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A general discrete-time stochastic control model is developed which encompasses many well- 
known economic models. In the context of the general model, sufficient conditions are derived 
for the equivalence and approximate equivalence of myopic (sequential single-period) and global 
(simultaneous multi-period) expected return maximization. A bound provided for the global 
return loss resulting from myopic optimization is shown to vary directly with the degree of 
uncertainty and inversely with the degree of positive correlation in period-by-period returns. 
Characteristics of intermediate-period return functions which partially order them in terms of 
final-period expected return performance are clarified. Results are illustrated by portfolio and 
macro policy model examples. 

1. Introduction 

In theoretical models of dynamic resource allocation problems, the 
criterion function of the economic planner is commonly specified in the form 
of a return function integrated over the entire duration of the resource 
allocation process. Nevertheless, it has long been noted [Leontief (1958), 
Koopmans (1967) Day (1969), Simon (1971)] that in actual problem 
contexts the time horizon over which plans are formulated must generally be 
short in relation to the history of the process as a whole. Information 
regarding future technology, preferences, and general economic environment 
may be incomplete. Alternatively, the required calculations may be 
analytically intractable. 

The question then arises whether the sequential selection of short-term 
limited foresight controls ever results in returns which are approximately 
optimal in some long-term sense. Day and Fan (1976), J!.os (1971) and 
Keeler (1974) investigate the relation between short-term and long-term 

*This material is based upon work supported by the National Science Foundation under 
Grant No. ENG77-28432. An earlier version of this paper was presented at the Economics- 
MRG Research Seminar, USC, November 27, 1978, and at the Workshop in Mathematical 
Economic Theory and Econometrics, UCLA, November 30, 1978. The author is grateful to R.H. 
Day, Y. Haitovsky, and two anonymous referees for helpful comments. 
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optimization for several deterministic growth models with consumption and 
terminal stock objectives, and Landau (1976) carries out a similar 
investigation for a deterministic pricing model with total profit objective. 
Mossin (1968) and Hakansson (1971) characterize the constant risk aversion 
utility functions for which short-term and long-term optimization coincide in 
the context of a portfolio model with terminal wealth objective. Finally, Aoki 
(1976), Bar-Shalom and Tse (1976), Chow (1975), and Norman (1976) 
propose several global return approximation schemes for dynamic macro 
policy models. 

The present paper investigates the optimality of sequential single-period 
expected return maximization for a general class of stochastic discrete-time 
resource allocation models with multi-period expected return objectives. This 
class of models includes the standard dynamic macro policy model used by 
Aoki (1976) et al., as well as a variety of microeconomic models from 
production, consumption, and investment theory, e.g., the portfolio model 
used by Mossin (1968) and a version of the pricing model used by Landau 
(1976). 

The basic idea of the paper is as follows. For some of the models under 
consideration, e.g., production and investment, period-by-period returns tend 
to be positively correlated. For others, e.g., consumption or consumption- 
investment, period-by-period returns tend either to be negatively correlated 
or to exhibit no consistent pattern. Intuitively, myopic (sequential single- 
period) expected return maximization should result in better global (multi- 
period) expected return performance for the first type of model than for the 
second; and, for the first type of model, the resulting global expected return 
performance should be adversely affected by increased uncertainty and 
favorably affected by increased positive correlation in period-by-period 
returns. 

An affirmative answer for these suppositions is provided below. Briefly, the 
basic resource allocation model is developed in section 2. In section 3 it is 
shown that myopic expected return maximization results in optimal global 
expected return if period-by-period returns exhibit positive linear correlation. 
Linearity can be omitted if certain additional conditions are met. For the 
important special case in which all probability distributions are degenerate, 
linearity can be omitted without additional conditions. These results provide 
a systematic explanation for a variety of economic models in which myopic 
optimization yields globally optimal return, e.g., the constant risk aversion 
portfolio model of Mossin (1968) and a dynamic linear-quadratic policy 
model of Aoki (1967). 

In section 4, after suitable distance functions are introduced for measuring 
uncertainty and positive correlation in returns, the global expected return 
loss associated with myopic expected return maximization is shown to be 
bounded above by terms which vary directly with the degree of uncertainty 
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and inversely with the degree of positive correlation in period-by-period 
returns. Also, characteristics of intermediate-period return functions which 
partially order them in terms of final-period expected return performance are 
clarified. 

Macro policy model and portfolio model examples of analytic findings are 
presented in section 5, and concluding comments are given in section 6. 
Proofs of theorems are outlined in an appendix. 

2. The basic model 

Consider a finite-horizon economic system described by equations of the 
form 

x0=X (initial conditions), 

X .+l+jfn(~“J&Jr OS:nSN, 

(14 

(lb) 

where, for each n E (0,. . ., N}, the nth period system stare x, is an element of 
an open set Xc Rq, the nth period control u, is constrained to lie in an 
admissible control set V(n,x,)c V for some open set VCR’, the nth period 
random disturbance o,, is an element of a set Szc R”, and 1”: s2 x V x X+X is 
a continuous’ state fiux-tion. Letting 9 denote the a-algebra generated by 
the open sets of Q, it will be assumed that w, is governed by a transition 
probability’ p,( .I u,, x,): P “+R conditioned on the current time n, the 
current control selection u,, and the current state x,. In addition, it will be 
assumed that the value associated with each possible disturbance, control, 
and state configuration (o”, unr x,) for period n is measured by a continuous 
return function W, : Q x V x X + R. 

An admissible jhedback control law for the problem at hand is any vector v 
=(u,(. ),...,u,( . )) of measurable functions u,: X+V satisfying U,(X)E V(n,x) 
for each x E X. The symbol 9 will be used to denote the set of all admissible 
feedback control laws v. The objective assumed for the economic planner will 
be either the maximization of linal-period expected return 

‘It is assumed throughout the paper that X, V, and R have the relative topology with respect 
to Euclidean q-space, r-space, and s-space, respectively, and that products of X, V, and 0 have 
the corresponding product topology. Each of the spaces X, K and Q will also be regarded as a 
measurable space, with u-algebra generated by its open sets. 

‘More precisely, it is assumed that p.( ‘1 o,x):.‘F+R is a probability measure for each (L+X)E V 
x X, and p,(A 1. ): V x X-R is a measurable function for each AE 6. 
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or the maximization of total expected return 

E 
[ 

g K(~“,~,(x”),x”)~~,~ 7 1 (3) 
n=O 

via selection of a feedback control law u E LYY.~ 
For brevity, any optimization problem meeting the above specifications 

will be referred to as a busic modA As will be illustrated in section 5, the 
basic mode1 encompasses a wide variety of interesting economic optimization 
problems. 

In section 3 it will at times also prove useful to consider a speciul btrsic 
model for which the state space X is an open subset of R, and the decision 
maker has a final-period expected return objective function (2) with final- 
period return function W,:Q x Vx X --f R given by W,(CU, ~1, x) = cp o./,(w, 11, x) 

=‘pb,+ 1 ) for some continuous strictly increasing function cp: X+R. 
Moreover, for the special basic model the state functions fi(tu, 11,x) will be 
assumed to be strictly increasing in x, and the transition probabilities 
p,( .10,x) will be assumed to be non-degenerate measures independent of LJ 
and x. The following additional restrictions will be imposed as needed: 

(A.l) q(x) is twice continuously differentiable, and J,(w,u,x) is twice 
continuously differentiable in u and x for each o E Q and II E (0,. . ., N}. 

(A.2) 52 is compact.’ 

sThe expectation operator E[ ‘1 , ] a Y is more precisely detined as follows. Let 52” denote the 
set of all disturbance sequences CIJ~ = (we,. ., wN) satisfying w, E Q, 0 S n 5 N, and let FN denote 
the product u-algebra generated by all cylinder sets of the form 

where A,o9, 0~n~1V. Finally, for each ueY and xe X, let p”( ,I u,.~) denote the unique 
probability measure on (@‘, sN) satisfying 

P 

for each cylinder set flf=, A,E.F” [see Hinderer (1971, thm. A.5, p. 148)]. Expectation with 
respect to (G?‘, 9”. p”( ( II, x)) is then denoted by E[ (u, x]. 

4An axiomatization for a one-period version of the basic model with discrete probability 
distributions is provided in Tesfatsion (to appear), where it is shown that the basic model 
generalizes the Savage expected utility model, the Marschak-Radner team model, and the 
standard Bayesian statistical decision model. The symmetrical treatment of return and pro- 
bability in the basic model has proved to be useful in the development of a new approach to 
adaptive control, direct criterion function updating. See Tesfatsion (1978, 1979). 

‘The sole purpose of the compact R restriction is to allow the interchange of expectation and 
differentiation operations. Various alternative restrictions would serve equally well for this 
purpose. 
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(A.3) A unique regular interior6 optimal feedback control 1aG u” 
=(I$(.),..., u$( . )) exists. 

(A.4) q(x) is thrice continuously differentiable. 
(A.5) The state functions J.: 12 x V x X -+X are given by J,(w,u,x)s b,x 

+ Q.(w, u) for some constants b, E R, + and continuous functions Q.: 
Q x V-R thrice continuously differentiable in u. 

3. Sufficient conditions for myopic and global expected return equivalence 

Let E,,[ .111,x] denote expectation with respect to the 11th period t’ransition 
probability (CC!, 4, p,( .I u,x)), and consider the three alternative expected 
return objectives 

(Myopic) max UW,(w,, tl,, x,)1 u,, ~“1, OsnsN, 
““E V(n.r”, 

(Final-Period)~~~ECW,(w,,o,(x~),s,)lu,x], 

(4) 

(5) 

(Total)maxE 2 Wn(wn,u,(x,),x,,)(u,~ . 
uelr n=O 1 (6) 

For each n~(o,...,N} and x E X, let F,(x) denote the maximum attainable 
final-period expected return beginning in period II with initial state x, and 
using feedback control. Then [Hinderer (1971, thm. 14.4, p. 101; pp. 104- 
105; thm. 17.6, p. ill)]. 

FN(X)= sup ~NCWN(O,U,X)~U,Xl, (7a) 
UEV(N.X) 

F,(.x)= sup E,,CF,+,of,(w,u,.~)lu,xl, OsnsN-1, U’b) 
UE V(ll. X) 

and a feedback control law U’E 2’ satisfies the final-period expected return 
objective (5) if and only if it satisfies the dyrzumic progrcrmming optirnulitp 
eqrrtrtions 

6An optimal admissible feedback control law uO= (I&( ). _, u;(. )) will be called reg~lrrr 
interior if each component solution u:(x) to maxE,[F,+, oj~I~~,s]zQ(u,x) over LIE V(n,.u) 
satisfies Q,.(o~(s),x)=O and Q,.,,(LI~(x),x) negative defmite, where F,,, is as delined in section 3. 
Alternate sets of weak sufficient conditions guaranteeing the existence of an optimal admissible 
feedback control law for the basic model can be derived using the results of Hinderer (1971). 
Leland (1972), and Hildreth (1974). 
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for almost every disturbance sequence (w,, . . ., c+,).’ Thus a feedback control 
law u* E 2 which satisfies the myopic expected return objective (4) provides 
an optimal feedback control law for the final-period expected return objective 
(5) if and only if 

~“(x,)=u~“+ 1 of;r(~“~~,*(x”),x,)(u,*(x,),x,], OSnSN- 1, (9) 

for almost every sequence (w,, . . ., ~0~). 
Similarly, letting T,(x) denote the maximum attainable total expected 

return beginning in period II with initial state x and using feedback control, 
it follows [Hinderer (1971, op. cit.)] that 

TN(x)= SUP ~~[W~(W,U,X)~U,X], 
IJE Y(N.x) 

(104 

and a feedback control law u” E Y satisfies the total expected return objective 
(6) if and only if it satisfies the corresponding optimality equations 

for almost every disturbance sequence (w,, . . ., oN). Thus a feedback control 
law u* ~2’ which satisfies the myopic expected return objective (4) provides 
an optimal feedback control law for the total expected return objective (6) if 
and only if 

Given degenerate probability distributions, equality (9) holds for u* ~2’ 
satisfying (4) if and only if maximum future expected return F,, r o~,(o,, .,x,) 
and currently realized return W”(w,,, . ,x,) attain a maximum at the same 

‘More precisely, using the delinitions presented in footnote 3, the optimality equations must 

hold for p”‘-almost every disturbance sequence O/‘-Q’. The symbol 0 denotes function 

composition, e.g., hoS(x)=h(S(x)). 



control selection UE V(n,x,), regardless of how dissimilar F,, r of;, and w, 
may be in other respects. A sufftcient condition for F,, ,oj, and W, to have a 
common maximizing point is that F,, , ofR be an increasing function of W, in 
the sense that 

F n+l oj;=H,+, 0 W,, (13) 

for some function H,, r : R-+R with Hi,, >O. If for each LIE V(n,x,) the 
correlation coefficient 

P”( w,, F, + t oj;) = cov(W,(~,u,x,),F,+,of,(~,u,x,)) 
{var(W,(tu,u,x,))var(F,+,of,(w,~,x,))}~’ 

(14) 

for the two random variables W,( ., u, x,) and F,, r oj,( ., u, x,) is well-defined, 
then condition (13) guarantees [Hildreth-Tesfatsion (1977, thm. l)] that 
P”(W,>F,+I of,)~ (0, 11, i.e., that current and future returns are positively 
correlated for each admissible control selection u. Although the presence of 
non-degenerate expectation operators in (9) and (12) complicates matters, a 
generalized version of condition (13) and an analogous condition for T. + r 01. 
will play fundamental roles throughout the remaining sections of the paper. 

The first two theorems, below, provide sufficient conditions for myopic 
objective (4) solutions to yield optimal feedback control laws for the global 
objectives (5) and (6), and conversely. As a direct corollary, they also provide 
sufficient conditions for the return-to-go-Junctions F,, r of, and T,, r 01, in 
the optimality equations (8) and (11) to be approximated by simpler 
expressions (e.g., truncated Taylor’s expansions) without loss of control 
performance.* Examples of economic models satisfying the hypotheses of 
these theorems are presented in section 5. 

*For example, suppose the problem is to determine whether the return-to-go terms r,, , oJ~ in 
the optimality equations (11) can be approximated by certain simpler expressions S,, , o/. 
without loss of return performance, the control objective being to maximize total expected 
return. Replacing each single-period return function W, by W; (w, U, x)= W,(w, u, x) 

+[%+I O/J (0, v, x)-S,(x), with S,,+ , (. )= S,( )=O, this problem is equivalent to determining 
whether the myopic sequential maximization of ‘current’ expected return E,[W; (w, u. s,)[n, x.1 

results in a control law u* which satisfies the optimality equations (11) with IV,, ., W; in place 
of W,, . ., W,. Any such control law would also be optimal for the original problem, since 

E 
[ 

i w,k%. ~,(X,M( v,x =.E t w,(o,,~,(x,),x,)l~,~ 9 
n=u I [ I 

“=U 

for each UEY. Similarly, in considering approximations S,, , oj;, for the return-to-go terms 
F “+, of, in the optimality equations (8), one can apply the suffkiency conditions for the 
equivalence of objectives (4) and (5) with each original return function W, replaced by W; 
=s,+,oj,. 

Various return-to-go approximations have been suggested. See Aoki (1976, ch. VII), Aoki 
(1967, ch. IO), Bar-Shalom and Tse (1976) Chow (1975, ch. l&12), and Norman (1976). 
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Theorem 3.1. Suppose for each n E {0, . . ., N - 1) the return-to-go junction 
F “+, 0.1; in the optimality equation (8b) has the form 

CFn+ I ~l,l(o,~,x)=a,(x)CHn+10 w,l(w~~,X)+~“(xL (15) 

jar some junctions lt,:X+R++, b,:X+R, and H,,,:R+R, where H,+, is 
strictI)* incretrsing.9 Then crny one of’ the following jive restriction sets 
gutrrcrntees that u jeedbock control law u* ~9’ satisjies the myopic expected 
return objective (4) ijund only ij it is also an optimcd feedback control law for 
the final-period expected return objective (5). 

(1) For ecrch n E (0,. . ., N - 1 >, the junction H,, 1 ( . ) is lineur. 
(2) (Deterministic control). For each n E (0,. . ., N - l}, the probability 

distributions (s2,8, p,( .I v, x”)), v E V(n, x”), are degenerute. 
(3) For each nE{O,..., N-l}, the return junction W,( . ) has the jbrm 

w”(o,u,x)=s,(u,x). 
(4) For each n E (0,. . ., N - l}, the probability measure p,( .Iu,x,) is 

independent oj’ the control v; und the return junction W,( . ) has the jbrm 
w,(W,U,X)-Q,(W,X)+Z,(U,X). 

(5) For each n E (0,. . ., N - l}, the nth period disturbance o, is u junction of’ 
the nth period control v, and nth period state x, oj’ the form o,=g,(v,,,x,) 
+a,, where (6,) is u serially uncorrelated process; and the return junction 
W,(.) has thejorm W,(O,~,X)=Q~(X)W+Z,(~,X). 

rj’ jar euch nE IO,..., N - 1) the probability distribution p,( .111,x,) is 
independent oj’the selected control v, then the junctions b, ( . ) in condition (15) 
may depend on w without ujjecting the Nbove conclusions. 

The next theorem follows from Theorem 3.1 by straightforward 
modifications. 

Theorem 3.2. Suppose for each nE (0,. . ., N - 1) the return-to-go junction 
T n+l 01, in the optimulity equation (llb) has the jbrm 

for some junctions N,: X--t R + , b,: X + R, crnd H,, , : R-t R, where H, + , is non- 
decreasing. Then any one of the restriction sets (lk(5) listed in Theorem 3.1 
guarantees thut u feedback control law u* ~9’ satisjies the myopic expected 
return objective (4) ij’und only ij’it is ctlso cm optimul feedback control law jbr 
the tottn expected return objective (6). Jj jbr euch n E {O,. , ., N - l} the 

9As usual, we define R, ~(z~RlzzO} and R,, =(z~R(z>Oj 
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probability distribution p,( .111,x,) is independent of’ the selected control v, *then 
the jtinctions b,( . ) in (16) mcry depend on w without ujjticting the ubove 
conclusions. 

As the following Corollary 3.3 demonstrates, the three return objectives 
(4), (5), and (6) yield identical optimal control laws if maximum expected 
return for each period II + 1 is a positive linear afflne function of the return 
realized in the previous period n. All previously noted equivalences of myopic 
and global optimization known to this author are special cases of Corollary 
3.3. (See section 5.) 

CorollorJ, 3.3. Suppose jbr each n E 10,. . ., N - 1) the maximum expected 
return 

M,+lb)= max ~,+,C~,+,(w,v,x)lv,xl, 
cevolt 1.X) 

(17) 

jtir period n+ 1 beginning in state x is LI positive lineor ojjine jimction oj the 
return realized in the previous period n in the sense that 

CM,+, ~j,l(~,v~x)=~,(x)W,(w,v,x)+d,(x), (18) 

jbr some junctions c,: X +R+ + and d,: X -+R. Then on optimal feedback 
control low jbr rmy one oj’the three expected return objectives (4), (5), or (6) 
yields on optimal jeedbock control INW jar the remaining two objectives. i%e 
equivtrlence still holds jtir objectives (4) and (6) ij’ the junctions c,(x) take on 
zero values. lj’ for each no {O,. . ., N - 1) the distribution p,( .lv,x,) is 
independent oj’ the selected control v, then the junctions d,( . ) in (18) may 
depend on w without c&?cting the trbove conclusions. 

Consider the special basic model with additional restrictions (A.lb(AS), 
outlined at the end of section 2. Let 

Gb)=UF,+ 1 0 j, (to, u, x ) ) 0, xl (19) 

denote the maximum attainable final-period expected return starting in 
period n with initial state x and arbitrary control selection PE V(n,x). By 
assumption (A.3), the optimal control selection u:(x) for period n in state x, 
the maximizer of G(v) over V(n,x), is assumed to exist. The next theorem 
demonstrates that a certain myopically selected control U.*(X) yields the 
globally optimal return G(o;(x)) if the final-period utility function q( .) 
exhibits constant absolute risk aversion. We thus obtain a generalization of 
a portfolio model result of Mossin (1968). 
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Lemma 3.4. For any special basic model sutisjjing assumptions (A.lHA.3), 
the return-to-go junctions F,: X -+R are well-defined strictly increasing twice 
differentiable junctions satisjying the following relationships for each 
n E (0,. . ., NJ: Letting FN+, ( . )= cp( . ), T denote trtrnspose, and d denote the 
point (04 0: (xl. x h 

WC) 

where the nth period optimal jeedbuck control u:(x) is (I continuously 
d~jererzticrblejitnctiorl oj’x satisjjing 

[ 1 f&$X) = -D"(x)- l S,(x), rx1 
with 

und D,(x) N negutive dejinite motrix given by 

(22a) 

(22b) 

Theorem 3.5. Consider u special basic model satisfj’ing assumptions (A.l)- 
(A.5). Suppose R;(x)=0 for ~11 XEX, where R,(x)= -q”(x)/cp’(x) denotes 
the Pratt-Arrow metrsure oj’ubsolute risk aversion [Prcrtt (1964)]. !f’n control 
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v:(x) is selected in period n which solves . 

max U~J~JJ~,U,X)~~,XI, (23) 
tJEV(n*x) 

where U: X+R is defined by U(x)= go(x II;:,” b,+j), then no global return 
loss results; i.e., G(v,*(x))= G(vi(x)). 

As is clear from the proofs of Corollary 3.3 and Theorem 3.5, the 
hypotheses of these propositions guarantee that conditions (15) and. (16) in 
Theorems 3.1 and 3.2 are satisfied by positive linear affine functions H,,,: 
R-+R. Hence, current and future expected returns are perfectly positively 
correlated; for the correlation coelXcient (14) takes on its maximum value 1.0 
if and only if 

CF,+,of,l(.,v,x,)=u,,(x,)W,(,,v,x,)+b,(x,) P,,(.Iv,xn)-a.s., 
(24) 

for some constants a,(~,) and b,(x,), with un(xn)>O [Wilkes (1962, 3.4.3, p. 
79)]. Similar observations hold for W,, 7’,‘,+ 1 oji, and p”( W,, T,, 1 01”) in the 
context of Theorem 3.2. 

The final result of this section, Theorem 3.6, provides weaker hypotheses 
for the basic model which guarantee conditions (15) and (16) hold with 
possibly non-linear functions H,, , . The remaining conditions for Theorems 
3.1 and 3.2 are then easily checked by direct inspection. As will be indicated 
in section 5. the hypotheses of Theorem 3.6 ;IIT satisfied by SC\ CIXI \~ell- 
known economic models. 

Theorem 3.6. Suppose the jbllowing restrictions hold jbr the basic model for 
ecrch nE(O,...,N),: 

(1) The strrte jlrnction 1,: Q x V x X +X satisjies f;l(qv,x)=[gnO W,](w,v,x) 
fbr some non-decreasing function g, : R +X. 

(2) Either the transition probability p,( .( v, x) is independent qf’ the state x jbr 
each VE V; or the disturbance space Q is a subset of R, and the return 
function W,(w, v,x) is non-decreasing in wjtir euch (V,X)E V x X.” 

(3) If x’ >x” for some x’, X” E X, then p,( .I v, x”) stochastically domincltes 
p,( . I v, x’) JOr every v E V; i.e., 

O(~*,p(dwlv,x”)~~,~,,P,,(dW(U,x’), 

“‘The hypothesis QcR can be weakened to 52cRs, sz 1, if the stochastic dominance 

restriction (3) is strengthened to include additional restrictions on marginal distributions [Levy 
et al. (1974)]. 
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for all CU’EQ, where Q(o*)~{oEl2~o~o*}. 
(4) The return jirnction W,(w, v,x) is non-decreasing in x for each (w. U)EQ 

x v. 
(5) The admissible control set V(n,x) is non-decreasing in x in the sense thut 

V(n,x”)z V(n,x’) whenever x”>=x’. 

Then, for each n E {O,. . ., N - l}, the return-to-go jirnctions F,, r :X+R and 
T ,,+ , :X+ R ure non-decreasing, and similcrrly jtir the firnctions H,*, , : R+R 
and Hz,*, : R+R defined by H,*+ 1 = [F,, , o g,] und H,*f I = [T,, , o g,]. [I’ ‘non- 
decrecrsing’ is replaced by ‘strictly increasing’ in restriction (1) ubove, Lmd the 
return function W,( . ) is clssumed to be strictly increcrsing with respect to x in 
(4), then the jirnctions F,, ,, T,, , , H,*+ ,, und Hz,*, will be strictly increasing. 

Remark. The positive correlation conditions (15) and (16) in Theorems 3.1 
and 3.2 are satisfied under restriction (1) with F,, , 01. = Hz+, o W, and 
T ,a+ 1 oj,= Hz,*, o W,. The stochastic dominance restriction (3) implies that the 
rnh period disturbance w, is positively correlated with the rrth period initial 
state x,. 

4. Approximate global optimality of myopic expected return maximization 

Consider an economic planner in period II of a basic mode1 resource 
allocation problem for which the current state is x. Suppose the planner 
wishes to maximize final-period expected return (2), and current return is 
positively correlated with final-period expected return in the sense that 
condition (15) holds.’ ’ Then, for any admissible control selection DE V(n,x) 
for period R, the maximum attainable final-period expected return is 

G(u)-UF,. 1 ~j.hW)J~,Xl 

=~~,(x)UH,+ 1 0 W,(tu,u,x)IL~,xl+b,(x), (25) 

where a”(x)~R++, b,(x)ER, and Hnfl : R -+ R is strictly increasing. 
The first problem considered in the present section is as follows: Suppose 

v”=u~(x) is a globally optima1 admissible control selection for period n in 

“Unless otherwise stated, it is implicitly assumed throughout section 4 that an optimal 
admissible feedback control law u0 exists for the basic model under discussion, hence the return- 
to-go functions F, are well-defined. In addition, it is generally assumed without comment that 
the functions F, have suitable differentiability properties, a well-established tradition in the 
economic control literature since general sullicient conditions guaranteeing difTerentiability or 
such functions have not yet been obtained [see Pitchford et al. (1977)]. Sufficient conditions 
guaranteeing differentiability are established in Lemma 3.4 for the special basic model. 
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the sense that 

147 

G(P)= max G(o), 
“eV(n,xl 

(26) 

and suppose LI* 5 tl,* (x) is a myopically optimal admissible control selection 
for period II in the sense that I’* maximizes only current expected return, i.e., 

E,,[W”(co,o*,x)lLl*, xl= max E,[M/;,(w,a,x)lu,x]. 
L’E V(n.s) 

(27) 

What is the loss in global expected return performance which results from 
using u* in place of 11’; i.e., what is the magnitude of the (non-negative) 
return loss 

G(t)“)- G(P*). (28) 

As will be shown in Theorem 4.2, below, the return loss (28) is bounded 
above by terms which vary directly with the degree of uncertainty and 
inversely with the degree of positive correlation in period-by-period returns. 
Using similar arguments, analogous results can easily be obtained for the 
return loss resulting from use of the myopic control P* in place of the control 
P“ which is optimal for the total expected return objective (6). 

A natural choice for measuring uncertainty in current (nth period) return 
is maximum variance. Formally, letting 

denote the current expected return, and 

denote the jth central moment for current return associated with any control 
selection D, uncertainty in current return will be measured by 

cJ23 sup l?(LI). 
VEV(l1.X, 

(31) 

As noted in section 3, the correlation coefficient @‘(q,,F,+ I of,) for 
current return I+$( ., u,x) and maximum final-period expected return 
F “+ I o./,( ., P,X) attains its maximum value 1.0 when H,, 1 is positive linear 
afflne. Thus, given that H,, , is increasing, a natural choice of inverse 
measure for positive correlation in returns is the maximum absolute 



magnitude 

(32) 

of the second derivative Hc,, of H,, r over the range set 

W={zERlz=W,(o,u,x) for some (w,tr)~Rx I/(17,x)), (33) 

for the current return function section W,( ., .,x). 
The first theorem, below, demonstrates the appropriateness of this 

interpretation for Y, as well as pointing out a similar possible interpretation 
for the infimum 

L’= inf HA+,(z) (34) 
ZEd 

of the first derivative HA+ 1 of H,+, over .9. Specifically, the correlation 
coefficient p”( W,, F,, r of,) is shown to vary inversely with Y and directly 
with L’. 

Theorem 4.1. Let Y (md 17 be defined by (32) Lmd (34). Then, for ecrch 
Lldmissible control UE V(n, x), the correkltion coejjicient p”( W,, F,,+, 0.1,) is N 
positive number scrtisjjing 

(35) 

The next theorem provides an upper bound for the return loss (28) which 
varies directly with both the variance measure cr2 for uncertainty and the 
inverse measure Y for positive correlation in returns. 

Theorem 4.2. The return loss (28) sutisjies 

O~G(v”)-G(v*)~o,(x)a2Y. (36) 

!fH,+, is either concore or convex, these bounds can be improved to 

O~G(o”)-G(v*)~+u,(x)a2Y. (37) 

Theorem 4.2 characterizes the trade-off among uncertainty, positive 
correlation in returns, and global return loss. From a practical standpoint, 
the presence of Y in the return loss bound is unfortunate; for the 
computation of its magnitude requires the recursive consideration of future 



return possibilities. However, any exact bound pr‘ovided for the returri loss 
(28) must necessarily involve such considerations. 

The following question can nevertheless be posed: Even if Y is not 
explicitly computed, might it be possible to guarantee an improvement of the 
bound in (36) by a more judicious selection of the intermediate return 
function W,? For the problem at hand the objective of the planner is to 
maximize final-period expected return E[ WN(aN. oN, x~)( u, X] via selection of 
an admissible feedback control law u=(uO,. . ., oiv). As discussed in section 3, 
dynamic programming regularity conditions guarantee this objective can be 
achieved by the sequential maximization of E,[F,+ 1 a~~(~~, u,, x,)1 u;, XJ with 
respect to u, E V(n, x,), n = 0,. . ., N, where each return-to-go function F,, , 
depends only on W,, the state functions .f,+ Ir.. .,fN, and the transitional 
probability distributions governing w,, 1,. . ., o,,,. The intermediate return 
functions W,, . . ., W,-, are thus only proxies for the optimal intermediate 
return functions F, oj;, . . ., F, 0.1,~ , , which are generally impossible to 
compute in closed form. What criteria might be used to select the ‘best’ 
proxy from among any given set of candidate intermediate return functions 
W,? 

The following theorem clarifies certain characteristics of intermediate 
return functions W, which partially order them in terms of global return 
performance. Let Y denote the set 

YE [~‘~R(~,=j,(to,o,x) for some (w,u)ESZX V(n,x)), (38) 

and, for any twice differentiable function Q: Y-R with Q’>O, let Ro: Y+R 
denote the Pratt-Arrow measure of absolute risk aversion defined by Ro(y) 
E Q”( y)/Q’(y). Interpreting Q( . ) as a utility of wealth function for an 
expected utility maximizing decision maker, it can be shown [Pratt (1964, p. 
125)] that Ro(y) is approximately equal to 2~( I’, 2*)/o:. for any zero-mean 
random variable Z* with small variance oz., where the risk premium 
r(y, z*)ER is the maximum amount the decision maker would be willing to 
pay to avoid a gamble on z*; i.e., r(y,z*) satisfies Q(y-r(y,z*))=E,,Q(y 
+z). Thus, in principle, R,(y) can be directly elicited by suitable gamble 
experiments even if Q( ) is unknown to the experimenter. 

Theorem 4.3. Suppose the .st&e sptrce X is o subset qj R, the nth period 
return-to-go jitnction F,, , : X+R is strict/y increasing, lrnd the nth period 
intermediate return jirnction W,: !2 x V x X +R is given by 

w,(~,u,x)=u~j,(~u,u,x)=u(x”+,), (39) 

ior some strictly increasing twice dijferentiable jirnction U :X +R. lj’ S: X -+R 
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is crny other strictly increusing twice dijjtirentiable junction sotisjying 

o2 s sup var (U Ojn(u), 0, x)) 
“E V(n. X) 

> sup var(So.fn(w,u,x))~a~, 
“EV(fI,X) 

(404 

IK”(r)-K,“+,(1.)1>IKs(~)-X,“+,(J:)( 
[U’(y)]2 = lIS’(Y)12 ’ 

4’EY, Nob) 

with 4, f bN+ ,, then the upper boundlor the global return loss G(8)-G(o*) 
given in (36) CUII be strictly reduced ij U* is replaced with any solution vs to 

max En[SO1,(w,o,x)l~),x]. 
asV(n.x) 

(41) 

The import of Theorem 4.3 is that absolute risk aversion, marginal return, 
and variance are the three crucial criteria for selecting among candidate 
intermediate return functions of the form (39). Sufficient conditions 
guaranteeing the monotonicity of F,, , are provided in Theorem 3.6. 

5. Illustrative examples 

The general macro policy and portfolio models outlined below, as 
examples of the basic model, were selected for their familiarity and common 
usage in economic analysis. Several researchers have discovered special cases 
of these models for which the optimal feedback control law reduces to a 
sequence of myopically optimal control selections. As the following 
discussion demonstrates, a systematic explanation for the occurrence of both 
exact and approximate myopic-global return equivalence within each of these 
models is provided by the results of sections 3 and 4. Specifically, certain 
parameter configurations and function specifications yield linear positive 
correlation in period-by-period returns. Moreover, under weak restrictions 
one still obtains positive correlation in the sense of Theorem 3.6; hence, by 
Theorem 4.2, the global return loss associated with myopic optimization is 
bounded above by terms which vary directly with the degree of uncertainty 
and inversely with the degree of positive correlation in period-by-period 
returns. 

Example 5.1. Dynamic lineurized mcrcro .policy model with random 
coejjicients [cf. Aoki (1976, 1967) Chow (1975)]. Dynamic macro policy 
models are commonly specified in linearized reduced form with random 
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coefficients, as follows : 
. 

x0=X (initial conditions), (424 

X n+ 1= 4% + B,z, + C#, + E,, OsnsN, Wb) 

where X,E Rq is a column vector of dependent state variables, Z,E R” is a 
column vector of uncontrollable exogenous variables, U,E R’ is a column 
vector of controllable exogenous variables, E,E Rq is a column vector of 
random disturbances, and A,, B,, and C, are random coefficient matrices 
with dimension q x q, q x m, and q x r, respectively. If system (42) is a first- 
order Taylor’s approximation for some underlying nonlinear state equation, 
then the probability distribution governing the vector w, = (A,, B,, C,, E,) of 
Jacobian and remainder terms may depend on the current state x, and 
control selection u, as well as on the current time n. Letting ,4,x” +B,z, 
+ c.u, +E, =jn(W”, U”, x”), and assuming the usual total expected return 
objective, with nth period return given by some continuous function Sn(u,, x,, 
x,+,)=U,(u,, x,, ji(w,, u,, x”))- W,(o,, u,, x,) of the control and initial and 
final state for period n, this linearized macro model has the basic model 
format. 

Consider, first, the special case in which the nth period intermediate return 
function W,( .) is given by W,(w, u, x)=[U,ojn](~u, u, x)=U,(x,+i) for some 
continuous non-decreasing utility function U,, with well-defined inverse g,, 
E U; I. In addition, suppose for each n that the components of the coefficient 
matrix A, are non-negative with probability 1.0, and the distribution for o, 
is independent of x,. The hypotheses of Theorem 3.6 are then easily verified. 
In particular, one obtains 

where H,*,*, E T,, i o U; ’ is non-decreasing. It follows by a simple 
modification of Theorem 4.2 that the global return loss resulting from 
myopic optimization within this macro policy model varies directly with the 
degree of uncertainty and inversely with the degree of positive correlation in 
period-by-period returns. 

Consider once again the originally outlined basic format macro model. 
Suppose the components of A,, B,, C,, and I:,, are serially independent 
random variables distributed independently of x,, and t:,,, with finite first and 
second moments; the components of the matrices A,, B,, and C, are 
uncorrelated with the components of a,,; and the components of E, have zero 
mean. In addition, suppose rrth period return is given by the quadratic 
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specification, 

(43) 

for some constant positive definite q x q matrix K and some constant k, E R. 
Finally, letting E,[ .] denote expectation with respect to the distribution of 
w”, suppose \E,C,%C,I #O, nE (0,. . .,N}. 

In order to have maximum expected return in period n+ 1 be a non- 
decreasing linear afke function of the return (43) realized in period n, in the 
sense of Corollary 3.3, it can be shown by straightforward calculation that it 
suffices to have 

and 

for some b, 2 0, where 

g n+l= -CE,+,c,T,KC,+,I-‘E,+,C,T,IKBn+l, (46) 

G n+l= -CE,+,C;IT+IKCn+ll-‘~,,+,C,T1KA,+I. (47) 

Given (44) and (45), it follows by Corollary 3.3 that the control selections 

u,*(x)~G,+lx,+1+gn+l~n+1, (48) 

which sequentially maximize current expected return, also yield the optimal 
control selections for the global maximization of total expected return. 

Condition (44) holds if and only if 

x(E,+,C,T,W-~+I). (49) 

Various restrictions imply (49): e.g., C,,, a constant non-singular matrix, 
and An+1 uncorrelated with B,+i; B,+i=C,+i; An+l=Cn+l; A,+l=O; or 
B “+, =O. Condition (45) holds with b, =0 if and only if 



Again, various restrictions imply (50): e.g., A,+1 and C,,, constant non- 
singular matrices; A,, 1 = C,, 1 ; or A,, 1 =O. Finally, condition (45) always 
holds if the dimension (I of the matrix K is 1. 

Aoki (1967) notes the equivalence of global and myopic optimization only 
for the special case B,,, =0 and q= 1. Chow (1975) does not discuss the 
issue. 

Example 5.2. Portfolio model [cf. Arrow (1971), Mossin (1968), Hakansson 
(1971), Bellman and Kalaba (1957), and Kalaba and Tesfatsion (1978)]. In 
each period n E {0, . . ., N} an investor must decide how to allocate.his current 
wealth X,EX c R, between two investment opportunities A and B, the first 
yielding a positive or negative net return rate +s, (O<s,S 1) with 
probabilities pn and 1 -p., and the second yielding a net return rate rn (0 5 r, 
cs,) with probability 1. The investor’s objective is to maximize the expected 
utility of his wealth xN+ i at the end of period N via feedback control. 

Assuming the investor’s initial wealth x0 for period 0 is positive, his initial 
wealth x, + i for period n+ 1 is a simple function of his initial wealth x, for 
period n, the net return rate W,E {s,, -s,} observed for investment 
opportunity A in period n, and the amount u, E [0,x,] = V(n, x,) of wealth he 
allocated to A in period n; namely x,+ i =xn + w,u, + r,[x, - L.,,] -J,(w~, u,, 
x,). Assuming utility of wealth at the end of period n, HE (0,. . ., N}, is 
measured by W,(w,, u,, x,)~U,(x,+w,u,+r,[x,-u~])=U,(X,+~), where 
U,: X+R is a continuous strictly increasing function of x, this portfolio 
problem has the basic model format with final-period expected wealth 
objective. 

Let Vi1 denote the strictly increasing inverse function for II,. It is then 
easily verified that all of the hypotheses of Theorem 3.3 hold with g,= Vi i. 
In particular, since W,(w, u, x) is strictly increasing in x, one obtains F,, 1 ojj, 
=F,+,oU,‘oU,of,=HX+,oW,, where H,*+irF,+ioU;’ is strictly 
increasing. It follows by Theorem 4.2 that the global return loss resulting 
from myopic optimization within this portfolio model is bounded above by 
terms which vary directly with the degree of uncertainty and inversely with 
the degree of positive correlation in period-by-period returns. 

Consider now the special case in which U,(x)=log(x), XEX E R, +. 
Letting E,[ .] denote expectation with respect to the distribution of the net 
return rate o, E { - sn, s.}, the control u* = I$+ i(x) E [0,x] which maximizes 
expected utility of wealth E,, r log (x.+~) for period n + 1, beginning in the 
initial wealth state x, is then given by 

u*=o if D<O, 

=Dx if OsDSl, 

=x if l<D, (51) 
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where 
DJ1+dC2Ps-s-r] 

[s+r][s-r] ' (52) 

and time subscripts have been dropped on r,,+ i, s,+ ,, and pn+ 1 to ease 
notation. Maximum expected utility of wealth for period n+ 1 beginning in 
state x is then given by 

M,+,(x)=log(x)+plog(l+r+[.s-r]d) 

+[l-p]log(l+r-[s+r]n), 

where d = u*(x)/x. Thus, M,, 1 (x) is a positive linear affme function of the 
return log(x) realized in period n in the sense of Corollary 3.3. It follows that 
the myopic control selections (51) yield an optimal feedback control law for 
the investor’s final-period wealth objective. Using a different line of reasoning 
requiring the existence of an interior regular optimal control law, Mossin 
(1968) and Hakansson (1971) reach a similar conclusion; and Kalaba and 
Tesfatsion (1978) reach a similar conclusion for the special case r,,=O, 
IIE 10,. . .,NJ. The issue is not discussed in Arrow (1971) and Bellman and 
Kalaba (1957). 

6. Discussion 

Many years ago H. Simon introduced the concept of ‘satisficing’ to 
describe the process by which boundedly rational decision makers ultimately 

,select, implement, and evaluate their actions. An apt illustration of satisticing 
would seem to be the chess player, myopically attempting to achieve his 
global checkmate objective through the sequential realization of intermediate 
player-piece configurations. Is it possible, in any nontrivial context, to 
analytically investigate the decomposition of global objectives into sequences 
of myopic intermediate objectives, so that some conclusions may be drawn 
regarding the ‘best’ selection of these intermediate objectives? 

A cautiously affirmative answer is provided in the present paper. Within the 
context of a stochastic control model encompassing many well-known micro 
and macro models, three specific questions are posed: 

Under what conditions will the myopic sequential maximization of 
expected current return result in optimal global expected return 
performance? 

More generally, what is the global expected return loss associated with 
the use of myopic sequential expected return maximization, and how 
does it vary with increases in uncertainty and positive correlation in 
period-by-period returns? 
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What characteristics of intermediate-period return functions allow them 
to be partially ordered in terms of linal-period expected return 
performance? 

The basic answer presented for the first question, Theorems 3.1 and 3.2, 
provides a systematic explanation for the occurrence of myopic and global 
return equivalence in a variety of economic models. The basic answer 
provided for the second question, Theorem 4.2, characterizes the trade-off 
among uncertainty, positive correlation in returns, and global return loss. In 
answer to question three, Theorem 4.3 demonstrates that the correlation 
structure of the intermediate objectives, the basic environmental ‘uncertainty 
reflected by intermediate return variance, and the relative degree of absolute 
risk aversion reflected by intermediate and primitive (optimality equation) 
return functions are three crucial criteria for ordering alternative 
intermediate-period return function specifications in terms of final-period 
expected return performance. 

A further aspect of the results presented in Sections 3 and 4 which has not 
been explored in the present paper is their possible use for estimating the 
global expected return loss resulting from the return-to-go approximations 
suggested by previous researchers, e.g., Aoki (1976), Bar-Shalom and Tse 
(1976), Chow (1975), and Norman (1976). As explained in footnote 8, return- 
to-go approximation problems can be viewed as myopic-global problems 
under a simple transformation of the original period-by-period return 
functions. 

Appendix: Proof outlines 

A.I. Prooj of’ Theorem 3.1. Given condition (15), it can be verified that 
each of the restriction sets (1) through (5) guarantees E,[W,Iu, x,] and 
J%CF,,+l?L)~? X”l=%(X,I)E”CfJn+1 o Wnlu, x,,] + b,(x,) have the same set of 
maximizing controls UE V(n, x,) for each n E {O,. _ ., N - 1). Thus a feedback 
control law u* EL? satisfies the myopic expected return objective (4) if and 
only if the equalities (9) hold, i.e., if and only if u* is also an optimal 
feedback control law for the linal-period expected return objective (5). The 
final assertion of Theorem 3.1 is easily verified using analogous 
arguments. Q.E.D. 

A.2. Prooj’ of Corollary 3.3. By induction, condition (18) implies that 
L-F,+, 01:lh 03 x)= J::,(X)W”(W, u, x)+4,(x) and CT,+,oJ,l(~, 11, x) 
=yz(x)Wn(w, u, x)+zi(x) for some functions yA:X+R++, zi:X-+R, yi:X 
-‘R++, and zi:X-+R for each II E {O,. . ., N - 1). Thus conditions (15) and 
(16) in Theorems 3.1 and 3.2 both hold for positive linear functions H,, ,. 
The first assertion of Corollary 3.3 follows. If the functions c,( . ) in (18) take 



156 L. Tic\/trr.sior~, G/oh/ optima/it) oi myopic economic decisions 

on zero values, then the functions J$, and JJ: may also take on zero values. 
By Theorems 3.1 and 3.2, the equivalence between objectives (4) and (5) need 
no longer hold but the equivalence between objectives (4) and (6) is 
unaffected. If the functions d,( . ) in (18) depend on w, then the functions J$ 
and 4’; will also depend on w. As long as each distribution p,( .I u”,x,,), 

n E (0,. . .) N-l}, is independent of the selected control u,, Theorems 3.1 and 
3.2 still yield the desired conditions. Q.E.D. 

A.3. Proof of’ Lemmtl 3.4. Let n=N. By definition, FN(x)=EN[cp ofk(o, 
r&(x), x)]. By compactness of Sz and twice continuous differentiability of cp( .) 
and f”(o,. ), it follows by a Lebesgue dominated convergence argument that 
expectation and differentiation operations can be interchanged up to the 
second order. Thus the first- and second-order sufficient conditions for a 
maximum, satisfied by u;(x) by assumption (A.3), imply (20a) and (22b) hold 
with negative definite DN(x). It follows by an implicit function argument that 
u;(x) is continuously differentiable in a neighborhood of x, and satisfies (21). 
The derivatives (20b) and (20~) then follow by direct calculation. The 
analogous results for n <N are similarly obtained. Q.E.D. 

The following theorem can be proved using Theorem 3.1, restriction set 
(l), but a much simpler proof is obtained by using the later independent 
Theorem 4.2. The latter proof is indicated here. 

A.4. ProoJ of’ Theorem 3.5. Let n= N and R,(x)-c for some c E R. By 
Lemma 3.4, 

Thus RPN( I’)= --Fk(y)/Fh(y)= b,c for each JE Y, where Y is defined in (38). 
It follows by induction that RF.+, (y)=(17~i;b,+j)c, YE Y. The function U:X 
+R defined in Theorem 3.5 satisfies R,(~-)=(lIy:;b~+~)c, YE Y, hence the 
desired conclusion follows from Lemma 3.4 and Theorem 4.2 with W,(o, u,x) 
= Uoji(o, u,x) by noting that each z- W,(w, u,x) has the form U(J) for 
some J+E Y, and 

C,+ 1 (Y) ~::+rUW=~U,(4’)12 C&,(Y)-R,,+,(Y)~ 64.1) 
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is zero for each YE Y, where H,, , -F,+, o U-’ satisfies H,, , o W,=F,*+ 1 o/i 
and Hk+,(x)=F:,+,(U-‘(x))U-“(x)>O, XER. Q.E.D. 

A.5. Proof’ of Theorem 3.6. The proof will be indicated for the return-to-go 
functions T,, i in the non-decreasing case. Proof of the remaining assertions 
can then be obtained by minor modifications. 

By a well-known result in the stochastic dominance literature [see, e.g., 
Tesfatsion (1976)], if s2c R, then, by the stochastic dominance restriction (3) 

X”~X’~E~[U(O,X”)(“,X”]>=ENIU(O,X~~)J”,X~], b4.2) 

for all continuous functions U :52 x X-R which are non-decreasing with 
respect to w E s2. Clearly (A.2) holds trivially if pN( ( u, x) is independent of x. 
If (A.2) holds and U (0, x) is non-decreasing with respect to x, then x”zx’ 
*&CUbA .“)I 0, x”]~l&[U(w, x’)l u, x’]. Thus restrictions (2), (3), and (4) 
imply that EN[WN(m, u, x)1 u, x] is non-decreasing in x for each UE V. It 
follows by restriction (5) that T,(x) is non-decreasing in x. 

Now suppose T,, , :X-R is non-decreasing for some n~{o,...,N-1). 
Restrictions (1) and (4) then imply CT,,, ojJ(~,u,x)=[T,,+~ og,o Wn](w,u,x) 
is non-decreasing in w and x for all UE I/. It follows by restrictions (2) and (3) 
that E,l?%(w u, xl+ T,+, of;rb, u, x)1 u, x] is non-decreasing in x for all 
UE V, hence, by restriction (5) the same holds true for T,(x). 

By induction, T,, 1 :X *R is non-decreasing for all n E (0,. . ., N - I} ; and, 
by restriction (1) the same is true for Hz,*, = T,, 1 o g,. Q.E.D. 

A.6. Pro@’ of’ Theorem 4.1. Condition (15) assumed to hold for H,+i, 
implies that P”(W,,F,+,O~;,)=~“(W,,H,+,OW,); and p”(W,,H,+,oW,)~(0,1] 
by Theorem 1 in Hildreth-Tesfatsion (1977). 

By Taylor’s Theorem, for each WE Sz there exists A = A(w, u,x) and 0= 
0(w, u, x) lying between W,(o, u, x) and expected current return M(u) such that 

H .+1~W,(~,“,x)=H,+,(~(“))+H:,+,(~(”))CW,(~,”,x)-~(u)l 

+tH::+,(A)Cw,(o,v,~)-M(u)l~, (A.3) 

and 

H .+~~W,~~,~,~~=~,+,~~~~~~+~b+,~~)CW,~~,u,x)-M~u)l. 
(A.4) 

Using (A.3), 

b”(W,>H,+, 0 w”)]2=[B+C]2/D 

={D-[a2(u)var(A)-C’]}/D, (A.3 
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where 

A~~H~+,(d)[W”(w,u,x)=M(u)]2, 

B-HA, 1W(u)b2b), 

c-~,C(W,(~,u,x)-M(u))AJu,xl, 

D~B2+2BC+a2(v)var(A)=var(W,)var(H,+,0W,), 

and 

var(A)-E,[(A-E,[A(u,x])2(u,x]. 

Using Holder’s Inequality and definitions (A.6b(A.10), 

O~C2~02(u)var(A)~$a2(u)a4(u)Y2, 

and 

D~[B+C]2=[COV(W”,H”+, 0 W”)]‘. 

Using the first-order Taylor expansion (A.4), 

cov(W,,H,+* 0 W,)>,a2(o)f7. 

L4.6) 

64.7) 

64.8) 

(A.9) 

(A.lO) 

(A.1 1) 

(A.12) 

(A.13) 

Combining (A.ll) through (A.13) with (A.5) one obtains the desired relation 
(35). Q.E.D. 

A.7. Prooj’ oj‘ Theorem 4.2. Using definition (25) for G(u) and the Taylor 
expansion (A.3), 

By definition, u* maximizes expected current return M(u) over V(n,x). Since 
H n+ I is increasing, H,, , (M(u”))S H,, I (M(u*)). Also by definition, D’ 
maximizes G(u) over V(n,x). Thus 

The first claim of Theorem 4.2 then follows from (A.14) using definition (31) 
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for a2; and the second claim follows from (A.14) by noting that conc’avity 
(convexity) of H,, 1 implies Hi+ 1 5 (2 ) 0, thus the terms involving #(II*) in 
(A.14) can be discarded. Q.E.D. 

A.8. Proof oj’ Theorem 4.3. Under the assumptions of Theorem 4.3, the 
positive correlation condition (15) holds for each of the intermediate return 
functions W,=Voj, and Wz=Soj,, with H,+l(z)zFF,+loU-l(z) and 
H,+1(z)=F,+,oS-‘(z), z ~9. Moreover, each z ~9 has the representation 
U(y) for some YE Y. 

By Theorem 4.2, G(8)-G(u*)~a2Y and G(u”)-G(uS)~c$Y,, where Ys 
=sup{Hz’;.,(z)(z=S(y) for some YE Y}. The difference cr2!P --agYY, is given 
by [02 - ai]Y + [ Y - Y,]ai. By (40a) and (40b), 0’ > CJ~ and Y >O. To 
demonstrate that use of S in place of U reduces the global return loss bound 
in (36), it therefore suffices to establish that Y 1 Y,, which in turn holds if 
(H~+,(U(L’))~~_~H~‘(,,(U(L’))I f or all ye Y. Using (A.l), the latter inequality 
follows directly from (40b). Q.E.D. 

References 

Aoki, M., 1976, Optimal control and system theory in dynamic economic analysis (North- 
Holland, Amsterdam). 

Aoki, M., 1967, Optimization of stochastic systems (Academic Press, New York). 
Arrow, K.J., 1971, Essays in the theory of risk bearing (Markham, Chicago, IL). 
Bar-Shalom, Y. and E. Tse, 1976, Caution, probing, and the value of information in the control 

of uncertain systems, Annals of Economic and Social Measurement 5, 323-337. 
Bellman, R., 1957, Dynamic programming (Princeton University Press, Princeton, NJ). 
Bellman, R. and R.E. Kalaba, 1957, On the role of dynamic programming in statistical 

communication theory, IRE Transactions on Information Theory IT-3, 197-203. 
Chow, G., 1975, Analysis and control of dynamic economic systems (Wiley, New York). 
Day, R.H., 1969, Flexible utility and myopic expectations in economic growth. Oxford Economic 

Papers 21, 299-311. 
Day, R.H. and Y.-K. Fan, 1976, Myopic optimizing, economic growth and the golden rule. 

Hong Kong Economic Papers 10, 12-20. 
Hakansson, N., 1971, On optimal portfolio policies with and without serial correlation of yields, 

Journal of Business 44, 324-334. 
Hildreth, C., 1974, Expected utility of uncertain ventures, Journal of the American Statistical 

Association 69, 9-17. 
Hildreth, C. and L. Tesfatsion, 1977, A note on dependence between a venture and a current 

prospect, Journal of Economic Theory 15, 381-391. 
Hinderer, K., 1971. Foundations of nonstationary dynamic programming with discrete time 

parameter (Springer-Verlag, New York). 
Kalaba, R.E. and L. Tesfatsion, 1978, Two solution techniques for adaptive reinvestment: A 

small sample comparison, Journal of Cybernetics 8, 101-l 11. 
Keeler, E., 1974, Horizon in a simple model of economic growth, Econometrica 42. 273-277. 
Koopmans, T.C., 1967, Objectives, constraints, and outcomes in optimal growth models, 

Econometrica 35, 1-15. 
Landau, H.J., 1976, Pricing in a dynamic model with saturation, Econometrica 44, 1153-l 155. 
Leland, H.E., 1972, On the existence of optimal policies under uncertainty, Journal of Economic 

Theory 4, 35-44. 
Leontier, W., 1958, Theoretical note on time-preference. productivity of capital, stagnation, and 

economic growth, American Economic Review XLVIII, 105-l 11. 



Leontief, W., 1959, Time preference and economic growth: Reply, American Economic Review 
XLIX, 1041-1043. 

Levy, H. and J. Paroush. 1974, Toward multivariate elliciency criteria, Journal of Economic 
Theory 7, 129-142. 

cos, J., 1971, The approximate horizon in von Neumann models of optimal growth, in: Recent 
contributions to the von Neumann growth model (Springer-Verlag, Wien). 

Mossin, J., 1968, Optimal multiperiod portfolio policies, Journal of Business 41, 215-229. 
Norman, A.L., 1976, First order dual control, Annals of Economic and Social Measurement 5, 

311-321. 
Pitchford, J.D. and S.J. Turnovsky, 1977, Applications of control theory to economic analysis 

(North-Holland, Amsterdam). 
Pratt, J., 1964, Risk aversion in the small and in the large. Econometrica 32, 122-136. 
Simon, H., 1971, Models of bounded rationality, in: C.B. McGuire and R. Radner, eds., Decision 

and organization (North-Holland, Amsterdam). 
Tesfatsion, L., 1976, Stochastic dominance and the maximization of expected utility, Review of 

Economic Studies XLIII, 301-315. 
Tesfatsion, L., 1978, A new approach to liltering and adaptive control, Journal of Optimization 

Theory and Applications 25, 247-261. 
‘Tesfatsion, L., 1979, Direct updating of intertemporal criterion functions for a class of adaptive 

control problems, IEEE Transactions on Systems, Man, and Cybernetics SMC-9, 1433151. 
Tesfatsion, L., A conditional expected utility model for myopic decision makers, Theory and 

Decision, forthcoming. 
Wilkes, S.S., 1962. Mathematical statistics (Wiley, New York). 


