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Abstract-- Although Locational Marginal Pricing (LMP) plays 

an important role in many restructured wholesale power 
markets, the detailed derivation of LMPs as actually used in 
industry practice is not readily available. This lack of 
transparency greatly hinders the efforts of researchers to evaluate 
the performance of these markets. In this paper, different AC 
and DC optimal power flow (OPF) models are presented to help 
understand the derivation of LMPs. As a byproduct of this 
analysis, the paper provides a rigorous explanation of the basic 
LMP and LMP-decomposition formulas (neglecting real power 
losses) presented without derivation in the business practice 
manuals of the U.S. Midwest Independent System Operator 
(MISO). 
 

Index Terms-- Locational marginal pricing, wholesale power 
market, AC optimal power flow, DC optimal power flow, U.S. 
Midwest Independent System Operator (MISO). 
 

I.  INTRODUCTION 

N an April 2003 White Paper [2] the U.S. Federal Energy 
Regulatory Commission (FERC) proposed a market design 

for common adoption by U.S. wholesale power markets. Core 
features of this proposed market design include: central 
oversight by an independent market operator; a two-
settlement system consisting of a day-ahead market supported 
by a parallel real-time market to ensure continual balancing of 
supply and demand for power; and management of grid 
congestion by means of Locational Marginal Pricing (LMP), 
i.e., the pricing of power by the location and timing of its 
injection into, or withdrawal from, the transmission grid. 

Versions of FERC’s market design have been implemented 
(or scheduled for implementation) in U.S. energy regions in 
the Midwest (MISO), New England (ISO-NE), New York 
(NYISO), the mid-Atlantic states (PJM), California (CAISO), 
the southwest (SPP), and Texas (ERCOT). Nevertheless, 
strong criticism of the design persists [ 3 ]. Part of this 
criticism stems from the concerns of non-adopters about the 
suitability of the design for their regions due to distinct local 
conditions (e.g., hydroelectric power in the northwest). Even 
in regions adopting the design, however, criticisms continue 
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to be raised about market performance.  
One key problem underlying these latter criticisms is a lack 

of full transparency regarding market operations under 
FERC’s design. Due in great part to the complexity of the 
market design in its various actual implementations, the 
business practices manuals and other public documents 
released by market operators are daunting to read and difficult 
to comprehend. Moreover, in many energy regions (e.g., 
MISO), data is only posted in partial and masked form with a 
significant time delay [4]. The result is that many participants 
are wary regarding the efficiency, reliability, and fairness of 
market protocols (e.g., pricing and settlement practices). 
Moreover, university researchers are hindered from subjecting 
FERC’s design to systematic testing in an open and impartial 
manner. 

One key area where lack of transparency prevents 
objective assessments is determination of LMPs. For 
example, although MISO’s Business Practices Manual 002 
[5] presents functional representations for LMPs as well as an 
LMP decomposition for settlement purposes, derivations of 
these formulas are not provided. In particular, it is unclear 
whether the LMPs are derived from solutions to an AC 
optimal power flow (OPF) problem or from some form of DC 
OPF approximation. Without knowing the exact form of the 
optimization problem from which the LMPs are derived, it is 
difficult to evaluate the extent to which pricing in accordance 
with these LMPs ensures efficient and reliable market 
operations. 

This paper provides readers interested in the operation of 
wholesale power markets with complete and mathematically 
rigorous derivations, as follows: 

• derivation of the “full-structured” DC OPF model from 
the “full-structured” AC OPF model and derivation of 
the “reduced-form” DC OPF model from the “full-
structured” DC OPF model; 

• derivation of LMP and LMP components based on the 
OPF models, the LMP definition, and the envelope 
theorem; 

• derivation and explanation of the basic LMP and LMP-
decomposition formulas (neglecting real power losses) 
presented without derivation in the MISO Business 
Practices Manual 002 for Energy Markets [5]. 

To the best of the authors’ knowledge, such self-sufficient 
derivations are not available in complete form in any existing 
publication. 

The paper is organized as follows. Section II presents a 
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full-structured AC OPF model for LMP calculation. The 
LMPs are derived from the full-structured AC OPF model 
based on the definition of an LMP and the envelope theorem. 
Section III first derives a full-structured DC OPF model from 
the full-structured AC OPF model, together with 
corresponding LMPs. A reduced-form DC OPF model is then 
derived from the full-structured DC OPF model, and it is 
shown that the LMPs derived from the reduced-form DC OPF 
model are the same as those derived from the full-structured 
DC OPF model. As a byproduct of this analysis, the paper 
provides a rigorous explanation of the basic LMP and LMP-
decomposition formulas (neglecting real power losses) 
presented without derivation in the MISO Business Practices 
Manual 002 for Energy Markets [5]. Numerical results are 
discussed in Section IV. Section V concludes. 

II.  LMP CALCULATION UNDER AC OPF 

The concept of an LMP (also called a spot price or a nodal 
price) was first developed by Schweppe et al. [6]. LMPs can 
be derived using either an AC OPF model or a DC OPF model 
([7], [8], [9], [10], [11], [12], [13], [14]).  

The AC OPF model is more accurate than the DC OPF 
model, but it is prone to divergence. Also, the AC OPF model 
can be up to 60 times slower than the DC OPF model [15]. 
The DC OPF model (or the linearized AC OPF model) has 
been used for LMP calculation for power market operation 
[ 16 ], [ 17 ]. Several commercial software tools for power 
market simulation such as Ventyx Promod IV®, ABB 
GridViewTM, Energy Exemplar PLEXOS® and PowerWorld 
use the DC OPF model for power system planning and LMP 
forecasting ([18], [19], [20]).  

There are two forms of DC OPF models, “full structured” 
([13], [21], [22]) and “reduced form” ([16], [17], [20], [23], 
[24], [25]). The full-structured DC OPF model has a real 
power balance equation for each bus. This is equivalent to 
imposing a real power balance equation for all but a 
“reference” bus, together with a “system” real power balance 
equation consisting of the sum of the real power balance 
conditions across all buses. The reduced-form DC OPF model 
solves out for voltage angles using the real power balance 
equations at all but the reference bus, leaving the system real 
power balance equation. 

In this paper, real power load and reactive power load are 
assumed to be fixed and a particular period of time is taken 
for the OPF formulations, e.g., an hour. Given a power system 
with N buses, Gij + jBij is the thij  element of the bus 

admittance matrix, Y, of the power system. Let the bus 
voltage in polar form at bus i be denoted as follows: 

iii VV θ∠=
•

                               (1) 

where Vi denotes the voltage magnitude and θi denotes the 
voltage angle. 

The N buses are renumbered as follows for convenience: 
• Non-reference buses are numbered from 1 to N-1; 
• The reference bus is numbered as bus N. Only the 

differences of voltage angles are meaningful in power 
flow calculation. Therefore, following standard practice, 
the voltage angle of the reference bus is set to 0.  

A.  Power Balance Constraint 

The power flow equations (equality constraints) in the AC 
OPF problem are as follows: 

[ ] 0)( =−++ ∑
∈ kIi

ikkpk pDxf ξ    for k=1,…,N         (2) 

0)( _ =−+ ∑
∈ kIi

ikloadqk qQxf    for k=1,…,N             (3) 

Here, 
• [ ]T

21121 NN VVVx LL −= θθθ  is a vector of voltage angles 

and magnitudes; 
• )(xf pk

is the real power flowing out of bus k: 

( ) ( )[ ]∑
=

−+−=
N

i
ikkiikkiikpk BGVVxf

1

sincos)( θθθθ           (4) 

• )(xf qk
is the reactive power flowing out of bus k: 

( ) ( )[ ]∑
=

−−−=
N

i
ikkiikkiikqk BGVVxf

1

cossin)( θθθθ         (5) 

• Ik is the set of generators connected to bus k; 
• pi is the real power output of generator i; 
• Dk is the given real power load at bus k; 
• Qload_k is the given reactive power load at bus k; 
• qi is the reactive power output of generator i; and 
• ξk is an auxiliary parameter associated with bus k that is 

set to zero. Changes in ξk will later be used to 
parameterize the real load increase at bus k in order to 
derive the real power LMP at bus k. 

B.  Network Constraints 

In general, the network constraints for an AC OPF problem 
formulation include: 
• branch (transmission line and transformer) power flow 

limits, and 
• voltage magnitude and angle limits. 

The complex power flowing from bus i to bus j on the 
branch ij is: 
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where Iij is the current flowing from bus i to bus j, 

jiij θθθ −= , and rij and xij are the resistance and reactance of 

branch ij, respectively. Therefore, the real power flowing 
from bus i to bus j is: 

22

2 ]sin[]cos[
)(

ijij

ijijjiijijjii
ij xr

xVVrVVV
xP

+
+−

=
θθ            (7) 

The reactive power flowing from bus i to bus j is: 
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2 ]sin[]cos[
)(

ijij

ijijjiijijjii
ij xr

rVVxVVV
xQ

+
−−

=
θθ       (8) 



 3

The magnitude of the complex power flowing from bus i to 
bus j is:  

)()()()( 22
~

xQxPxSxS ijijijij +==              (9) 

The power system operating constraints include: 
Branch power flow constraints: 

max)(0 ijij SxS ≤≤    for each branch ij        (10) 

Bus voltage magnitude constraints: 
maxmin

kkk VVV ≤≤    for k=1,2,…,N        (11) 

To simplify the illustration, a general form of constraints is 
used to represent the above specific inequality constraints 
(10) and (11), as follows: 

maxmin )( mmm gxgg ≤≤    for m=1,…,M   (12) 

C.  Generator Output Limits 

Generator real power output limits for the submitted 
generator supply offers are assumed to take the following 
form: 

maxmin
iii ppp ≤≤   Ii∈∀                (13) 

Similarly, generator reactive power output limits are 
assumed to take the following form: 

maxmin
iii qqq ≤≤   Ii∈∀                  (14) 

D.  Objective Function of the Market Operator 

According to MISO’s business practices manuals and tariff 
[ 26] and [ 27 ], the supply (resource) offer curve of each 
generator in each hour h must be either a step function or a 
piecewise linear curve consisting of up to ten price-quantity 
blocks, where the price associated with each quantity 
increment (MW) gives the minimum price ($/MWh) the 
generator is willing to accept for this quantity increment.  The 
blocks must be monotonically increasing in price and they 
must cover the full real-power operating range of the 
generator. 

Let Ci(pi) denote the integral of generator i’s supply offer 
from pi

min to pi. For simplicity of illustration, Ci(pi) will 
hereafter be assumed to be strictly convex and non-decreasing 
over a specified interval. 

In this study the Independent System Operator (ISO) is 
assumed to solve a centralized optimization problem in each 
hour h to determine real power commitments and LMPs for 
hour h conditional on the submitted generator supply offers 
and given loads (fixed demands) for hour h; price-sensitive 
demand bids are not considered. As will be more carefully 
explained below, this constrained optimization problem is 
assumed to involve the minimization of total reported 
generator operational costs defined as follows: 

∑
∈Ii

ii pC )(                                 (15) 

where Ci(pi) is generator i's reported total costs of supplying 
real power pi in hour h, and I is the set of generators. Since for 
each generator supply offer the unit of the incremental energy 
cost is $/MWh and the unit of the operating level is MW, the 
unit of the objective function (15) is $/h.  

E.  AC OPF Problem 

The overall optimization problem is as follows: 

∑
∈Ii

ii
xqp

pC
ii

)(min
,,

                     (16) 

s.t.  
Real power balance constraints for buses k=1,…,N: 

[ ] 0)( =−++ ∑
∈ kIi

ikkpk pDxf ξ      (17) 

Reactive power balance constraints for buses k=1,…,N: 

0)( _ =−+ ∑
∈ kIi

ikloadqk qQxf       (18) 

Power system operating constraints for m=1,..,M: 
maxmin )( mmm gxgg ≤≤               (19) 

Generator real power output constraints for generators Ii ∈ : 
maxmin
iii ppp ≤≤                     (20) 

Generator reactive power output constraints for generators 
Ii ∈ : 

maxmin
iii qqq ≤≤                    (21) 

The endogenous variables are pi, qi and x. The exogenous 
variables are ξk, Dk and Qload_k. The above optimization 
problem is also called the AC OPF problem. 

F.  LMP Calculation Based on AC OPF Model 

The Lagrangian function for the AC OPF problem is as 
follows: 
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(22) 
LMP Definition: The Locational Marginal Price (LMP) of 
electricity at a location (bus) is defined as the least cost to 
service the next increment of demand at that location 
consistent with all power system operating constraints ([27], 
[28]).  

Assume the above AC OPF problem has an optimal 
solution, and assume the minimized objective function 
J*(exogenous variables) is a differentiable function of ξk for 
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each k = 1,...,N. Using the envelope theorem [29], the LMP at 
each bus k can then be calculated as follows: 

k
kk

k

J
LMP π

ξξ χ

=
∂
∂=

∂
∂=

*

*
l , for k=1, 2, .., N      (23) 

Here, 
• J* is the minimized value of the total cost objective 

function (15), also referred to as the indirect objective 
function or optimal value function; 

• χ* is the solution vector consisting of  the optimal values 
for the decision variables. 

It follows from (23) that the real power LMP at each bus k 
is simply the Lagrange multiplier associated with the real 
power balance constraint for that bus. 

III.  LMP CALCULATION AND DECOMPOSITION UNDER DC OPF 

A.  DC OPF Approximation in Full-Structured Form 

The AC OPF model involves real and reactive power flow 
balance constraints and power system operating constraints, 
which constitute a set of nonlinear algebraic equations. It can 
be time consuming to solve AC OPF problems for large power 
systems, and convergence difficulties can be serious. The DC 
OPF model has been proposed to approximate the AC OPF 
model for the purpose of calculating real power LMPs [15]. 

In the DC OPF formulation, the reactive power flow 
equation (3) is ignored. The real power flow equation (2) is 
approximated by the DC power flow equations under the 
following assumptions ([15], [30], [31], [32]): 
a) The resistance of each branch rkm is negligible compared 

to the branch reactance xkm and can therefore be set to 
zero. 

b) The bus voltage magnitude is equal to one per unit. 
c) The voltage angle difference mk θθ −  across any branch 

is very small so that 1)cos( ≈− mk θθ  and 

mkmk θθθθ −≈− )sin( . 

Purchala et al. in [33] show that the resulting DC OPF 
model is acceptable in real power flow analysis if the branch 
power flow is not very high, the voltage profile is sufficiently 
flat, and the rkm/xkm ratio is less than 0.25. The DC OPF model 
itself does not include the effect of the real power loss on the 
LMP due to assumption a). Li et al. in [25] propose an 
iterative approach to account for the real power loss in the DC 
OPF-based LMP calculation. In the present study, however, 
real power loss is neglected in conformity with standard DC 
OPF treatments. 
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assumption b), it follows that Vk = Vm = 1. Given assumption 

c), it follows that mkmk θθθθ −≈− )sin(  Therefore, (2) 

reduces to: 

kkk
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kmm
mk

km

DPDp
x

k

−=−=⎥
⎦

⎤
⎢
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)(
1 θθ  for k=1…N (24) 

Therefore, the net injection Pk – Dk of real power flowing 
out of any bus k can be approximated as a linear function of 
the voltage angles. 

From (7) and based on the assumptions a), b) and c), the 
real power flowing from bus k to bus m is as follows  

km

mk
km x

xP
θθ −=)(                    (25) 

Therefore, this branch real power flow can be 
approximated as a linear function of the voltage angle 
difference between bus k and bus m. 

From (8) and based on the assumptions a), b) and c), the 
reactive power flowing from bus k to bus m is as follows: 

0)( =xQkm
                                     (26) 

From (9), the magnitude of the complex power flow Skm(x) 
is: 

)()()()( 222 xPxQxPxS kmkmkmkm =+=            (27) 

Therefore, the branch power flow constraint becomes: 
maxmin )( kmkmkm FxPF ≤≤                       (28) 

There are no voltage magnitude constraints because all 
voltage magnitudes are assumed to be 1.0 p.u. 

For a power system consisting of N buses, the DC power 
flow equation for each bus k is shown in (24). The 
corresponding matrix form for the full system of equations is 
as follows:  

θBDP =−                                (29) 
Here, 
• T

NPPP ][ 21 L=P  is the N×1 vector of nodal real power 

generation for buses 1, …,N. 
• T

NDDD ][ 21 L=D  is the N×1 vector of nodal real power 

load for buses 1, …,N. 
• B is an NN ×  matrix (independent of voltage angles) that 

is determined by the characteristics of the transmission 
network as follows: 

∑=
m

kmkk xB /1  for each diagonal 

element kk, and
kmkm xB 1−=  for each off-diagonal 

element km. 
• T

N ][ 21 θθθθ L=  is the N×1 vector of voltage angles for 

buses 1, …, N. 
The system of equations (29) is called the full-structured DC 
power flow model. 

The voltage angle at the reference bus N is usually 
normalized to zero since the real power balance constraints 
and real power flow on any branch are only dependent on 
voltage angle differences, as seen from (24) and (25). We 
follow this convention here, therefore: 

0=Nθ                                     (30) 

Given (30), the system of real power balance equations for 
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buses 1, …, N-1 (29) can be expressed in reduced matrix form 
as follows: 

'''' θBDP =−                     (31) 
Here,  
• T

NPPP ][ 121
'

−= LP  is the (N-1)×1 vector of real power 

generation for buses 1, …, N-1. 
• T

NDDD ][ 121
'

−= LD  is the (N-1)×1 vector of real power 

load for buses 1, …, N-1. 
• B' is the “B-prime” matrix of dimension (N-1)×(N-1), 

independent of voltage angles, that is determined by the 
characteristics of the transmission network. The B' matrix 
is derived from the B matrix by omitting the row and 
column corresponding to the reference bus. 

• T
N ][ 121

'
−= θθθθ L

 is the (N-1)×1 vector of voltage angles 

for buses 1, …, N-1. 
In a lossless transmission system (i.e. rkm=0), consideration 

of conservation of power gives the following (see page 358 of 
[34] for details): 

][ '' DPe −−=− T
NN DP                          (32) 

where ]111[ L=Te  is an )1(1 −× N  row vector with each 

element equal to 1. 
In the DC OPF model, the real power flow on any branch 

km is given in (25). Letting M denote the total number of 
distinct transmission network branches for the DC OPF 
model, it follows that the real power flow on all M branches 
can be written in a matrix form as follows: 

θXF =                                     (33) 
Here, 
• T

M xFxFxF )]()()([ 21 L=F  is the M×1 vector of branch 

flows. 
• AHX ×=  is a M×N matrix, which is determined by the 

characteristics of the transmission network. 
• H is an M×M matrix whose non-diagonal elements are all 

zero and whose kkth diagonal element is the negative of 
the susceptance of the kth branch. 

• A is the M×N adjacency matrix. It is also called the node-
arc incidence matrix, or the connection matrix. 

Inverting (31) yields: 
][][ ''1'' DPB −= −θ                             (34) 

Substitution of (34) into (33) yields:  
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Here, 
• T is a M×N matrix, 
• TmN = 0 for m=1, …, M. 

Therefore, the branch power flows in terms of bus net real 
power injections can be expressed as: 

][ DPTF −=                              (37) 

The system of equations (37) is called the reduced-form 
DC power flow model because it directly relates branch real 
power flows to bus net real power injections. 

The real power flow on branch l in (37) is as follows: 

[ ] [ ]kk

N

k
lkkk

N

k
lkl DPTDPTF −=−= ∑∑

−

==

1

11

 for l=1, …, M      (38) 

Assume Pk is increased to Pk + ΔPk while P1, P2, …, Pk-1, 
Pk+1, …, PN-1 and D1, D2, …, DN remain fixed. Then, 
according to (38), the increase in the real power flow on  
branch l, ΔFl, is as follows: 

klkl PTF Δ=Δ                               (39) 

By (32), note that the change in the real power injection at 
bus k is exactly compensated by an opposite change in the 
real power injection at the reference bus N, given by PN - ΔPk. 
Therefore, Tlk in (39) is a generation shift factor. 

More precisely, it is clear from (35) that the branch power 
flows are explicit functions of nodal net real power injections 
(generation less load) at the non-reference buses. It follows 
from (32) that the generation change at bus k will be 
compensated by the generation change at the reference bus N 
assuming the net real power injections at other buses remain 
constant. Thus, the lkth element Tlk in the matrix T in (37) is 
equal to the generation shift factor alk as defined on page 422 
of [31], which measures the change in megawatt power flow 
on branch l when one megawatt change in generation occurs 
at bus k compensated by a withdrawal of one megawatt at the 
reference bus. 

The full-structured DC OPF model is derived from the full-
structured AC OPF model in Section II based on the three 
assumptions a), b), and c) in Section III.A, as follows: 

∑
∈Ii

ii
p

pC
ki

)(min
,θ

                                (40) 

s.t. 
Real power balance constraint for each bus Nk ,,1L= : 
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Real power flow constraints for each distinct branch km: 

max][
1

kmmk
km

F
x

≤−θθ                           (42) 

min][
1

kmmk
km

F
x

≥−θθ                         (43) 

Real power generation constraints for each generator: 
maxmin
iii ppp ≤≤  Ii ∈∀                    (44) 

The endogenous variables are pi and θ. The exogenous 
variables are Dk and ξk. 

The optimal solution is determined for the particular 
parameter values ξk = 0 in (41). Changes in these parameter 
values are used below to generate LMP solution values using 
envelope theorem calculations. 

The Lagrangian function for the optimization problem is: 
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  (45) 

Assume the above DC OPF problem has an optimal 
solution and the optimized objective function J*(exogenous 
variables) is a differentiable function of ξk for each k = 1,...,N. 
Based on the envelope theorem and using the auxiliary 
parameter ξk, we can calculate the LMP at each bus k as 
follows: 

*
*

*

k
kk

k

J
LMP π

ξξ χ

=
∂
∂=

∂
∂= l , for k=1, 2, .., N           (46) 

It follows from (46) that the LMP at each bus k is the 
Lagrange multiplier corresponding to the real power balance 
constraint at bus k, evaluated at the optimal solution. 

B.  DC OPF Approximation in Reduced Form 

The reduced-form DC OPF model can be derived directly 
from the full-structured DC OPF model in Section III.A by 
applying the following three steps: 

a) Replace the real power balance equation at the reference 
bus N by the sum of the real power balance equations across 
all N buses. This is an equivalent formulation that will not 
change the optimal solution of the DC OPF problem. Since 
there is no real power loss in the DC power flow model, the 
sum of the net real power injections across all buses is equal 
to zero; see (32). Therefore, the system real power balance 
constraint (in parameterized form) can be expressed as in 
(48), below. 

b) Solve the voltage angles at the N-1 non-reference buses 
as functions of the net real power injections at the N-1 non-
reference buses as shown in (34).  

c) Replace the voltage angles in the branch flow 
constraints as functions of the net real power injections at the 
non-reference buses as shown in (35) and (38). Since the 
above transformation is based on equivalency and only 
eliminates internal variables (i.e. voltage angles at non-
reference buses), the optimal solution and the corresponding 
Lagrange multipliers of the branch power flow constraints are 
the same for the two DC OPF models.  

The resulting reduced-form DC OPF model is then as 
follows: 

∑
∈Ii

iip
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i

)(min                           (47) 

s.t. 
System real power balance constraint: 

0))((
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k
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Branch real power flow constraint for each branch l: 
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Real power output constraint for each generator i: 
maxmin
iii ppp ≤≤  Ii ∈∀                  (51) 

The Lagrangian function for this optimization problem is: 
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            (52) 

Assume the reduced-form DC OPF problem has been solved. 
Based on the envelope theorem, using the auxiliary parameter 
ξk, we can calculate the LMPs for all buses as follows: 
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Here, 
• MECN = π is the LMP component representing the 

marginal cost of energy at the reference bus N.  

• ∑∑
=

∨

=

∧
+−=

M

l
lkl

M

l
lklk TT

11

MCC μμ  is the LMP component 

representing the marginal cost of congestion at bus k 
relative to the reference bus N. 

The derived marginal cost of energy, MEC, in (53) and 
(54) is the same as that in Equations (4-1) and (4-2) on page 
35 of the MISO’s Business Practices Manual for Energy 
Markets [5]. Recall that Tlk is equal to the Generation Shift 
Factor (GSFlk), which measures the change in megawatt 
power flow on flowgate (branch) l when one megawatt change 
in generation occurs at bus k compensated by a withdrawal of 

one megawatt at the reference bus. From (52), 
ll

∨∧
− μμ  is the 

Flowgate Shadow Price (FSPl) on flowgate l, which is equal to 
the reduction in minimized total variable cost that results from 
an increase of 1 MW in the capacity of the flowgate l. 
Therefore, the marginal congestion component MCC can be 
expressed as, 
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∑
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l
llkk

1

FSPGSFMCC                       (55) 

The derived marginal cost of congestion, MCC, in (55) is 
the same as that in Equation (4-3) on page 36 of the MISO’s 
Business Practices Manual for Energy Markets [5]. 

IV.  NUMERICAL RESULTS 

As depicted in Fig. 1, we use a three-bus system with two 
generators and one fixed load to illustrate LMP calculations 
based on the full-structured DC OPF model. For the purpose 
of illustration, assume: (i) the reactance of each branch is 
equal to 1 p.u.; (ii) the capacity of branch 2-1 is 50 MW; (iii) 
there are no capacity limits on branches 2-3 and 3-1; (iv) the 
demand at Bus 1 is  fixed at 90 MW; (v) the real power 
operating capacity limit for generator 2 and for generator 3 is 
100MW; (vi) the indicated marginal costs $5/MWh and 
$10/MWh for Generator 2 and Generator 3 are constant over 
their real power operating capacity ranges; (vii) the time 
period assumed for the DC-OPF formulation is one hour; and 
(viii) the objective of the market operator is the constrained 
minimization of the total variable costs of operation ($/h), 
i.e., the summation of the variable costs of operation 
(marginal cost times real power generation) for Generator 2 
and Generator 3. 

 
Fig. 1.  LMP calculation for the full-structured DC OPF model 

In the following calculations, all power amounts (generator 
outputs, load demand, and branch flows) and impedances are 
expressed in per unit (p.u.). The base power is chosen to be 
100 MW. The objective function for the DC OPF problem is 
expressed in per unit terms as well as the constraints. The 
variable cost of each generator i is expressed as a function of 
per unit real power PGi, i.e., as 100×MCi×PGi, where MCi 
denotes the marginal cost of Generator i. Note that the per 
unit-adjusted total variable cost function is then still measured 
in dollars per hour ($/h). 

Given the above assumptions, the market operator’s 
optimization problem is formulated as follows: 
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The solution to this optimization problem yields the following 
scheduled power commitments for Generators 2 and 3 and 
LMP values for Buses 1 through 3: 
• PG2 = 0.6 p.u. = 60 MW, PG3 = 0.3 p.u. = 30 MW 
• LMP1 = $15/MWh, LMP2 = $5/MWh, LMP3 = $10/MWh 

In the following, we use the same three-bus system to 
illustrate the calculation of LMP solution values based on the 
reduced-form DC OPF model. First, the optimization problem 
is formulated as follows: 
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The optimal real power commitments for Generators 2 and 
3 are the same as those obtained for the full-structured DC 
OPF model: 
• PG2 = 0.6 p.u. = 60 MW, PG3 = 0.3 p.u. = 30 MW   

The Lagrange multiplier corresponding to the system real 
power balance constraint, π, is $10/MWh and the Lagrange 
multiplier corresponding to the inequality constraint for 
branch 2-1, μ, is $15/MWh. The LMPs can then be calculated 
based on (53) and (54) as 
• LMP1 = MEC3 + MCC1 = π – μ(T11) = 10 – 15(-1/3) = 

$15/MWh 
• LMP2 = MEC3 + MCC2 = π – μ(T12) = 10 – 15(1/3) = 

$5/MWh 

• LMP3 = MEC3  = π = $10/MWh 
These LMP solution values are the same as those obtained 

using the full-structured DC OPF model. Moreover, the 
marginal cost of congestion at Bus 1 relative to the reference 
Bus 3, MCC1, is $5/MWh, and the marginal cost of 
congestion at Bus 2 relative to the reference Bus 3, MCC2, is -
$5/MWh. 

V.  CONCLUSION 

Locational marginal pricing plays an important role in 
many recently restructured wholesale power markets. 
Different AC and DC optimal power flow models are 
carefully presented and analyzed in this study to help 
understand the determination of LMPs. In particular, the 
paper shows how to derive the full-structured DC OPF model 
from the full-structured AC OPF model, and the reduced-form 



 8

DC OPF model from the full-structured DC OPF model. 
Simple full-structured and reduced-form DC OPF three-bus 
system examples are presented for which the LMP solutions 
are derived using envelope theorem calculations. These 
examples are also used to illustrate that LMP solution values 
derived for the full-structured DC OPF model are the same as 
those derived for the reduced-form DC OPF model. As a 
byproduct of this analysis, the paper provides a rigorous 
explanation of the basic LMP and LMP-decomposition 
formulas (neglecting real power losses) presented without 
derivation in the MISO Business Practices Manual 002 for 
Energy Markets. 
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