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Abstract—Power industry restructuring continues to evolve 

at multiple levels of system operations.  At the bulk electricity 
level, several organizations charged with regional system 
operation are implementing versions of a Wholesale Power 
Market Platform (WPMP) in response to U.S. Federal Energy 
Regulatory Commission initiatives.  Recently the Energy Policy 
Act of 2005 and several regional initiatives have been pressing 
the integration of demand response as a resource for system 
operations.  These policy and regulatory pressures are driving 
the exploration of new market designs at the wholesale and 
retail levels.  The complex interplay among structural 
conditions, market protocols, and learning behaviors in relation 
to short-term and longer-term market performance demand a 
flexible computational environment where designs can be tested 
and sensitivities to power system and market rule changes can 
be explored.  This paper discusses the use of agent-based 
computational methods for the study of electricity markets at 
the wholesale and retail levels, and explores distinctions in 
problem formulation between these levels. 
 

Index Terms—agent-based modeling, adaptive systems, 
power system simulation, power system economics, market 
design 

I.  INTRODUCTION 
The use of market-based approaches in electric system 
operations continues to mature.  Rather than use actual 
systems as test beds for new market rules or regulatory 
policies, decision makers can use agent-based computational 
frameworks as safe environments within which to explore 
the potential effects of their actions.  The abstract modeling 
of an electric system needs to cover the fuel, wholesale 
electricity, and retail electricity markets (see Fig. 1). This 
paper concentrates on agent-based approaches for the study 
of wholesale and retail electricity markets. 

A.  Wholesale Electricity Markets 
Agent-based Computational Economics (ACE) is the 
computational study of economic processes modeled as 
dynamic systems of interacting agents.  ACE tools are used 
in [1] to study the dynamic efficiency and reliability of 
wholesale electricity market designs. The analysis uses two 
regional wholesale electricity market case studies for 
guidance: the New England Independent System Operator 
(ISO-NE) and the Midwest ISO (MISO). A computer-based 
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framework is developed that models strategic traders 
interacting over time in a wholesale electricity market that is 
organized in accordance with core FERC market design 
principles and that operates over a realistically rendered 
transmission grid. Consultation is also occurring with ISO-
NE and MISO industry stakeholders.  The desired result is a 
field-tested open-source framework that rings true to energy 
industry participants, and that can be used by these 
participants and by academic researchers to conduct 
intensive sensitivity experiments.  
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Fig. 1: An overview of input (fuel) markets and wholesale and retail 
electricity market interactions. 

B.  Retail Electricity Markets 
Load Serving Entities (LSEs) forecast their aggregated 
resource needs and shop in the wholesale electricity markets 
available to them. To the extent that they offer price 
responsive incentive programs to their customers, they can 
use the demand elasticity inherent in these contracts to 
negotiate better deals from their wholesale suppliers. 
 
Aggregation can be structured in various ways:  1) Demand 
response initiatives being advanced at the ISO level offer 
incentives for load relief across an entire region (LSEs in the 
region are expected to conform to the regional program). 2) 
Large commercial chains can reach agreements with 
electricity brokers for supply within a part of a region or 
across the country. 3) Distribution companies or independent 
load aggregators can combine manufacturing facilities, 
buildings, and residences in specific locations to amass 
elastic demand resources capable of playing in the wholesale 
markets. 
 
What differentiates retail electricity markets from wholesale 
electricity markets?  First, retail markets are more immature 
than wholesale markets, although knowledge and experience 
are growing.  Next, given the increasing number of 
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customers in retail markets, the per-customer transaction 
costs must be kept low.  This means that a greater use of 
automated simple-to-configure systems is necessary.  Lastly, 
once configured, preferences must be set up so that real-time 
decision making is also automated.  This means that, in 
response to a change in real-time price or an emergency load 
reduction signal, the facility or premise needs to respond 
automatically.  In essence, automated agents must act on 
behalf of customers to adjust their energy consumption 
consistent with pre-specified needs and desires. 
 
Because of the nature of retail electricity markets, service 
providers structure their contract offerings differently than 
wholesalers.  Households (residential consumers) might be 
offered a variety of programs meant to last a significant 
duration (a year or two) with options, incentives, and 
penalties to change based on the service providers' position 
and business forecasts.  Although not designed for precisely 
the same marketplace, the wide variety of options provided 
by telecommunication service companies stimulates the 
imagination for electric services. 
 
Even this picture simplifies the likely structure of the 
evolving electricity marketplace.  Various types of 
intermediaries fulfill important roles and further complicate 
the overall organization of the market.  The ability to model 
these intermediary roles will be important to simulations 
attempting to test electricity market designs, whether 
proposals or real-life developments. 

II.  AGENT-BASED SIMULATION BACKGROUND 
“A software agent is a computational entity that is capable of 
autonomous behavior in the sense of being aware of the 
options available to it when faced with a decision-making 
task related to its domain of interest.” [2] In ACE market 
simulations, people, automated machine decision making, 
and other aspects of the physical world are represented by 
software agents.  Two important features of ACE models are 
the agents’ autonomous behavior in pursuit of some goal and 
their communal interaction, particularly their ability to 
communicate with each other. 
 
An ACE model provides supporting infrastructure that 
allows agents to interact with one another in a simulated 
world, thus permitting researchers to study both individual 
and systemic behaviors.  The architecture for an ACE model 
supports services such as: 
 
• Agent communication:  The communication between 

agents can follow a messaging pattern that respects the 
autonomy of each agent to act upon information.  This 
information can be directed to specific agents or shared 
by many agents.  Communication approaches involve 
the semantic aspects of messages (terms and their 
meaning, often documented in an ontology) as well as 
their syntax (format, from/to identification, etc.). 

• Configuration and execution management:  The various 
agents that make up a simulated world can be registered, 

organized, and tracked, in part through abilities provided 
to the simulator to start/pause/stop the simulation. 

• Activity logging:  The history of activity among agents 
can be stored.  This includes consideration for the ability 
to “playback” events. 

• Model management:  Each agent in a simulated world 
can be initialized with a particular representation of the 
physical world aspect it is meant to simulate.  These 
representations must typically be consistent across 
agents (e.g., the location of a generating unit is known to 
the generation company agent and to the ISO).  
Initialization, data storage, and data retrieval need to be 
appropriately supported across all agents. 

• Simulation time:  The speed at which an ACE simulation 
runs can be varied according to the nature of the 
simulation being performed.  This may range from 
mimicking real-time to large step sizes that allow for 
simulations that span years.  This involves coordinating 
a time clock across the simulated world and creating 
rules for agent development that allow agents to use this 
time to adjust their action steps. 

• Internal agent services:  Aspects of an agent in a 
simulated world can appear multiple times.  For 
example, multiple agents might share the need for 
forecasting methods or learning tools.  These can be 
offered as services configurable to the needs, desires, 
and behavioral dispositions of each agent. 

 
A wide variety of existing tools and services are available to 
support ACE research [3].  Often tools are blended with 
custom software to create ACE frameworks to address 
specific issues of interest.  The restructuring of electricity 
markets is one such issue.   The next two sections present 
examples of ongoing ACE research focusing on the 
restructuring of wholesale and retail electricity markets. 

III.  WHOLESALE ELECTRICITY MARKET TESTING 
The ACE wholesale electricity market framework developed 
in [1] - referred to as AMES (Agent-based Modeling of 
Electricity Systems) - is programmed in Java using RepastJ, 
a toolkit designed specifically for agent-based modeling in 
the social sciences [4]. The framework is being designed to 
be modular, extensible, and open source in order to provide a 
useful foundation for further electricity research.  In 
particular, the goal of the larger NSF project [5] 
encompassing the development of the AMES framework is 
to explore ways of achieving a more effectively integrated 
U.S. bulk energy transportation network comprising 
electricity, natural gas, coal, and water subsectors.  
 
The AMES framework incorporates in stylized form several 
core elements of FERC's proposed Wholesale Power Market 
Platform (WPMP), a market design implemented for New 
England by the ISO-NE and for the Midwest by the MISO. 
By adhering closely to the architecture of these regional 
markets, advantage is being taken of the voluminous training 
guides and operational manuals publicly released by the ISO-
NE and the MISO. 
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The core elements of the WPMP currently incorporated into 
the AMES framework are as follows (see Figures 2 and 3): 
1. The AMES wholesale electricity market operates over a 

possibly non-radial AC transmission grid. 
2. The AMES wholesale electricity market includes an 

independent system operator (ISO) and a collection of 
load-serving entities (LSEs) and generators distributed 
across the nodes (buses) of the grid. 

3. The AMES ISO undertakes the daily management of a 
day-ahead market and a real-time market, as well as a 
supply re-offer period for generators. 

4. The AMES ISO determines power commitments and 
locational marginal prices (LMPs) for the day-ahead 
market based on generator supply offers and LSE 
demand bids (forward financial contracting). Any 
differences that arise between the contracts cleared in 
the day-ahead market and real-time conditions are 
settled by the AMES ISO in the real-time market at real-
time LMPs.  

5. Transmission grid congestion is managed via the 
inclusion of congestion components in LMPs. 

6. AMES energy traders have access to a (point-to-point) 
financial transmissions rights (FTR) market as a hedge 
against congestion-induced price volatility in the day-
ahead market. 

 
Fig. 2: AMES architecture (agent hierarchy) 
 
Additional aspects (e.g., bilateral trading) will be 
incorporated at a later time to more fully reflect the dynamic 
operational capabilities of the WPMP. 
 
The AMES energy traders are cognitive entities with private 
data and with various public and private methods enabling 
them to operate autonomously in their market environment. 
In particular, the traders learn over time how to make their 
demand bids and supply offers on the basis of past 
experience in an attempt to increase their profits. 
 
Currently the AMES energy traders determine their market 
actions by some form of reinforcement learning, such as the 
stochastic reinforcement learning algorithm developed in [6] 
on the basis of human-subject experiments. This 
reinforcement learning is implemented for each trader by a 
reinforcement learning module that permits a variety of 
different reinforcement learning representations. In later 
extensions of AMES, other forms of learning (e.g., social 
mimicry and anticipatory learning) will also be considered.  

 

 
Fig. 3: AMES ISO daily activities for day D 
 
As in the ISO-NE and the MISO, the AMES ISO determines 
power commitments and LMPs for each hour of the day-
ahead market by means of a DC power flow. The solution 
maximizes total net benefits subject to constraints reflecting 
both physical considerations (e.g., loop flow effects) and the 
need for balancing demand and supply at each transmission 
grid node. The AMES ISO also repeatedly solves related DC 
power flow problems for each hour of the real-time market to 
settle any differences that arise between day-ahead plans and 
the real-time state of the wholesale power market.  
 
These various components of the AMES framework are 
currently being integrated into a dynamic wholesale 
electricity market model that will be used to conduct 
intensive experimental testing of the operation of the market 
over time.  The following list outlines several planned 
experiments. 
1. In parallel with the ISO-NE and the MISO, the AMES 

ISO generates LMP and power solutions using DC 
power flow approximations for actual underlying AC 
power flow problems considered too costly to solve in 
normal run-time operation. What types of errors are 
generated by these approximations? 

2. How well does the WPMP market design perform 
when the AMES generators use alternative learning 
methods to determine their supply offers for the day-
ahead market? 

3. How well does the WPMP market design perform 
under alternative assumptions regarding AMES LSE 
demands (fixed loads versus price-sensitive demand 
curves versus active demand-side bidding with 
learning)? 

4. How well does the WPMP market design perform 
under different AMES market concentration 
conditions (i.e., different numbers and sizes of 
generators and LSEs)? 

5. To what degree does the WPMP two-settlement 
process in the AMES framework (the combined 
working of the AMES day-ahead and real-time 
markets) help AMES traders hedge against the risk of 
excessive price volatility? 
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6. To what extent does the WPMP-recommended 
inclusion of an FTR market help AMES market 
participants hedge against the risk of congestion-
induced costs in the AMES day-ahead market? 

7. Bilateral trades arranged up to many months in 
advance could play a critical role in helping traders to 
manage market risk. How does an opportunity to 
engage in bilateral trades affect AMES market 
performance? 

8. To what extent do the core WPMP features 
incorporated into the AMES framework provide 
appropriate incentives for investment in new 
generation and new transmission facilities? 

 
For many of these design issues, the impact of price-sensitive 
demand and other distributed energy resources on LSE 
behavior and WPMP performance could be significant.  To 
adequately pursue these issues, load models that adequately 
reflect the potential influence from retail markets will 
therefore need to be incorporated into the AMES framework.   

IV.  RETAIL ELECTRICITY MARKET TESTING 
The future energy system will apply the expansive 
capabilities of information technology to coordinate 
distributed energy resources (DER - including demand, 
distributed generation, and storage) with bulk transmission 
and generation resources to enhance system performance and 
reduce the impact of component failure (both technically and 
economically).  To accomplish this transformation, the 
traditional paradigm of meeting all demand at a fixed cost at 
all times is giving way to more interactive, transparent 
mechanisms that recognize the value of an array of energy 
services to those participants with a need. This entails the 
establishment of markets for the exchange of services, and a 
mechanism to obtain information to support good decision 
making.  The term GridWise™ reflects a vision for this 
transformation [7]. 
 
Classical load models look at the probabilistic behavior of 
load averaged over different times of day and various times 
of the year.  These models also reflect aggregated 
contributions from many different types of appliances and 
equipment used in industry, commercial buildings and 
homes.  However, to study the impact of demand response 
programs and distributed generation usage, detailed 
equipment and human behavior modeling must be included 
in the simulation. 
 
Such detailed demand-side modeling has been done for 
residential neighborhoods [8], [9].  Fig. 4 shows the pulsed 
nature of appliance load on the distribution system over the 
course of a day.  The number of households must increase 
significantly before we begin to see the diversity usually 
represented in traditional load models. To simulate the 
interaction with market signals, the load models need to 
include price-responsive controllers.  Such controllers might 
adjust thermostat set-points or directly curtail energy 
delivery to an appliance, thus altering the nature of these 
pulses.  In addition, human behavior patterns might change 

to move load to shoulder or off-peak periods if given the 
right financial incentive.  A number of building and home 
automation products are entering the marketplace.  With 
simple signals from LSEs, facilities can be preprogrammed 
to respond to prices or emergencies in a prioritized manner 
that reflects household preferences [10]. 

 
Fig. 4:  Load diversity as household loads increase 
 
Given the thousands of buildings and appliances that can be 
fed from a distribution feeder, configuration tools must be 
provided that allow simulated retail electricity markets to be 
populated relatively easily while still preserving realistically 
diverse behaviors.  Given broad regional characteristics, 
individual buildings each with their own appliances and 
human behaviors must be modeled if the complex behavior 
that emerges from the interaction of such a large number of 
devices is to be revealed.  Statistical mechanisms are used to 
help populate the individual building models from 
aggregated parameters measured in neighborhood areas.  
 
The economic simulation aspects are handled using ACE 
modeling tools similar to those used for the wholesale 
electricity market study discussed in Section III.  Thus, 
customers, LSEs, and distribution system operators are all 
modeled as software agents (Figure 5). 
 
Though a variety of different auction forms (call, blind, 
English, Dutch, etc.) might be appropriate at the wholesale 
market level, only a few options are reasonable for the LSE 
to offer to customers in a retail environment.  Besides the 
fixed price contracts that most customers face today, some 
retail offerings also include time-of-use (TOU) rates or real-
time pricing (RTP) signals. 
 
The behavioral element critical in any modeling of market 
behavior is the mechanism by which the actors formulate 
demand bids or supply offers.  We have explored genetic 
algorithms (GAs) as well as an approach to customer 
behavior more defensible in terms of human psychology – 
the modified Roth-Erev method (MRE) [11].  The 
application of the MRE method to the retail level relies on a 
fitness measure that, for households, depends on household 
type, the history of utility expenditures relative to income, 
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and the level of service implied by different characteristics of 
the household. 
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Fig. 5:  Customer, LSE, and distribution company economic interactions 
 
At the core of the strategy for constructing a price-responsive 
retail electricity market consisting of households and a 
distribution utility is the decision to adopt a specific type of 
contract that has advantages both for households and for the 
utility.  The advantages for the utility come from sharing the 
risk of wholesale price fluctuations that affect the utility’s 
costs; the advantages for the households come from being 
able to manage better their utility bills and, with that better 
management, to reduce their utility costs. 
 
A major challenge is the development of a “fitness measure” 
that triggers a switch from one sort of contract to another.  
The agents that accept new contracts have to migrate from 
the current pattern of use under the old contract to the new 
pattern of use under the new contract encouraged and aided 
by incentives in the form of technology to manage loads and 
lower power bills. 
 
Simulated households review their bills and determine if a 
contract change is in order.  Incentives are also modeled for 
LSEs to offer alternative contracts.  LSEs will set and adjust 
the terms of their contract offerings as they learn to better 
predict (forecast) household response.  The idea is to play 
out the resulting dynamic to gain insight into the viability 
and stability of various contract offerings. 
 
Simulation time scales might also vary widely depending 
upon what aspect of a retail electricity market is being 
studied.  For example, to gain insight into the behavior of 
appliance controllers and households responding to 
emergency signals, a simulator would need resolution at 
short time frames so that the dynamics of a diverse set of 
resources could be reviewed.  At the other end of the time 
spectrum, a simulator might be more interested in contract 
choice and the market dynamics of introducing contract 
changes or new offerings to households.  To smooth out 
seasonal affects from periods of the year in which prices 
regularly spike or dip, the simulator might then need to 
review simulated multi-year histories to investigate long-
term household trends to accept or abandon particular 
contract offerings.  ACE frameworks permit simulators to 
include time frames flexibly tailored to the study at hand, so 

that relevant results can be obtained within a reasonable 
number of computational periods. 
 
The insights gained at the retail and distribution levels of an 
electricity market can help formulate simplified models to 
aggregate response for wholesale market tests.  Regional 
dependencies on climate and personal behavior in addition to 
the nature of retail power contracts affect how these reduced-
order models are constructed.  An approach to creating such 
a simplified model for heating, ventilation, and air-
conditioning (HVAC) systems is reported in [12].  Important 
to the realization of these reduced-form models is the ability 
to capture the complex behavior that emerges from large 
populations of appliances under price signals.  For example, 
a high real-time price signal might result in a relatively quick 
reduction of load on a feeder; however, it could also reduce 
the diversity of the load so that, after prices fall or consumer 
discomfort sets in, the rebound need for electricity exceeds 
the original peak.  

V.  THE AGENT PATTERN IN ACTUAL OPERATIONS 
A great advantage of ACE frameworks is their potential 
facilitation of real-time operations.  Business process 
automation continues to advance to the point where 
heterogeneous systems of autonomous agents are mixing 
with human interactions to deliver new capabilities and 
enhance productivity. ACE frameworks permit the study of 
learning agents engaging in realistic operational interactions.  
Consequently, the learning algorithms embedded in these 
agents could become applicable for decision makers in actual 
operational environments. 
 
Standards for operational environments, such as those being 
developed by the Foundation for Intelligent Physical Agents 
FIPA [2], as well as advances in electronic commerce 
approaches such as service-oriented architectures, are 
facilitating the interaction of agents across software 
platforms.  This is enabling the modeling of large complex 
systems of systems. These developments are transforming 
the operation of electricity markets as well as banking, 
telecommunications, entertainment, shopping, and shipping.  
 
Besides enabling the testing of market designs and potential 
participant interactions, the logic used in ACE frameworks to 
construct agents representing generators, LSEs, ISOs, and 
other electricity market participants might provide valuable 
guidance for how real-world market participants could 
automate their decision-making and learning tools to increase 
their effectiveness in the market.  Tools found useful for 
evaluating market behavior and for discovering and 
attenuating market power in ACE electricity market 
simulations might also find applicability as real-time market 
monitoring tools in operational electricity markets. 
 
Intelligent systems are now being deployed in industrial, 
commercial, and residential settings.  Within each setting, 
agent-based software is being developed to represent 
appliances and other energy consuming equipment in a 
distributed form of energy management.  The agent-based 
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learning and decision-making algorithms being tested in the 
analysis environment directly apply to agents that might live 
in a piece of process equipment or your home clothes dryer.   
 
At the facility management level, consumer “portals” are 
being demonstrated for interfacing with metering equipment, 
LSEs and distribution system operators.  Many aspects of the 
agent logic used to mimic consumer preferences and the 
dynamics of LSE contract offerings can be considered as 
potential starting places for automation in actual operational 
settings. 
 
The US Department of Energy has established the GridWise 
Architecture Council [13] to articulate the guiding principles 
that constitute the architecture of a future, intelligent, 
transactive energy system.  The Architecture Council 
comprises practitioners and leaders with broad-based 
knowledge and expertise in power, information technology, 
telecommunications, financial systems, and additional 
relevant sectors working together toward a coordinated 
GridWise vision—the transformation of the nation's energy 
system into a rich, collaborative network filled with decision-
making information exchange and market-based 
opportunities. 
 
This group and others (such as organizations that participate 
in FIPA) are looking to identify the key points to establish 
agreement where automation between independent parties 
can enable a new frontier for delivering services and 
motivating investments in electric power.  The knowledge 
gained from agent-based simulation environments will have 
direct applicability to how this new world develops. 
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