erent decision rules. Brie�y summarized, the �rst decision rule, referred

to as the EO Adaptive Dynamic Programming (EO-ADP) decision rule, derives an approximate

solution in each period t by solving a stochastic dynamic programming recurrence relation, assum-

ing a basis-function approximation for the value function. The second decision rule, referred to

as the EO Finite Horizon (EO-FH) decision rule, replaces the in�nite planning horizon in each

period t with a �nite planning horizon of length T , called the forecasting horizon, and then derives

an approximate solution by means of direct search across the decision domain.

5 Social Planner Benchmark Model

In order to report comparative performance outcomes for our tested decision-rule combinations,

it is desirable to have a benchmark model with a provably unique optimal solution against which

the performance of each combination can be compared. This section explains our construction of

a social planner model for this purpose.
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As detailed in Section 3, in the DM Game all consumers are structurally identical at the initial

time 0 and all �rms are structurally identical at the initial time 0. Moreover, there are no external

shocks. In consequence, heterogeneity among consumers and among �rms only arises endogenously,

over time, as a result of their market participations.

All sources of uncertainty for the DM Game thus disappear if market decision-making by consumers

and �rms is replaced by a social planner who maximizes the intertemporal utility of a representative

consumer subject only to technological feasibility constraints, conditional on the restriction that

the structurally-identical consumers must all be treated alike and the structurally-identical �rms

must all be treated alike. The resulting model, hereafter referred to as the Social Planner (SP)

Benchmark Model, is introduced here in order to have a benchmark of comparison for the DM-

Game simulation �ndings reported in Section 7.

Speci�cally, suppose the number I of DM-Game consumers and the number J of DM-Game �rms

are arbitrary positive integers, and let qstock−1 ≥ 0 denote the exogenously given goods stock of each

�rm at the start of period 0. We consider a social planner who solves the following social welfare

optimization problem at time 0 on behalf of the representative DM-Game consumer:11

max
∞∑
t=0

βtu(qct:3, 1− lct:1) (35)

with respect to {lct:1, qct:3}∞t=0, subject to the following constraints for each t ≥ 0:

J · qstockt = J · qstockt−1 + J · F (lft:1) − I · qct:3 (36)

lft:1 =
I · lct:1
J

0 ≤ qstockt , qct:3

lct:1 ∈ {0, 1}

To obtain a concrete SP Benchmark Model solution, we assume that the utility function u(·) in

(35) takes the form

u(q, 1− l) = δc0 · ln (b(q) + q) + δc1 · [1− l] (37)

where12

11Given the exponential form of the discount factor in (35), the social planner would exhibit time consistency,
meaning that re-optimization in successive periods would not result in any deviation from the optimal solution
determined at time 0.

12In order to permit consumers to constructively compare consequences for failure to participate in the goods
market, the valuation they place on failure to participate needs to be �nite. As will be seen in Section 7, the
advantage of introducing the discontinuous valuation function b(q) in (38) is that a consumer's utility takes on a
negative value only if he fails to participate in the goods market, thus providing an easily detected signal of this
non-participation.
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b(q) =

1.0 if q > 0

b ∈ (0, 1) if q = 0
(38)

Also, the production function F (·) in (36) is assumed to take the form

F (l) = δf0 l
δf1 (39)

We further assume that the values speci�ed for the parameters appearing in this SP Benchmark

Model are as listed in Table 2. Finally, for each t ≥ −1 we let

sstockt ≡ J · qstockt

I
(40)

denote the per-consumer amount of goods stock carried forward from period t to period t+ 1.

Parameter Value

qstock−1 0.0
β 0.95
δc0 3.0
δc1 0.5
b 0.5

δf0 1.0

δf1 1.0

Table 2: Maintained parameter values for the SP Benchmark Model and the DM Game

Given these concrete speci�cations, the SP Benchmark Model (35) can be expressed in the following

reduced representative-consumer form:

max
∞∑
t=0

βt
[
3.0 · ln(b(qct:3) + qct:3) + 0.5 · (1− lct:1)

]
(41)

with respect to {lct:1, qct:3}∞t=0, subject to the following constraints for each t ≥ 0:

sstockt = sstockt−1 + lct:1 − qct:3

0 ≤ sstockt , qct:3

lct:1 ∈ {0, 1}

sstock−1 = 0 (42)

The optimal solution of the reduced SP Benchmark Model (41) is a full-employment solution with

lct:1 = qct:3 = 1 and sstockt = 0 for all t ≥ 0. The proof, by induction, is provided in Appendix D.
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Given this optimal solution, the representative consumer attains the stationary per-period utility

level

u(1, 0) = [3.0 · ln(2)] ≈ 2.08 (43)

and the intertemporal utility level

∞∑
t=0

βtu(1, 0) =
∞∑
t=0

[0.95]t3.0 · ln(2) = 3.0 · ln(2)
1

1− 0.95
≈ 41.59 (44)

Note that the smallest single-period utility outcome that a representative consumer can feasibly

attain under the SP Benchmark Model assumptions is u(0, 0) = 3.0 · ln(0.5) ≈ −2.08.

6 Sensitivity Design

6.1 Design Overview

The main focus of this study is the degree to which consumers in the DM Game are able to attain

optimal utility outcomes when the DM-Game consumers and �rms use di�erent combinations of

locally-constructive decision rules. The tested decision-rule combinations for consumers (C) and

�rms (F), identi�ed by assigned case numbers Nk, are displayed in Table 3.

C:RL C:FL C:EO-FH C:EO-ADP
F:RL N1−N10 N21 N31 N39
F:FL N22 N11−N20 N32 N40
F:EO-FH N33 N34 N23−N30 N41
F:EO-ADP N42 N43 N44 N35−N38

Table 3: Tested combinations of locally-constructive decision rules

For each of the forty-four cases in Table 3, the utility functions, production functions, initial goods

stocks, initial money balances, and initial demand/supply decisions of the consumers and �rms

were set the same for the Social Planner (SP) Benchmark Model developed in Section 5 and for

the DM Game. In particular, the parameter value settings listed in Table 2 for the SP Benchmark

Model were also adopted as �xed parameter settings for the DM Game.

Given these common speci�cations, the unique optimal solution for the SP Benchmark Model is

also the unique optimal solution for consumers in the DM Game.13 Any DM Game-departures

from optimality can be attributed solely to the fact that DM-Game outcomes are determined by

13Recall from Section 5 that the optimal solution for the SP Benchmark Model is expressed in stationary per-
capita form for arbitrary positive numbers of consumers and �rms. Consequently, it remains the optimal solution
for the DM Game even if some �rms become bankrupt and are forced to exit the DM-Game economy.
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the locally-constructive decisions of imperfectly informed consumers and �rms over time rather

than by the intertemporal decisions of a perfectly-informed social planner at the initial time 0.

For each decision-rule case in Table 3, certain key decision-rule parameters were selected as

treatment factors while all other parameters were maintained at �xed values. Combinations of

treatment-factor values were then selected for testing. For each combination of interest, the num-

ber of runs was set at NRuns=10 (corresponding to 10 seed values for pseudo-random number

generation) to control for stochastic e�ects.14 The length of each run was set to LRun= 1000

periods. To reduce dependence on transient e�ects, outcomes from the �rst LOmit=50 periods in

each run were omitted from all calculated performance metrics.

6.2 Performance Metrics

DM-Game �rms are corporate entities for the facilitation of production. Hence, for the most part,

our performance metrics focus on utility outcomes for the DM-Game consumers.

Since di�erent cases involve di�erent planning-horizon lengths, the main ex post performance

metric used for each case Nk in Table 3 is average realized single-period utility ūk, bounded above

and below by two standard deviations σūk . Other ex post performance metrics used to report results

include the average realized single-period utility for period t, denoted by ūkt , the average realized

cumulative utility through period t, denoted by ūcumul,kt , the average realized real market-clearing

wage, denoted by w̄real,k, the average realized real market-clearing wage for period t, denoted by

w̄real,kt , and average realized single-period pro�ts, denoted by π̄k.

The precise calculation for each of these performance metrics is given in Appendix E.

6.3 Structural Parameter Values Maintained for All Cases

As detailed in Section 3.4, the constraints and goals of the I consumers in the DM Game depend

commonly on the speci�c settings for (M c
−1, u(·), β) at the initial time 0. Also, as detailed in

Section 3.5, the constraints and goals of the J �rms in the DM Game depend commonly on

the speci�c settings for (M f
−1, q

stock
−1 , F (·), µ, κdiv) at the initial time 0. All of these functions and

parameters have �xed speci�cations for all cases reported in this study. The utility and production

function speci�cations u(·) and F (·), plus the values of β and qstock−1 , are set the same as in Section 5

for the SP Benchmark Model, and the values for the remaining parameters are set as in Table 4.

14Speci�cally, these ten seed values were as follows: {2012, 2013, 2014, 1, 2, 3, 100, 101, 102, 345}.
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Parameter Value

I 10
J 3
M c
−1 1.00

M f
−1 10.00
µ 0.95
κdiv 0.50

Table 4: Maintained parameter values for the constraints and goals of consumers and �rms

The transformation function TRc
it for consumer i in period t postulates that consumer i calculates

at time t a reservation wage (14) for each current and future period r ≥ t, which in turn depends

on consumer i's expectation for the wage in periods r ≥ t. Similarly, the transformation function

TRf
j,t for �rm j in period t postulates that �rm j at time t calculates a reservation wage (17) and

a reservation goods price (18) for each current and future period r ≥ t, which in turn depend on

�rm j's expectations for the wage and goods price in periods r ≥ t.

As detailed in Appendix B, the methods used by the consumers and �rms to form and update these

wage and goods price expectations in each period t depend on these agents' prior beliefs regarding

wages and goods prices, and also on their memory length, i.e., the number of past periods they take

into account when forming these expectations. The prior-belief parameters are set at maintained

values, given in Table 16. However, as will be clari�ed below in Section 6.5, two di�erent settings

are tested for the memory length.

6.4 Parameter Values Maintained for Each Decision Rule

The decision domain Dc in (13) for each consumer i depends on the grid speci�cations for Ω and

Θ. Also, the decision domain Df in (16) for each �rm j depends on the grid speci�cations for

Lf , Γ, Λ, and Ψ. As detailed in Tables 12 through 15 in Appendix A, two di�erent forms are

considered for these grid speci�cations: namely, a small form and a big form.

The RL decision rule described in Section 4.4, based on the MRE-RL algorithm developed in

Nicolaisen et al. (2001), is characterized by the vector of parameter values (D,q(0), C, e, ρ). The

recency parameter ρ plays a key role in the determination of performance in many previous RL

applications, e.g., the work of Roth and Erev cited in Section 4.4. Consequently, we focus attention

on ρ as a treatment factor for the RL decision rule.

The maintained values for the remaining RL parameters are set as follows. The parameter D is the

cardinality of the decision domain Dc for an RL consumer or Df for an RL �rm. This cardinality

is determined by the grid-type speci�cation for Dc or Df , which is always set to small for an RL

consumer or RL �rm. The vector q(0) of initial propensities has dimension D. This vector is set
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equal to a �xed vector qc,∗ for an RL consumer and to a �xed vector qf,∗ for an RL �rm, where

these �xed vectors are de�ned as follows. For an RL consumer, the initial propensity assigned by

qc,∗ to a decision dc = (lc, ω, θ) ∈ Dc is 1.1 if lc = 1 and 1.0 otherwise. For an RL �rm, the initial

propensity assigned by qf,∗ to a decision df = (lf , γ, λ, ψ) ∈ Df is 1.1 if lf = lfL and 1.0 otherwise.

The cooling parameter C is set to 1.0. Finally, based on the results reported in Nicolaisen et al.

(2001) and subsequent MRE-RL studies, the experimentation parameter e is set to 0.95. These

maintained values are summarized in Table 5.

Parameter Value

grid-type small
q(0) qc,∗,qf,∗

C 1.00
e 0.95

Table 5: Maintained parameter values for RL decision rules

The FL decision rule described in Section 4.5, a �greedy� variant of Q-learning, is characterized by

the vector Q0 of initial Q-value estimates Q̂(x, d) and the parameter vector (α, β, ε). To facilitate

comparisons with the RL decision rule, we select the recency parameter α to be a treatment factor

for the FL decision rule.

The state-space for each FL agent is discretized in order to keep computational solution-times

manageable. The state xi,t of an FL consumer i at each time t ≥ 0 is given by his time-t money

balance M c
i,t−1, discretized into the following three bins: [0.0, 5.0),[5.0, 10.0), [10.0,∞). The state

xj,t of an FL-�rm j at each time t ≥ 0 consists of its time-t money balance M f
t−1 and its time-t

goods stock qstockt , each also discretized into three bins, as follows: for the money balance, [0.0, 50.0),

[50.0, 100.0), [100.0,∞); and for the goods stock, [0.0, 5.0),[5.0, 10.0), [10.0,∞).

The maintained parameter values for the FL decision rule are then set as follows. The vector Q0

is set equal to a �xed vector Qc,∗ for an FL consumer and to a �xed vector Qf,∗ for an FL �rm.

For an FL consumer, the initial Q-value estimate assigned by Qc,∗ to a state-decision pair (x, dc),

where dc = (lc, ω, θ) ∈ Dc, is 0.5 if lc = 1 and 0.0 otherwise. For an FL �rm, the initial Q-value

estimate assigned by Qf,∗ to a state-decision pair (x, df ), where df = (lf , γ, λ, ψ) ∈ Df , is 0.5 if

lf = lfL and 0.0 otherwise. Finally, the Q-learning discount parameter β is set to 0.95 and the

greedy parameter ε is set to 0.10. These maintained values are summarized in Table 6.

Parameter Value

grid-type small
Q0 Qc,∗,Qf,∗

β 0.95
ε 0.10

Table 6: Maintained parameter values for FL decision rules
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Maintained parameter values for the EO-ADP and EO-FH decision rules are provided in Appendix

C, together with detailed discussions of their formulations and implementations.

6.5 Tested Speci�cations for Case Treatment Factors

As detailed in Appendix A, two di�erent settings are tested for the decision-domain grid speci�-

cations: namely, a small setting and a big setting. Although a small grid-type is maintained for

both the RL and FL decision rules, both small and big grid-types are tested for EO agents.

As detailed in Appendix B, two di�erent settings are tested for the memory parameter wm used by

consumers and �rms to adaptively update their expectations. The �rst setting, wm=1, indicates

that consumers and �rms in each period t > 0 only make use of realizations from the previous

period t − 1 to form their expectations for periods r ≥ t. The second setting, wm=all, indicates

that consumers and �rms in each period t > 0 make use of realizations from all previous periods

{0, . . . , t− 1} to form their expectations for periods r ≥ t.

Note that all tested cases depend on the setting for wm. This dependence arises because, as

detailed in Sections 4.2 and 4.3, the transformation functions TRc
i,t and TRc

j,t mapping consumer

and �rm period-t decisions into collections of demand and supply functions for periods r ≥ t

depend on the wage, price, and dividend payment expectations of the consumers and �rms, which

in turn depend on wm.

For the cases listed along the diagonal in Table 3, the tested combinations of values for the

treatment-factor parameters are as shown in Tables 7 through 10. All cross-products of the listed

parameter values are tested.

Parameter Range of Values

ρ {0.05, 0.10, 0.5, 0.90, 0.95}
wm 1, all

Table 7: Treatment-factor values for the RL decision rules in Cases N1-N10

Parameter Range of values

α {0.05, 0.10, 0.50, 0.90, 0.95}
wm 1, all

Table 8: Treatment-factor values for the FL decision rules in Cases N11-N20

Parameter Range of values

T {5, 20}
wm 1, all

grid-type small, big

Table 9: Treatment-factor values for the EO-FH decision rules in Cases N23-N30
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Parameter Range of values

wm 1, all
grid-type small, big

Table 10: Treatment-factor values for the EO-ADP decision rules in Cases N35-N38

For the remaining cases in Table 3, the treatment-factor values are as shown in Table 11. Super-

scripts are used to indicate for which decision rule each treatment-factor value applies.

Parameter Value

ρRL 0.05
wmRL all
αFL 0.05
wmFL all
TEO−FH 20
wmEO−FH all

grid-typeEO−FH small
wmEO−ADP all

grid-typeEO−ADP small

Table 11: Treatment-factor values for Cases N21, N22, N31-N34, and N39-N44

7 Key Findings for the DM Game

7.1 Findings Overview

This section reports key �ndings for the forty-four DM-Game cases N1-N44 listed in Table 3.

Each case corresponds to a distinct setting of the treatment-factor values for this case's indicated

decision-rule combination.

An important point to keep in mind in interpreting these �ndings is that bankrupt �rms must exit

the DM-Game economy, and there is no mechanism for �rm entry. Consequently, the number of

�rms in each simulation run either stays the same or declines. It is therefore a very challenging

problem for the DM-Game economy to sustain good performance over long periods of time.

In particular, since consumer and �rm agents in the DM Game have no a priori information

regarding the form of the optimal SP Benchmark Model solution, they do not know that their

initially-set conditions are in fact optimal conditions. Consequently, departures from optimality

immediately begin to arise as the consumer and �rm agents start exploring their decision domains

in search of better utility and pro�t outcomes. These exploratory e�orts result in a highly non-

stationary environment that makes learning di�cult.
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As will be seen below, given some decision-rule combinations, the DM Game consumer and �rm

agents are able to learn their way back towards the optimal solution for the SP Benchmark Model

with full employment. This tends to occur more frequently when the agents have long memories

(wm=all), because long memories permit the agents to recall their initial utility and pro�t out-

comes when in fact their selected decisions were close to optimal. In such cases, good average

performance results.

Given other decision-rule combinations, however, the agents' early exploratory activities result in

�mistakes� that propagate throughout the DM-Game economy, causing a downward spiraling of

performance from which the economy does not recover. For example, some consumers and �rms

might make decisions that, given current market conditions, result in disastrous consequences for

them. Firms might become bankrupt, consumers might lose money, �rms might be unable to

secure workers, and consumers might be unable to �nd work. These bad outcomes then result

in further bad outcomes. The majority of cases for which performance is poor exhibit growing

unemployment and increasing divergence from the optimal SP Benchmark Model solution.

Overall, cases in which each consumer and �rm agent uses a rolling �xed-horizon EO-FH decision

rule tend to achieve better performance than cases in which these agents use RL, FL, and/or EO-

ADP decision rules. Unlike the RL decision rule, the EO-FH and EO-ADP decision rules entail

adaptive foresight. Unlike the RL and FL decision rules, the EO-FH and EO-ADP decision rules

exploit the structural form of the intertemporal optimization problems for consumers and �rms.

However, unlike the EO-ADP decision rule, the EO-FH decision rule relies on only one structural

approximation: a truncation of the planning horizon. In contrast, the EO-ADP decision rule relies

on the basis-function approximation of dynamic programming value functions.

Nevertheless, comparative performance is also seen to depend strongly on the speci�c settings for

the treatment-factor parameters. For example, all else equal, a long memory covering all previous

periods (wm=all) tends to result in better performance than a short memory covering only the

latest period (wm=1).

Sections 7.2 through 7.5 report �ndings obtained for the diagonal cases in Table 3, for which the

DM consumers and �rms all use the same type of decision rule. Section 7.6 reports �ndings for

the o�-diagonal cases in which mixed combinations of decision rules are used.

7.2 Findings for the Pure RL Cases N1-N10

Consider cases N1-N10 in Table 3, for which all DM-Game consumers and �rms use an RL decision

rule entailing reactive reinforcement learning. Each of these cases corresponds to a distinct setting

of the RL treatment factors (ρ, wm) in Table 7, taking as given the maintained parameter values

in Table 5.
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As seen in Section 4.4, the RL recency parameter ρ ∈ [0, 1] determines the weight [1 − ρ] that is

placed on accumulated past single-period utility outcomes relative to the weight [1− e] placed on

the most recent single-period utility outcome. Since e is set at the maintained value e = 0.95, a

reduction in ρ implies an increase in the weight placed on past utility outcomes relative to the

weight placed on the most recent utility outcome.

Figure 4 reports performance outcomes for cases N1-N10 in Table 3. The performance of each

case Nk is measured by average realized single-period utility ūk, and cases are reported from left

to right in ascending performance order.

Figure 4: Pure RL Cases N1-N10: Average realized single-period utility ūk with bounds of ± two
standard deviations σūk

Given the longer memory length wm=all, it is seen that smaller RL recency parameter values ρ

(i.e., larger weights on past utility outcomes) tend to result in better performance than larger ρ

values. Given a one-period memory length wm=1, however, a relatively low performance level

results for all ρ values. Moreover, even in the best-performing cases, performance is signi�cantly

below 2.08, the optimal stationary per-period utility level (43) obtained by the representative

consumer in the SP Benchmark Model

7.3 Findings for the Pure FL Cases N11-N20

Consider cases N11-N20 in Table 3, for which all DM-Game consumers and �rms use an FL decision

rule based on Q-learning. Each of these cases corresponds to a distinct setting of the FL treatment

factors (α,wm) in Table 8, taking as given the maintained parameter values in Table 6.
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As seen in Section 4.5, the FL recency parameter α ∈ [0, 1] determines the weight [1 − α] that is

placed on past Q-value estimates relative to the weight α placed on current and anticipated future

utility outcomes. Since these two weights sum to 1.0, a reduction in α implies an increase in the

weight placed on past utility outcomes relative to current and anticipated future utility outcomes.

Figure 5 reports performance outcomes for cases N11-N20 in Table 3. The performance of each

case Nk is measured by average realized single-period utility ūk, and cases are reported from left

to right in ascending performance order.

Figure 5: Pure FL Cases N11-N20: Average realized single-period utility ūk with bounds of ± two
standard deviations σūk

The best pure FL performance is achieved for the case in which the memory length wm is long

(wm=all) and the FL-recency parameter α is set at 0.90. Surprisingly, however, this best perfor-

mance is also nearly achieved for wm=all with α = 0.05 or α = 0.10. However, for each tested α

setting, performance improves as wm is increased from wm=1 to wm=all.

The implication we draw from these �ndings is that our performance metrics are not very sensitive

to the setting of the FL recency parameter α in the pure FL experiments conducted to date.

7.4 Findings for the Pure EO-FH Cases N23-N30

Consider cases N23-N30 in Table 3, for which all DM-Game consumers and �rms use an EO-FH

decision rule entailing explicit intertemporal optimization by means of a rolling �xed horizon.

Each of these cases corresponds to a distinct setting of the EO-FH treatment factors T , wm, and

grid-type in Table 9, taking as given the maintained parameter value NDrawsFH=10 discussed in

Appendix C.2.
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The length T of the forecasting horizon controls the extent to which an EO-FH agent is forward

looking. This anticipation could be bene�cial if the agent's anticipations are an accurate re�ection

of future uncertainties, but harmful if not. Restricting the number of potential decision selections

by specifying grid-type=small rather than grid-type=big increases the sampling density, i.e., the

frequency with which each potential decision is tried. On the other hand, grid-type=small results

in a cruder approximation of the decision domain, which could prevent an EO-FH agent from

determining a truly best decision.

Figure 6 reports performance outcomes for cases N23-N30 in Table 3. The performance of each

case Nk is measured by average realized single-period utility ūk, and cases are reported from left

to right in ascending performance order.

Figure 6: Pure EO-FH Cases N23-N30: Average realized single-period utility ūk with bounds of ±
two standard deviations σūk

Given a one-period memory length wm=1, performance is relatively low regardless of the grid-type

or the length T of the forecasting horizon. However, given a longer memory length wm=all, it is

seen that having a small grid-type results in better performance than a large grid-type.

Moreover, for wm=all and grid-type=small, the longer forecasting horizon T=20 yields slightly

better performance than the short forecasting horizon T=5. Indeed, as indicated by the standard

deviation bounds in Fig. 6, for this combination of treatment factors the average realized single-

period utility level ūkt attained in some periods t comes close to matching the optimal stationary

single-period utility level 2.08 achieved by the representative consumer in the SP Benchmark

Model. This occurs despite the rather simplistic Monte Carlo method used by EO-FH agents to

handle their uncertainty regarding future wages, prices and dividends.
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Given the relatively good performance of the EO-FH decision rule under some treatments, it is

interesting to delve deeper into the underlying dynamics. Time-series for utility and real wage

outcomes are depicted below for two illustrative cases: (i) a �good� case N26 with T=20, wm=all,

and grid-style=small ; and (ii) a �bad� case N29 with T = 20, wm=1, and grid-style=big.

For the �good� case N26, depicted in Fig. 7, the average realized single-period utility ū26
t eventually

stabilizes at a level of about 0.5. For the �bad� case N29, depicted in Fig. 8, the average realized

single-period utility ū29
t quickly stabilizes at a much lower level of about -1.0.

Figure 7: Pure EO-FH Case N26: Average realized single-period utility ū26
t for period t and average

realized cumulative utility ūcumul,26
t through period t, over successive periods t

Figure 8: Pure EO-FH Case N29: Average realized single-period utility ū29
t for period t and average

realized cumulative utility ūcumul,29
t through period t, over successive periods t

The behavior of average real market-clearing wages re�ects overall macroeconomic performance.

For the �good� case N26, it is seen in Fig. 9 that w̄real,26
t appears to be stabilizing at a level of
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about 0.30. In contrast, for the �bad� case N29, it is seen in Fig. 10 that w̄real,29
t rapidly drops

towards zero.

Figure 9: Pure EO-FH Case N26: Average realized real market-clearing wage w̄real,26
t for period t,

over successive periods t

Figure 10: Pure EO-FH Case N29: Average realized real market-clearing wage w̄real,29
t for period

t, over successive periods t

7.5 Findings for the Pure EO-ADP Cases N35-N38

Consider cases N35-N38 in Table 3, for which all DM-Game consumers and �rms use an EO-ADP

decision rule entailing explicit optimization via the approximation of dynamic programming value

functions. Each of these cases corresponds to a distinct setting of the EO-ADP treatment factors

wm and grid-type in Table 10, taking as given the maintained parameter values listed in Table 17.
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Figure 11: Pure EO-ADP Cases N35-N38: Average realized single-period utility ūk with bounds
of ± two standard deviations σūk

Figure 11 reports performance outcomes for these pure EO-ADP cases. The performance of each

case Nk is measured by average realized single-period utility ūk, and cases are reported from left

to right in ascending performance order.

EO-ADP performance is clearly better with a longer memory length (wm=all) than with a one-

period memory length (wm=1). Moreover, given a longer memory, performance is slightly better

with grid-style=big in comparison with grid-style=small. Overall, however, a low performance

level is attained for all tested settings of the EO-ADP treatment factors in comparison with the

overall performance attained using the RL, FL, and EO-FH decision rules.

7.6 Findings for Mixed Combinations of Decision Rules

From a social welfare point of view, it is only consumer utility outcomes that matter in the DM

Game. However, the players in the DM Game are utility-seeking consumers and pro�t-seeking

�rms, where the latter act on behalf of their shareholders (who receive their pro�ts as dividend

payments) but not consciously on behalf of consumer welfare per se. Consequently, it is of interest

to construct consumer and �rm payo� matrices for the DM Game, interpreting the decision rules

RL, FL, EO-FH, and EO-ADP as possible pure strategy choices for these players.

We therefore tested the o�-diagonal cases in Table 3 representing mixed combinations of decision

rules. We then used the performance outcomes obtained for these o�-diagonal cases together with

the performance outcomes obtained for the diagonal cases to construct DM-Game payo� matrices,

one for consumers and one for �rms, under the restriction that all consumers use the same decision

rule and all �rms use the same decision rule.
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The consumer payo� matrix, depicted in Fig. 12, reports the average realized single-period utility

ūk attained by consumers for each indicated case Nk, with darker shades of color corresponding

to higher values of ūk. The �rm payo� matrix, depicted in Fig. 13, reports the average realized

single-period pro�ts π̄k attained by �rms for each indicated case Nk, with darker shades of color

corresponding to higher values of π̄k.

It is important to note the following non-standard aspect of these payo� matrices. For each

pairing of consumer and �rm decision rules along the diagonals, the treatment-factor parameters

are selected in an attempt to permit each agent type to do as well as possible in this pairing.

This is re�ected in the fact that, in contrast to Table 3, only single cases are considered along the

diagonals.

As seen from the �rm payo� matrix in Fig. 13, EO-FH is a dominant strategy for �rms, given

the particular case selections and treatment-factor speci�cations used to form this payo� matrix.

Interestingly, as seen from the consumer payo� matrix in Fig. 12, this is not true for consumers.

For example, the best response of consumers to a �rm choice of FL is to choose FL, not EO-FH.

Nevertheless, it is also seen from these two payo� matrices that (F:EO-FH, C:EO-FH) is a Pareto

optimal Nash equilibrium

Figure 12: Consumer payo� matrix for the DM Game reporting average realized single-period
utility ūk for the indicated cases Nk. A darker shade of color indicates a higher value for ūk.
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Figure 13: Firm payo� matrix for the DM Game reporting average realized single-period pro�ts
π̄k for the indicated cases Nk. A darker shade of color indicates a higher value for π̄k.

8 Conclusion

In studies involving a single learning agent operating in a stochastic environment, the form of

learning that is best for this agent will depend strongly on whether the stochastic properties of the

environment are stationary or non-stationary. Long memories are typically found to be desirable

in stationary environments but not necessarily in non-stationary environments.

However, in multi-agent learning situations such as the DM Game, additional considerations com-

plicate the determination of optimal learning rules. Even if the physical and institutional environ-

ment is stationary in terms of its stochastic properties, the presence of other learning agents can

induce non-stationarity in the learning environment.

More precisely, if multiple learning agents in a stationary physical and institutional environment

are relatively more responsive to the recent actions of other learning agents, in the sense that they

put relatively higher weight on more recent observations, this can induce persistent suboptimal

�uctuations and cycling as agents continually try to adapt to each other's recent actions. Con-

versely, longer memories with a more even weighting of recent and past observations will tend to

induce inertia in the system, which can result in the system settling down to a particular outcome;

but this outcome is not guaranteed to be optimal.

Although our DM-Game study has a stationary institutional environment, the learning environ-

ment is non-stationary. First, the physical and �nancial environment is time-varying due to pro-

duction and the accumulation of goods stocks and money balances. Second, all of our tested
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decision rules are adaptive rules in the sense that they are conditioned on the current state of the

world. More precisely, the multiple learning agents use these adaptive rules to make successively

determined decisions conditional on time-varying information, beliefs, and physical states. In such

a world, it is not clear a priori whether it would be better for agents to have long memories

that take into account a long history of past observations or shorter memories that only take into

account more recent observations.

A key �nding of our DM-Game study is, indeed, the importance of memory length in determining

DM-Game performance. Simpler decision rules such as RL, FL, and EO-FH can outperform more

sophisticated decision rules such as EO-ADP, but only if coupled with a relatively long memory

length. The bene�t of a long memory arises because we initialize the DM Game to optimal SP

Benchmark Model settings. It is then bene�cial for consumers and �rms to be able to recall the

utility and pro�t outcomes they attained during initial periods because their decisions were in fact

close to optimal during these initial periods.

However, additional studies are surely needed to better understand the implications of locally-

constructive decision making in macroeconomic contexts such as the DM Game. To date we have

only explored a small number of initial conditions and parameter settings. In particular, there is

no guarantee that the parameter values we have set for our decision rules are well-tailored for the

DM-Game environment in which these decision rules are being used. For example, the cooling

parameter C appearing in equation (20) for the RL decision rule plays an important role in many

well-known learning methods and solution algorithms, such as simulated annealing; yet the current

study treats C as a maintained parameter value �xed at C=1.

Moreover, our current DM-Game study imposes various structural restrictions that would be inter-

esting to relax. For example, the labor o�ers of the DM consumers are restricted to be in 0-1 binary

form in order to simplify the analysis and reporting of comparative learning outcomes. It would be

of interest to explore more general labor market formulations in future studies of macroeconomic

systems with constructively rational agents.

It would also be of great interest to consider the e�ects on macroeconomic performance when

consumers have positive subsistence consumption needs and have to trade for consumption goods

in order to survive. This would put stronger pressure on consumers to participate in both labor

and goods markets, which in turn would a�ect their reservation wages and prices. In particular,

it would be intriguing to investigate what the best-performing decision rules for consumers and

�rms would be in response to a systematic increase in the subsistence consumption need level.

Would conservative decision-making based on reactive reinforcement learning eventually dominate

forward-looking decision-making, such as the EO-FH decision rule that performs best in our current

DM Game with zero subsistence consumption needs?

Moreover, in our current DM-Game modeling, remaining �rms do not immediately modify their

behavior to take into account their larger market shares when some �rms are forced to exit due to
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bankruptcy. Permitting �rms to understand the strategic implications of having other �rms exiting

due to bankruptcy would be an interesting extension to consider in future work. For example, it

could lead to temporary deep price-cutting by �rms that have relatively deep pockets (i.e., that

are able to withstand temporary dips in pro�ts) in an attempt to drive other �rms out of business.

However, to achieve a more compelling modeling of this type of strategic �rm behavior, it would

presumably also be necessary to consider the contestability of markets and to permit possible �rm

(re)-entry if price-cutting �rms subsequently attempt to exploit market power opportunities by

raising prices higher than competitive levels.

Clearly, then, much further study is needed to understand the rami�cations of modeling macroe-

conomies as constructively-rational games, in the sense that agent decision-making is based solely

on own interaction networks, beliefs, information, and physical states without external support

from modeler-imposed coordination and optimality conditions. In particular, a large unexplored

gap exists between constructive rationality and constructive optimality, i.e., the assurance that

the combination of locally-constructive decision processes in use by agents satis�es some stated

optimality property, such as Pareto optimality.

Nevertheless, the primary goal of this study has been accomplished. It has been demonstrated that

decision-makers in computational macroeconomic models can implement locally-constructive deci-

sion processes ranging all the way from reactive reinforcement learning to adaptive intertemporal

optimization within the context of a purely historical sequence of events, without the imposition

of external coordination and optimality restrictions.

Another important goal has been the development of the DM Game as a computational laboratory.

Coded in C++, the DM Game is a modular, extensible, and scalable macroeconomic framework

that permits the comparative analysis of di�erent physical and institutional environments pop-

ulated by a mix of decision-making agents with diverse decision processes. In future work the

current structure of the DM Game will be extended to include additional critical features, such as

a central government, a central bank, and a commercial banking system.
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Appendix

A Tested Grid Speci�cations for Decision Domains

Decision Set of
Component Possible Values

lc Lc = {0, 1}
ω Ω = {0.8, 1.0, 1.2}
θ Θ = {0.0, 0.5, 1.0}

Table 12: Small-grid discretization of the consumer decision domain Dc

Decision Set of
Component Possible Values

lf Lf = {0, 2.5, 5.0, 7.5, 10}
γ Γ = {0.8, 1.0, 1.2}
λ Λ = {0.8, 1.0, 1.2}
ψ Ψ = {0.0, 0.5, 1.0}

Table 13: Small-grid discretization of the �rm decision domain Df .

Decision Set of
Component Possible Values

lc Lc = {0, 1}
ω Ω = {0.10, 0.55, 1.00, 1.45, 1.90}
θ Θ = {0.0, 0.5, 1.0}

Table 14: Big-grid discretization of the consumer decision domain Dc

Decision Set of
Component Possible Values

lf Lf = {0, 2.5, 5.0, 7.5, 10}
γ Γ = {0.10, 0.55, 1.00, 1.45, 1.90}
λ Λ = {0.10, 0.55, 1.00, 1.45, 1.90}
ψ Ψ = {0.0, 0.5, 1.0}

Table 15: Big-grid discretization of the �rm decision domain Df

B Wage, Price, and Dividend Expectation Updating

Consumers and �rms in the DM Game are assumed to follow the same methods in forming and

updating their expectations regarding the distributions governing future market-clearing wages,
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market-clearing goods prices, and dividend payments (for consumers). These methods are char-

acterized by prior-belief parameters and a memory length parameter. The prior-belief parameters

are maintained parameters set at �xed values for all test cases reported in this study. The mem-

ory length parameter is a treatment factor set to re�ect either a �xed one-period memory or an

expanding memory that takes into account all previous observations at each time t.

Let v denote any consumer or (non-bankrupt) �rm agent in the DM Game. At each time t ≥ 0,

agent v forms normal probability distributions for the market-clearing wage w, the market-clearing

goods price p, and the dividend payment div in current and future periods. These distributions

are characterized by state-conditioned estimates for their means and variances, as follows:

w ∼ N
(
w̄v,t−1, σ

2 L
v,t−1

)
(45)

p ∼ N
(
p̄v,t−1, σ

2 G
v,t−1

)
(46)

div ∼ N
(
d̄v,t−1, σ

2 D
v,t−1

)
(47)

After the determination of a market-clearing wage wt:1 in the forward labor market at time t:1, a

market-clearing price pt:3 in the goods market at time t:3, and a dividend payment divt:5 at time

t:5, agent v updates the means and variances for these distributions in order to obtain updated

estimates for these distributions for use in period t+ 1.15

The method used to obtain updated mean and variance estimates for the wage distribution (45)

is characterized by the following three parameters: a prior wage wv,0; a prior weight nLv,0, and a

memory length wm. If wm = all, then agent v calculates these estimates as follows:

w̄v,t =

∑t
r = 0 wr:1 + nLv,0 · wv,0

t + 1 + nLv,0
(48)

σ2,L
v,t =

∑t
r = 0 (wr:1 − w̄v,t)

2 + nLv,o · (wv,0 − w̄v,t)
2

t + 1 + nLv,0
(49)

In other words, the mean of the distribution for the expected market-clearing wage is determined

by averaging all market-clearing wages observed to date, together with the prior wage, while the

dispersion of the expected market-clearing wage is determined by averaging the squares of the

deviations of the observed market-clearing wages and the prior wage from the currently estimated

mean market-clearing wage.

If wm = 1, then agent v sets the expected market-clearing wage equal to the most recently observed

15In this updating procedure it is assumed for simplicity that consumers and �rms ignore the fact that the actual
wages determined at the contract settlement time t:4 could di�er from the market-clearing wage wt:1 determined
at time t:1 if some �rms become bankrupt at time t:3 due to poor performance in the time-t:3 goods market.
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market-clearing wage:

w̄v,t = wt:1 (50)

Also, agent v sets the expected variance equal to 1% of this expected market-clearing wage:

σ2,L
v,t = 0.01 · w̄v,t (51)

Similar equations are used to obtain updated estimates p̄v,t, σ
2,G
v,t , divv,t, and σ

2,D
v,t for the means

and variances for the goods price distribution (46) and the dividend distribution (47) for wm =

all and wm = 1, with pr:3 or divr:5 replacing wr:1, pv,0 or divv,0 replacing wv,0, and nGv,0 or nDv,0
replacing nLv,0.

The estimated means w̄v,t and p̄v,t for the market-clearing wage and goods price are used to

determine the reservation wage and reservation price for agent v's transformation function mapping

described in Sections 4.2 and 4.3. Speci�cally, Ev,t[wr:1] = w̄v,t−1 and Ev,t[pr:3] = p̄v,t−1 for all

r ≥ t. Thus equations (14), (17), and (18) take the form

wci,r:1(d, t) = ω · w̄i,t−1 (52)

wfj,r:1(d, t) = γ · w̄j,t−1 (53)

pfj,r:3(d, t) = λ · p̄j,t−1 (54)

As clari�ed below in Section C, the EO-FH and EO-ADP agents make use of the full probability

distributions (45) through (47) in their decision rules. The updating of these distributions requires

speci�cations for prior variance values as well as prior mean values.

A complete listing of the maintained values for all of the prior-belief parameters is given in Table 16.

Parameter Value

wv,0 1.00
pv,0 1.00
divv,0 0.00
nLv,0 10.00

nGv,0 10.00

nDv,0 0.00

σ2 L
v,0 0.50

σ2 G
v,0 0.50

σ2 D
v,0 0.01

Table 16: Maintained values for prior-belief parameters
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C Implementation of EO Decision Rules

Various computational approximation methods could be used to implement the EO-FH and EO-

ADP decision rules. The methods used in this study are outlined below. Detailed explanations of

these methods can be found in Powell (2011).

C.1 Implementation of the EO-ADP Decision Rule

Consumers in the DM Game have the same general form of budget and feasibility constraints

(1)-(4) for periods r ≥ 0, the same general form of intertemporal utility objective function (5) for

periods t ≥ 0, and the same single-period utility function u(·) given by (37). The state xi,t of any

consumer i at any time t ≥ 0 is given by:

xi,t =
[
t,M c

i,t−1, w̄i,t−1, σ
2 L
i,t−1, p̄i,t−1, σ

2 G
i,t−1, d̄ivi,t−1, σ

2 div
i,t−1

]
(55)

The dimension of the state (55) is �xed at eight, independently of i and t. The normality assump-

tions imposed on the wage, price, and dividend distributions (45) through (47) imply that each

of these distributions is fully characterized in each period t by its estimated mean and variance

appearing in (55).

The value function for consumer i at time t in state xi,t takes the form:

V c (xi,t) = max
d∈Dc

Ei,t

∞∑
r=t

βr−t
[
u
(
qci,r:3(pr:3, d, t), 1− lci,r:1(wr:1, d, t)

)]
(56)

The right-side maximization in (56) is constrained by the budget and feasibility constraints (1)-(4)

for periods r ≥ t, conditional on xi,t, and implicitly depends on the TRc
i,t function that maps each

potential period-t decision d ∈ Dc into a sequence of labor supply and goods demand functions

for periods r ≥ t. The expectation in (56) is taken with respect to the wage, price, and dividend

probability distributions (45) through (47), conditional on xi,t.

The structure of the state transition function Sc mapping each possible state xi,t, decision d ∈
Dc, and realization (wt:1, pt:3, wi,t:4, divt:5) into an updated state xi,t+1 for period t + 1 is time

invariant and the same for all consumers i. Also, the left-side summation in (56) is time separable.

Consequently, the value function V c(xi,t) can equivalently be expressed in recursive form, as follows:

V c (xi,t) = maxd∈Dc Ei,t
[
u
(
qci,t:3(pt:3, d, t), 1− lci,t:1(wt:1, d, t)

)
+ βV c (Sc (xi,t, d, wt:1, pt:3, wi,t:4, divt:5))] (57)

We assume that each EO-ADP consumer i at each time t derives an estimate for the value function
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(56) that solves the recursive relationship (57) by means of a type of adaptive dynamic programming

(ADP) algorithm surveyed in (Powell, 2011, p. 407). The latter algorithm, designed for in�nite-

horizon dynamic programming problems, is an approximate policy iteration method implemented

by means of least-squares temporal di�erencing. During this value function estimation at time

t, the mean and variance estimates w̄i,t−1, σ
2 L
i,t−1, p̄i,t−1, σ

2 G
i,t−1, d̄i,t−1, and σ2 div

i,t−1 in consumer i's

state xi,t are held �xed. No new information is obtained by consumer i during his value function

estimation, so he does not update his state information during this estimation.

A critical step in the EO-ADP algorithm at each time t is the selection of basis functions for

approximating the general form of the value function prior to conducting the value function esti-

mation. We assume each EO-ADP consumer i at each time t uses a single linear basis function,

as follows:

V c(xi,t) =
∑
k

θπkφk (xi,t) = θπ ·M c
i,t−1 (58)

where M c
i,t−1 denotes the time-t money balance of consumer i. The value function estimation

problem at time t thus reduces to the estimation of the scalar parameter θπ over some speci�ed

domain, which in this study is taken to be the interval [0.01, 1000].

It is assumed that EO-ADP �rms use a similar EO-ADP decision rule to estimate their time-t

value functions. The state xi,t of a non-bankrupt EO-ADP �rm j at time t is given by

xj,t =
(
t,M f

i,t−1, w̄j,t−1, σ
2 L
j,t−1, p̄j,t−1, σ

2 G
j,t−1

)
(59)

and its value function is given by

V f
t (xj,t) = max

d∈Df
Ej,t

∞∑
r=t

µr−t
[
pr:3q

f
j,r:3(pr:3, d, t)− wr:1lfj,r:1(wr:1, d, t)

]
(60)

The right-side maximization in (60) is constrained by the technological and feasibility constraints

(6)-(11) for periods r ≥ t, conditional on xj,t, and implicitly depends on the TRf
j,t function that

maps each potential period-t decision d ∈ Df into a sequence of labor demand and goods supply

functions for periods r ≥ t. The expectation in (60) is taken with respect to the wage and price

probability distributions (45) and (46), conditional on xj,t.

For reasons analogous to arguments given above for EO-ADP consumers, the value function (60)

for �rm j can be expressed in the following recursive form:

V f (xj,t) = maxd∈Df Ej,t

[
pt:3q

f
j,t:3(pt:3, d, t)− wt:1lfj,t:1(wt:1, d, t)

+ βV f
(
Sf (xj,t, d, wt:1, pt:3)

)]
(61)

where the structure of the state transition function Sf does not depend on j or t. Firm j at time t
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is assumed to use a simple linear basis function to estimate the value function V f (xj,t) that solves

(61), as follows:

V f (xj,t) =
∑
z

θπzφz (xj,t) = θπ ·M f
j,t−1 (62)

where M f
j,t−1 denotes the money balance of �rm j at time t.

The following parameters need to be speci�ed in order to implement the EO-ADP algorithm for

EO-ADP consumers and EO-ADP �rms: the number of runs for the inside and outside estimation

loops; the number of random number draws in an internal maximization algorithm ; the number

of basis functions; the initial parameter value B0 for recursive least squares estimation (dependent

on I = number of consumers); and the initial parameter value θπ,0 for the coe�cient in the basis-

function representation of the value function. These parameters are maintained at the �xed values

listed in Table 17 for all EO-ADP agents. The tested values for the two EO-ADP treatment factors,

wm and grid-type, are given in Table 10.

Parameter Value

EstRunIn 5
EstRunOut 5
BasisNum 1

NDrawsADP 5
B0 0.005 · I
θπ,0 1.0
β 0.95

Table 17: Maintained parameter values for EO-ADP agents

C.2 Implementation of the EO-FH Decision Rule

The EO-FH algorithm is a brute-force method for the direct estimation of an optimal solution

in each period t over a �nite rolling forecasting-horizon T . It is performed by EO-FH consumers

and �rms by undertaking a complete search of their �nite decision domains, with a corresponding

evaluation of expected outcomes over the next T periods, in order to determine a decision achieving

the maximum possible expected intertemporal utility or pro�t outcome over these next T periods.

Thus, in contrast to the EO-ADP algorithm, the EO-FH algorithm does not involve estimation

over an in�nite horizon, and it does not involve the use of value functions. Consequently, it is

conceptually simpler and faster to implement than the EO-ADP algorithm.

Speci�cally, each EO-FH consumer i at each time t in some state xi,t uses direct search to solve

an optimization problem identical in form to (56) except that the in�nite horizon is replaced by

a �nite horizon t + T . Similarly, each non-bankrupt EO-FH �rm j at each time t in some state

xj,t uses direct search to solve an optimization problem identical in form to (60) except that the

in�nite horizon is replaced by a �nite horizon t+ T .
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The EO-FH consumers and �rms at each time t use Monte Carlo simulation to calculate the

expectations in their �nite-horizon maximization problems by taking NDrawsFH draws from each

of their estimated probability distributions (45), (46), and (47). The value of the parameter

NDrawsFH is maintained at 10 for all EO-FH agents. The tested values for the three EO-FH

treatment factors T , wm, and grid-type are given in Table 9.

D Social Planner Benchmark Model Solution

This section provides a proof by induction that the Social Planner (SP) Benchmark Model in

reduced representative-consumer form (41) has the following solution: lct:1 = qct:3 = 1 and sstockt = 0

for all periods t ≥ 0.

By assumption, sstock−1 = 0. Given this assumption, the social planner's optimal choices for labor,

consumption, and goods stock for period 0 are given by lc0:1 = qc0:3 = 1 and sstock0 = 0. To establish

this, �rst note that leisure lec0:1 = [1 − lc0:1] has a constant marginal utility equal to 0.5 whereas

goods consumption qc0:3 over the range (0, 1] has a marginal utility that is bounded below by 1.5.

Consequently, the social planner will set lec0:1 = 0 (hence lc0:1 = 1). Given the production function

assumptions for the SP Benchmark Model, the maximum amount of good that can be produced

in period 0 is thus 1 unit.

Now suppose the social planner contemplates setting aside a portion sstock0 ∈ [0, 1] of this period-0

production as goods stock for period 1. Given sstock0 , the maximum utility achievable in period 0 by

the representative consumer is 3.0 ln(2−sstock0 ) if sstock0 < 1 and 3.0 ln(0.5) if sstock0 = 1. Also, given

sstock0 , the maximum utility achievable by the representative consumer in period 1 is then attained

by setting lc1:1 = 1, allocating all of the resulting period-1 production of 1 unit of good towards

time-1:3 consumption, and allocating all of the goods stock sstock0 towards time-1:3 consumption,.

From the standpoint of period 0, the resulting maximum utility achievable by the representative

consumer in period 1 is thus given by β[3.0 ln(2 + sstock0 )]. However, since β is less than 1, the sum

of these two maximum achievable utility levels,

3.0 ln(2− sstock0 ) + β ·
[
3.0 ln(2 + sstock0 )

]
, (63)

is a strictly decreasing function of sstock0 over sstock0 ∈ [0, 1) (with a discontinuous further jump down

at sstock0 = 1). Consequently, the maximum achievable intertemporal utility for the representative

consumer over periods 0 and 1, considered together, is obtained by setting sstock0 = 0. Similar

arguments can be used to argue that no future use of a positive sstock0 can result in a (discounted)

utility gain for the representative consumer that outweighs his resulting loss of period-0 utility.

Consequently, the social planner should set sstock0 = 0.

Now consider any arbitrary period t ≥ 0 for which the goods stock sstockt−1 is zero. Then the same
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argument used above can be applied to period t to show that the social planner's optimal choices

for period t are to set lct:1 = qct:3 = 1 and sstockt = 0. It follows by induction that the optimal

solution to the SP Benchmark Model (41) is lct:1 = qct:3 = 1 and sstockt = 0 for all periods t ≥ 0.

E Performance Metrics for Case Comparisons

Let Nk denote any of the tested cases in Table 3. This section describes the various performance

metrics used to evaluate the performance of the DM-Game economy under case Nk.

The primary indicator used to measure ex post performance is ūk, the average realized single-

period utility attained by the I DM-Game consumers. Using notation introduced in Section 6.1,

and recalling that the initial period is numbered 0, ūk is calculated as follows:

ūk =

∑I
i=1

∑LRun
τ=LOmit

∑NRuns
r=1 uki,τ,r

I · (LRun− LOmit+ 1) ·NRuns
(64)

where uki,τ,r is the utility attained by consumer i in period τ of run r.

Some use is also made of additional performance metrics. For each period τ ∈ {LOmit, . . . ,LRun},
the average realized single-period utility for period τ is calculated as follows:

ūkτ =

∑I
i=1

∑NRuns
r=1 uki,τ,r

I ·NRuns
(65)

The average value of ūkτ across the time periods τ ∈ {LOmit, . . . ,LRun} is then given by (64), and

the standard deviation of ūkτ across these same time periods is given by

σūk =

( ∑LRun
τ=LOmit

(
ūkτ − ūk

)2

LRun− LOmit+ 1

)1/2

(66)

The average realized cumulative utility through period t is calculated as follows for periods t ≥
LOmit:

ūcumul,kt =

∑t
τ=LOmit ū

k
τ

t− LOmit + 1
(67)

Suppose that a market-clearing wage wkt:1,r and a market-clearing goods price pkt:3,r are both well-

de�ned16 for some period t for all runs r ∈ R∗, where the subset R∗ has cardinality NRuns∗. Then
16Since the demands and supplies of the DM-Game consumers and �rms depend on reservation wages and prices,

there can exist periods for which all of these agents decide not to participate in the labor market and/or the goods
market.
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the average realized real market-clearing wage for period t is calculated as follows:

w̄real,kt =

∑NRuns∗

r=1

[
wk

t:1,r

pkt:3,r

]
NRuns∗

(68)

The average realized real market-clearing wage w̄real,k is then calculated as the average of w̄real,kt

over all periods t for which w̄real,kt is well de�ned.

Finally, in analogy to (64), the average realized single-period pro�ts attained by the J DM-Game

�rms is calculated as follows:

π̄k =

∑J
j=1

∑LRun
τ=LOmit

∑NRuns
r=1 πkj,τ,r

J · (LRun− LOmit+ 1) ·NRuns
(69)

where πkj,τ,r denotes the pro�t attained by �rm j in period τ of run r.
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