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Flexible Least Squares for Approximately
Linear Systems

ROBERT KALABA anp LEIGH TESFATSION

Abstract —The problem of filtering and smoothing for a system de-
scribed by approximately linear dynamic and measurement relations
has been studied for many decades. Yet the potential problem of mis-
specified dynamics, which makes the usual probabilistic assumptions
involving normality and independence questionable at best, has not
received the attention it merits. A probability-free multicriteria “flexible
least squares” filter that meets this misspecification problem head on is
proposed. A Fortran program implementation is provided for this filter,
and references to simulation and empirical results are given. Although
there are close connections with the standard Kalman filter, there are
also important conceptual and computational distinctions. The Kalman
filter, relying on probability assumptions for model discrepancy terms,
provides a unique estimate for the state sequence. In contrast, the
flexible least squares filter provides a family of state sequence estimates,
each of which is vector-minimally incompatible with the prior dynamical
and measurement specifications.

I. INTRODUCTION

OLLOWING World War 11, probabilistic methods

attained a dominant position in filtering and smooth-
ing theory [1]. Early studies focused on linear system
identification problems arising in radar and communica-
tions for which the theoretical specifications were essen-
tially correct, with for which model discrepancy terms
were reasonably modeled as random quantities with
known distributions. For such problems, probabilistic
methods could credibly be used to construct scalar mea-
sures for theory and data incompatibility in the form of
likelihood or posterior distribution functions.

More recently, however, the social and biological sci-
ences have presented filtering and smoothing problems of
critical importance for which the processes of interest are
highly nonlinear and poorly understood. In attempting to
apply standard filtering and smoothing techniques to such
a problem, a data analyst typically has to replace the
unknown nonlinear process relations with an approximate
system of linear relations. The resulting model discrep-
ancy terms then incorporate model specification errors
from various conceptually distinct sources—e.g., imper-
fectly specified measurements versus imperfectly specified
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state dynamics; hence it is questionable whether these
discrepancy terms are either jointly or separately gov-
erned by meaningful probability relations. More gener-
ally, it is difficult to provide any credible way to scale and
weigh the discrepancy terms relative to one another.

In decision theory, incommensurability of this type is
typically handled by multicriteria optimization- techniques
[2]. However, such techniques have not yet been exploited
systematically in state estimation theory. Rather, cur-
rently available filtering and smoothing techniques require
the data analyst to provide probability assessments for all
discrepancy terms. In consequence, social and biological
scientists attempting to apply these techniques are often
forced to resort to conventional probability specifications
such as normality and independence that may have little
public credibility.

This paper proposes a probability-free multicriteria fil-
ter for the estimation of approximately linear dynamical
systems. Briefly stated, this “flexible least squares” (FLS)
filter solves the following multicriteria optimization prob-
lem: Characterize the set of all state sequence estimates
which achieve vector-minimal incompatibility between im-
perfectly specified linear theoretical relations and process
observations.

The FLS filtering and smoothing problem for approxi-
mately linear dynamical systems is set out in Section II.
The FLS recurrence relations for the solution of this

" problem are derived in Section II1. Section IV considers

the relationship between FLS and Kalman filtering. Con-
cluding remarks are given in Section V. A Fortran pro-
gram GFLS which implements the FLS recurrence rela-
tions for this application is provided in an appendix.

II. THE Basic PROBLEM

Consider a system whose state at time ¢, t=1,2,- -, is
an n-dimensional vector x,. It is believed that the state
transition equations for the system take the approximately
linear form

xt+le(t)x(+a(t)s t=172"." (1)

where F(t) is a known n X n square matrix, and a(¢) is a
known n-dimensional column vector. At each time ¢, an
m-dimensional vector y, of observations is obtained. The
measurement relations are assumed to take the approxi-
mately linear form

y, = H(t)x, +b(1), t=1,2,"--, (2)
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where H(t) is a known m X n rectangular matrix and b(t)
is a known m-dimensional column vector.

Each possible sequence of estimates £, %,,... for the
state vectors entails two conceptually distinct types of
model specification errors: namely, measurement errors
consisting of the discrepancies [y, — H(¢)£, — b(¢)] be-
tween the actual and the estimated observation at each
time ¢; and dynamic errors consisting of the discrepancies
[£,.,— F()£, — a(1)] that arise due to misspecification of
the state transition equations. The basic filtering and
smoothing problem then involves multicriteria optimiza-
tion. Given a sequence of observation vectors
Y1, Y2, ¥y up to time T with T >1, determine the
state sequence estimates X, = (£,," - ,xT), which in some
sense make both types of specification error as small as
possible.

Suppose a dynamic cost ¢p(X7,T) and a measurement
cost cp(X;,T) are separately assessed for the two dis-
parate types of model specification errors entailed by the
choice of a state sequence estimate X On the basis of
both tractability and general intuitive appeal, these costs
are taken to be sums of squared discrepancy terms.

More precisely, for any given state sequence estimate
X T, the dynamic cost associated with X - is taken to be

. T-1
CD(XT’T)= Z

t=1

—(F(1)%,+a(1))]'

[£41

‘D()[ %4, (F(1) %, +a(1))] (3)

and the measurement cost associated with X, is taken to
be

T
en( X7, T)= X [y~ (H(1) %, +b(1))]'

t=1

"M(8)[y, — (H(1) %, + b(1))].
Here D(¢) and M(t) are square, symmetric, positive defi-
nite scaling matrices of orders n and m, respectively.
Having nonzero off-diagonal terms in these matrices
would presume knowledge about the relative signs of the
discrepancy terms, a presumption that is not very reason-
able when discrepancy terms result from model misspeci-
fication. Nevertheless, these matrices are left in
general form because it does not impede the analytical
treatment presented as follows.

If the prior beliefs (1) and (2) concerning the dynamic
and measurement relations are absolutely true, then the
actual state sequence X =(x,,---,x7) would result in
zero values for both ¢, and ¢,,. In any real-world appli-
cation, we would of course expect to see positive dynamic
and measurement costs associated with each potential
state sequence estimate X . Nevertheless, not all of these
state sequence estimates are equally interesting. Specifi-
cally, we would not be interested in a state sequence
estimate XT if it were cost-subordinated by another esti-
mate X & in the sense that X yielded a lower value for
one type of cost without increasing the value of the other.
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Fig. 1. Trade-offs between dynamic and measurement costs. (a) Cost

possibility set. (b) Cost-efficient frontier.

- We therefore focus attention on the set of state se-
quence estimates that are not cost-subordinated by any
other state sequence estimate. Such estimates are re-
ferred to as flexible least squares (FLS) estimates. Each
FLS estimate shows how the state vector could have
evolved over time in a manner minimally incompatible
with the prior dynamic and measurement specifications
(1) and (2). Without additional model criteria to augment
(1) and (2), restricting attention to any proper subset of
the FLS estimates is a purely arbitrary decision. Conse-
quently, the FLS approach envisions the generation and

 consideration of all of the FLS estimates in order to

determine commonalities and divergencies displayed by
these potential state trajectories.

The collection CF(T) of cost vectors (cp,c,,) associ-
ated with the FLS estimates is referred to as the cost-effi-
cient frontier. Given the cost specifications (3) and (4), the
frontier is a downward sloping strictly convex curve in the
¢p — ¢, plane. (See Fig. 1))

Once the FLS estimates and the cost-efficient frontier
are determined, three different levels of analysis can be
used to investigate the incompatibility of the theoretical
relations (1) and (2) with the observation vectors
Yi,© ", yp. First, the frontier can be examined to deter-
mine the efficient trade-offs between the dynamic and
measurement costs ¢, and c,,. For example, one can
determine the minimum measurement cost that would
have to be paid in order to achieve zero dynamic cost, i.e.,
an exact fit of the state transition equations (1). Second,
descriptive summary statistics (e.g., average values and
standard deviations) can be constructed for the trajecto-
ries traced out by the FLS estimates along the frontier.
Finally, the trajectories traced out by the FLS estimates
can be directly examined from left to right along the
frontier to assess the effects of decreasing the implicit
penalty imposed for dynamic versus measurement cost.

Reference [3] applies this three-stage FLS analysis to a
time-varying linear regression problem, a special case of
(1) and (2) with scalar observations (m =1), no forcing
terms, and state transition matrices F(z) set identically
equal to the identity matrix. For this application the
components of the 1X n vectors H(¢) are interpreted as
explanatory variables for the scalar observations y,, the
state vectors x, are interpreted as coefficient vectors for
the “linear regression” relations (2), and the state transi-
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tion equations (1) with F(¢t)=1 and a(t)=0 are inter-
preted as smoothness relations governing the evolution of
the coefficient vectors over time.

An empirical FLS study of coefficient stability for a

well-known log-linear regression model of U.S. money "

demand over the volatile period 1959-1985 is undertaken
in [4]. Interesting insights are obtained concerning shifts
in the coefficients at economically reasonable points in
time. In [5], the FLS approach is used to develop a new
measure of productivity change; the coefficients charac-
terizing the production process are allowed to evolve
slowly over time. The new measure compared favorably
with more traditional measures when tested for U.S.
agricultural data. :

How are the cost-efficient frontier and the FLS esti-
mates actually generated? Section III suggests what might
be done.

III. Tue FLExiBLE LEAST SQUARES FILTER

In view of the strict convexity of the cost-efficient
frontier, each point on this frontier solves a problem of
the form “minimize c,, subject to ¢, = constant.” Conse-
quently, each FLS state sequence estimate /\;T =
(£,,"+ -, X7) can be generated as the solution to a problem
of the form

min [peo( X, T) + e X7, 1], (5)

where p is a suitably chosen Lagrange multiplier lying
between 0 and + . Hereafter the bracketed expression in
(5) will be referred to as the incompatibility cost associ-
ated with X, conditional on p and 7. The multiplier x,
multiplied by —1, gives the slope of the cost-efficient
frontier at the solution point for (5); thus p parameter-
izes the trade-offs attainable between dynamic and mea-
surement cost along the cost-efficient frontier.

The FLS approach envisions the generation of the
entire cost-efficient frontier, together with the corre-
sponding FLS state sequence estimates. Numerical exper-
iments (e.g., [3]) have shown that the cost-efficient fron-
tier can be adequately sketched out by solving the
minimization problem (5) over a rough grid of w-points
increasing by powers of ten.

How is this minimization to be done? The solution of
(5) appears to be a formidable problem. Since each state
vector x, is n-dimensional, the first-order necessary con-
ditions for the solution of (5) constitute a linear two-point
boundary value problem in nT scalar unknowns. Fortu-
nately, as will now be shown, problem (5) can be reduced
to its proper dimensionality, n, through the use of a
dynamic programming technique.

A. The Basic FLS Filter

Let u > 0 be given. A recursive procedure will now be
developed for the exact sequential solution of the incom-
patibility cost minimization problem (5) as the duration T
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of the process increases and additional observation vec-
tors are obtained.

Suppose that the time is 7 > 2. Observation vectors
have previously been obtained for times 1,---,7 —1, and
a new observation vector y, has just become available.
Any choice of an estimate x; for the current time-T state
vector incurs two costs. First, a measurement cost is
incurred if there is a discrepancy between the actual
observation vector y; and the estimated observation vec-
tor [H(#)x; + b(T)]. Second, consideration must also be
given to the minimum achievable incompatibility cost over
the earlier part of the process, conditional on the state
estimate for time 7 being x;. The time-separability of
the cost functions (3) and (4) implies that this latter cost
depends only on x;, and the observation vectors through
time T —1.

Let a function be introduced to represent the minimum
incompatibility cost that can be achieved through time
T —1, conditional on any given time-T state vector xy:

¢( Xr5H, T- 1)
= the minimum incompatibility cost attainable
through choice of x,,x,," -, xy_,, condi-
tional on the state vector at time 7 being
Xp.

(6)

The FLS estimate for the time-T state vector, conditional
on u and the observation vectors obtained through time
T, is then found by solving the minimization problem

n}in{[yr—(H(T)xT +5(T))|'M(T)

[yr =(H(T)x7 + 6((T)] + d(x750,T -1} (7)
Let this FLS estimate be denoted by

x7(p,T) =argmin{---}.
T

)

At time T it is necessary to prepare for the appearance
of an observation vector at time T +1. To do this, one
needs to know the cost function ¢(x;, ; @, T). This cost
function is given by

¢(XT+1;.‘1"T) = rr;in{ﬂ[xT+1 _(F(T)xT+ ll(T))]’

D(T)[x74, = (F(T)xr +a(T))]
+[yr = (H(T)x; + 6(T))]'
"M(T)|yr =(H(T)xs +b(T))]

+ (x50, T~ 1)} (9)

The recursive relationship (9) can be given a dynamic
programming interpretation. Conditional on any possible
state vector x,,, for time T +1, the choice of a state
estimate x, for time T incurs three types of cost. First,
there is a dynamic cost associated with the estimated state
transition from time T to time T +1. Second, there is a
measurement cost associated with the discrepancy be-
tween the estimated and the actual time-T observation
vector. And third, there is a minimum achievable incom-
patibility cost based on everything that is known about the
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process through time T —1, conditional on the time-T
state vector being x,. Selecting x; to minimize the sum
of these three costs yields the minimum achievable incom-
patibility cost based on everything that is known about the
process through time T, conditional on the time-(T +1)
state vector being x, .

Using (9), the cost functions ¢(x,;u,1), ¢(xs;u,2),...
can be determined one after the other. At time T, assume
that the function ¢(x,;u,T —1) is known. An observation
vector y, then becomes available, and the function
&(x4, ;14,T) can be determined. To start matters off, it
is assumed that an initial cost function ¢(x; u,0) is given.
For the particular cost specifications (3) and (4), this
initial cost is identically zero. More generally, however,
the initial cost could summarize whatever beliefs one has
concerning the cost of estimating that the system is in
state x, at time T =1 before an observation vector at
time 7 =1 has been received.

The connection between the minimization problems (5)
and (7) is straightforward. Using relationship (9) with
d(x;;1,0)=0, the cost function ¢(x;u,T —1) can be
expanded in the form

¢(xT’/l'vT—l)

T—
= min {IL El[x,+,~F(t)x,—a(t)]’D(t)

LIS TR TS | t=1

) [xt+1 - F(t')x, - a(t)]

T-1
+ Y [y—H@®)x,—b(1)]

t=1

-M(t)[y,—H(t)x,—b(t)]}. (10)
Recalling definitions (3) and (4) for ¢, and c,, it is then
immediately seen that the minimization problem (7) is an
alternative representation for the incompatibility cost
minimization problem (5).

The recurrence relation (9) is a special case of a multi-
criteria filter shown elsewhere [6] to generalize various
well-known filters such as those of Kalman [7], Viterbi [8],
Larson-Peschon [9], and Swerling [10]. It illustrates how
one might formulate and update a cost-of-estimation
function for a dynamic process when discrepancy terms
are not given a probabilistic interpretation. The recur-
rence relation (9) thus replaces the use of Bayes’ rule,
which would be employed if discrepancy terms were inter-
preted as random quantities having known probability
distributions and satisfying various independence restric-
tions. This point will be elaborated in Section IV, below.

B. A More Concrete Representation for the FLS Filter

It will now be shown how the basic recurrence relation
(9) can be more concretely represented in terms of recur-
rence relations for an nXn matrix Q,(u), an n X1
vector py(p), and a scalar rp(pu).
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From general considerations in linear-quadratic control
theory, it is known that if the cost function appearing in
the righthand side expression in (9) is given by
$(xrsp, T—1)=x70r_ (1) Xy

=2pr_ () xr+rr_(p), (11)
where Q7_ (p) is a real n X n symmetric matrix, then the
cost function appearing on the lefthand side has the form

S(xpsm,T) = x5, 07 (1) X7
=2pr(R)Yxpp + "T(M)-
We shall show this below in detail.

First, suppose the initial cost function takes the

quadratic form

d(x151,0) = x]Qo(m)x; —2py( ) %, + ro( ), (13)
where the n X n matrix Qy(n) is symmetric and positive
semidefinite. As earlier noted, this function summarizes
our knowledge of the cost of estimating that the system is
in state x, at time 7 =1 before an observation vector at
time 7 =1 has been received. For the particular cost
specifications (3) and (4), the coefficient terms Qy(u),
Do{p), and ro(p) are all zero.

Let us now determine the recurrence relations connect-
ing Qr(w), pr(p), and r(u) with Qr_ (u), pr_(n), and
rr_(p) for an arbitrary time T >1, wheré the nXxn
matrix Q,_,(p) is symmetric and positive semidefinite.
Consider (9) for any given x;,,. The large curly brack-
eted term in (9) breaks down into quadratic, linear, and
constant parts with respect to x4, as follows:

(-} =x¢[uF(TYD(T)F(T)
+H(TYM(T)H(T) + Qr_ (1) %7
+Qulxri - a(T)|'D(T)[ - F(T)]
+2[yr = b(T)]'M(T)[ - H(T)]
=2pr(w))xr +p[xre —a(T)]'D(T)
[xra—a(D]+ [yr = (D' M(T) [ yr = b(T)]
+rr_(m). (14)
To do the minimization called for in (9), the derivative

with respect to x; of the right-hand side of (14) is set
equal to the null vector, which yields

0=[uF(T)D(T)F(T)+ H(T)M(T)H(T)
+Qr_y(w)] %7
—(u[xre - a(T)|'D(T)F(T)

+ [y = B(D)'M(TYH(T) + pr_(n)). (15)
Assuming the bracketed term in (15) is invertible (e.g.,
assuming the positive semidefinite matrix Q_ (u) is pos-
itive definite, or that either F(T) or H(T) has rank n),
the optimizing vector x; is given by

xp=[wF(TYD(T)F(T)+ H(TYM(T)H(T)
+Qr_ ()] -
X (wF(T)'D(T)[x7., — a(T)]
+ H(TYM(T)[y7 = b(T)] + pr_y(w)). (16)

(12)
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To simplify the notation, let us now introduce the
symmetric matrix V() as

Vr(w) = [wF(TYD(T)F(T) + H(T)'M(T) H(T)

+QT—1(I‘-)]—l- 17)

Then we may write the optimizing vector x, in the form

xr=s5(0)+Gr{w)xs, |, (18)
where
sr(w) =Vr(r)(H(TYM(T)[y; — b(T)]
+pr_(p) = wF(T)D(T)a(T)) (19)
and
Gr(p) =Vr(w)rF(TYD(T). (20)

Now we are ready to find ¢(x;,;u,T). Substituting
(18) into (9), the quadratic terms in x;,, have the matrix
QO(un) given by

w1 = F(T)Gr(w)]'D(T)[I - F(T)G1(n)]
+(H(T)G(1)YM(T)H(T)G(n)
+ GT(#)’QT—](#)GT(IL)
=Gr(w)Ver(n) 'Gr(n)

+2uD(T)[~ F(T)|Gy(w) + uD(T).  (21)
But
Gr(w)'=puD(T)F(T)Vr(n), (22)
so that
Gr(w)Vr(u) ™' =uD(T)F(T). (23)
It follows that
Qr(u) =uD(T)F(T)Gr(n)
—=2uD(T)F(T)Gr(n) +nD(T)
= uD(T)[ 1~ F(T)G (). (24)

By standard matrix manipulations (see, e.g., [11, p. 7)), it
can be shown that Q,(u) in (24) is positive semidefinite
given the positive semidefiniteness of Qr_,(u) and the
positive definiteness of the weight matrices D(T) and
M(T) as assumed in Section II.

Next we shall determine the vector p,(u). Consider,
again, the substitution of (18) into (9). The linear terms in
X7, have the coefficient vector —2p(u) given by
2G () Vi(w) " 'sp(m) +2uD(T) [~ F(T)]s7(n)

+Gr(u) {20 F(T)D(T)a(T) +2[ - H(T)]'M(T)
[yr = b(T)] =27 (n))
+2uD(T)[-a(T)].
It follows, after some simplification, that
pr(w) =Gr(w)[H(TYM(T)[yr = b(T)] + pr_y(n)]
+Q7(n)a(T). (26)

(25)
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In a similar manner, we find for r;(u) that
re(p) =rr_(n)+ [YT - b(T)]'M(T)[)’T - b(T)]
+ ua(TyD(T)a(T)

_ST(H—)/[VT(,‘L)']AST(IJ’)‘ (27)
The relations (24), (26), and (27) constitute the desired
recurrence relations for Q;(n), p,Au), and r(u).
Finally, using these recurrence relations, the FLS filter
estimate (8) for the state vector at time 7 >1 can also be
given a more concrete representation. Let

Ur(p) = H(TYM(T)H(T) + Qr_1(1),
and let
zp(p) = H(TYM(T)[y; = b(T)] + pr_(n). (29)
Then

(28)

xS (w, T) = [Up(w)] ™ 27 w).

C. FLS Smoothed State Estimates

(30)

Consider the problem of obtaining the FLS smoothed
estimate for the state vector x, at time T as the length of
the process increases from 7 to 7 +1 and an additional
observation vector yr,, is obtained.

In preparation for time T + 1, the quadratic, linear, and
constant terms Qr(u), pr(n), and r,(u) characterizing
the cost function in (12) have been calculated and stored.
As a byproduct of this calculation, the unique cost-mini-
mizing x; as a function of x,,, has been determined in
accordance with (18) to be x; = s (u)+ G (w)xr . Us-
ing (30) updated to time T + 1, the FLS filter estimate for
the state vector at time T +1 is given by

S, T+1) = [Uppy(w)] 270 (p). (31)

The FLS smoothed estimate for the time-T state vector
xy, based on the observation vectors y,-::,yr,, for
times 1 through T +1, is then given by

S, T 4+1) = s7(p) + Gr(p) xE5S (w, T+1). (32)

More generally, given any fixed time ¢, 0 <7< T, the
FLS smoothed estimate x/“5(u,T +1) for the state vec-
tor x, at time ¢, based on the observation vectors
Y1»© > Yy for times 1 through T + 1, is found by solving
the system of equations ,

X = sz(/") + Gr(u’)xt+1

xp=s7(p)+Gr(pw)xryy

(33a)
in reverse order, starting with the initial condition
X =*r (s, T+1). (33b)

Relations (30) and (33) for generating the FLS filtered
and smoothed state estimates result naturally from the
dynamic programming procedure used to update incom-
patibility cost. Alternative formulas for generating these
state estimates could be obtained from (30) and (31) using
appropriate matrix manipulations (see [11]). Based on
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past numerical experience, however, we elected to adhere
closely to the dynamic programming formulation.

A Fortran program GFLS for generating the FLS fil-
tered and smoothed state estimates by means of the
relations (30) and (33) is provided in an appendix to this
paper. In simulation experiments conducted to date with
GFLS on an IBM Model 3090, the generated FLS esti-
mates have satisfied the first-order necessary conditions
for the cost-minimization problem (5) up to the maximum
degree of accuracy (fourteen to sixteen digits) permitted
by the double-precision word length employed. Our em-
pirically based belief, then, is that the suggested proce-
dure for determining the FLS filtered and smoothed state
estimates is numerically stable and highly accurate.

IV. RELATIONSHIP WITH KALMAN FILTERING

FLS and Kalman filtering address conceptually distinct
problems. FLS treats a multicriteria model specification
problem that does not require probability assumptions
either for its motivation or for its solution: the characteri-
zation of the set of all state sequence estimates that
achieve vector-minimal incompatibility between imper-
fectly specified theoretical relations and process observa-
tions. Kalman filtering is a point estimation technique
that determines the most probable state sequence for a
stochastic model assumed to be correctly and completely
specified. Nevertheless, when applied to approximately
linear systems, the two approaches satisfy duality rela-
tions which generalize the well-known duality [7, p. 42]
between the noise-free regulator problem and maximum a
posteriori probability estimation.

Conceptual differences between FLS and Kalman fil-
tering are examined in Section IV-A. In Section IV-B the
Kalman filter recurrence equations are derived by means
of simple cost-function arguments that mimic the steps
outlined in Section III-B for the derivation of the FLS
recurrence relations. Probabilistic arguments (e.g., Bayes’
Rule or iterated expectations) are not required. Con-
versely, in Section IV-C it is seen that the FLS recurrence
relations for generating any particular state sequence
estimate along the cost-efficient frontier reduce to infor-
mation filter equations, the “inverse” of Kalman filter
equations, if the model discrepancy terms are assumed to
satisfy various independence and normality restrictions.
Implications of these duality relations are discussed in
Section IV-D. ‘

A. Conceptual Differences Between FLS and
Kalman Filtering

Previous sections of this paper investigate how filtering
and smoothing might be undertaken for the approxi-
mately linear system (1) and (2) when the dynamic and
measurement discrepancy terms w, =[x, ,— F()x, —
a(t)] and v,=[y, — H(t)x,— b(¢)] are incommensurable
model specification errors. A multicriteria FLS solution is
proposed for this problem. As seen in Section III, this
multicriteria solution can be implemented by means of a
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family of Riccati-type recurrence relations. The Riccati-
equation form of these recurrence relations is not surpris-
ing; it has been known for decades [12] that linear-
quadratic minimization leads to recurrence relations of
this type. What is new is the probability-free motivation
provided for why one should be interested in this entire
family of recurrence relations.

Suppose, instead, that the following probability rela-
tions, commonly assumed in Kalman filtering studies, are
introduced for the discrepancy terms w, and v, and for
the initial state vector x:

* [PDF for w,]= N(0, S(t));

* [PDF for v,]= N(0, R(1));

¢ (w,) and (v,) are mutually and serially independent

processes;

* [PDF for x,]1= N(x},%));

* x, is distributed independently of v, and w, for each z.

34
Under assumptions (34), the discrepancy terms w, and v,
are interpreted as white noise random vectors with known
Gaussian probability density functions (PDF’s) governing
both their individual and joint behavior. In particular, w,
and v, are now supposed to be perfectly commensurable
quantities that can be scaled and weighed relative to one
another. The FLS interpretation for w, and v, as concep-
tually distinct apple-and-orange model specification er-
rors incorporating everything unknowr about the dynamic
and measurement aspects of the process in thus dramati-
cally altered.

Combining the measurement relations (2) with the
probability relations (34) permits the derivation of a prob-
ability density function P(Y;|X;) for the observation
sequence Yy =(y,,--,y7) conditional on the state se-
quence X, =(x,,"**,x;). Combining the dynamic rela-
tions (1) with the probability relations (34) permits the
derivation of a “prior” probability density function P(X;)
for X;. The multiplication of these two derived probabil-
ity density functions yields the joint probability density
function for X, and Y7,

P(Y7|X7) P(X7) = P(Xp,Y7). (35)

The joint probability density function (35) elegantly com-
bines the two distinct sources of theory and data incom-
patibility—measurement and dynamic—into a single
scalar measure of incompatibility for any considered state
sequence Xr.

Given the probability relations (34), the usual Kalman
filter objective is to determine the maximum a posteriori
(MAP) state sequence, i.e., the state sequence which
maximizes the posterior probability density function
P(X,|Y;). Since the observation sequence Yy is assumed
to'be given, this objective is equivalent to determining the
state sequence which maximizes the product of P(X|Y7)
and P(Y,). By the agreed upon rules of probability the-

ory,
P(XT|YT)'P(YT) =P(YT|XT)‘P(XT)7 (36)

where, as earlier explained, the right-hand expression in
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(36) can be evaluated using (1), (2), and the probability
relations (34). Determining the MAP state sequence is
thus equivalent to determining the state sequence that
minimizes the scalar “incompatibility cost function”

C(XTaT)z_log[P(YT'XT)'P(XT)]~ (37)

What has been achieved by the introduction of the
probability relations (34)? Without relations such as (34),
the dynamic and measurement discrepancy terms cannot
be scaled and weighed relative to one another. The filter-
ing and smoothing problem is thus intrinsically a multicri-
teria optimization problem: Conditional on the given ob-
servations, determine the state sequence estimates which
are in some sense minimally incompatible with each of
the imperfectly specified theoretical relations (1) and (2).
Given the probability relations (34), however, the discrep-
ancy terms are transformed into perfectly commensurable
“disturbance terms” impinging on correctly specified the-
oretical relations in accordance with known probability
distributions. In this case, MAP estimation seems an
emminently reasonable way to proceed. The multicriteria
optimization problem is thus transformed into the scalar
optimization problem of determining the most probable
state sequence for a stochastic model assumed to be
correctly and completely specified.

Making use of Bayes’ rule, Larson and Peschon [9]
develop a recurrence relation for the sequential updating
of the posterior density function P(X;|Y;) as the dura-
tion T of the process increases and additional observation
vectors are obtained. This recurrence relation is used to
determine recursively the MAP state sequence for each
time T. The Larson-Peschon filter is derived under as-
sumptions (34) without the requirement that the PDF’s be
Gaussian; nonlinearity of the dynamic and measurement
relations is also permitted. Larson and Peschon show that
their filter reduces to the Kalman filter when Gaussian
distributions and linear dynamic and measurement rela-
tions are assumed.

For example, suppose for simplicity that the forcing
terms a(¢) and b(¢) in the dynamic and measurement
relations (1) and (2) are identically zero. For this case,
Larson and Peschon obtain the relations

SNT+1T+1)=H(T+1)YR(T+1)""H(T +1)
+[F(T)S(TIT)F(T)'+ S(T)]
x(T+1T +1)=F(T)x(T|T)
+3(T+YT+1)H(T +1)
R(T+1) " [yr = H(T + ) F(T)x(TIT)].
(38)

In (38), x(T +1|T +1) is the MAP estimate for the state
vector at time T + 1, conditional on the observation vec-
tors obtained through time 7 +1; and 3(T +1|T +1) is
the error covariance matrix for x(7 +1|T +1). By use of
appropriate matrix inversion formulas, the relations (38)
can be transformed into a pair of recurrence relations
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either for the error covariance matrix 3(7|7T) and the
state estimate x(7'|T)—the standard Kalman filter equa-
tions (see [7] and [13, pp. 105-120))—or for the inverse
“information matrix” 3~ (T|T) and the modified state
estimate 3~ '(T|T)x(T|T), yielding the “information fil-
ter equations” (see [13, pp. 139-142)).

B. Cost Derivation of the Kalman Filter
Recurrence Relations :

It will now be shown that the recursive relations (38)
can alternatively be derived by means of simple intuitive
cost considerations, without reliance on probabilistic ar-
guments. )

As in Section IV-A, suppose for simplicity that the
forcing terms a(¢) and b(¢) in (1) an (2) are identically
zero. For any time T > 1, let X denote the T-length state
trajectory (x,- -+, x7); and let the time-T incompatibility
cost function be specified by

T-1
C(XTvT)={ Z [xH]—-F(t)x,]’S(t)_l[x,H—F(t)x,]

t=1

T
+ Z [yr_ H(t)lerR(t)_l[yt_ H(t)xt]

t=1

O O PR (39)
Also, let the time-1 incompatibility cost function be speci-
fied by

(X, 1) =[x, = xFVE7 x = 2] (40)

Given the probability relations (34), the time-7 incompat-
ibility cost function (39) coincides with the previously
defined incompatibility cost function (37) apart from a
nonessential constant term. Finally, for any time T > 1, let
Cf(x;,T) denote the minimum cost (39) attainable at:
time T, conditional on the time-T state vector being x;.

By definition, the state-conditioned cost function
Cf(x,,1) for time 1 coincides with the time-1 cost func-
tion ¢(X,1); hence it has the quadratic form

CF(xp, 1) =[x, —x(1D]'='Q) [x, — x(11)], (41a)
where

)y =3

x(11) = x¥.

(41b)
(41c)

Note that x(1]1) is the state vector x, which minimizes
the state-conditioned cost function C*(x,,1).

Suppose the state-conditioned cost function CF(x,,T)
for some time T > 1 has the quadratic form

CF(xy,T) =[xy — x(T\T)|'S"Y(T\T)
Axr=x(T\T)] + kr, (42)

where k, is independent of x;. As shown in [6, Section
4.3], the state-conditioned cost function for time 7 +1
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satisfies the recurrence relation

CH(xp, T+1) =min{Ac(xp,x7,,,T+1)
Xr

+CF(x4,T)}), (43a)

where
Ac(xp,x7,0 0, T +1)
= [xT-H - F(T)xT]'S(T)—l[xTH - F(T)x;]

+[yr— H(T)x|'R(T) [y, — H(T)x;] (43b)

denotes the total change in cost associated with the
transition from T to T +1. Substituting (42) into (43a), it
follows by straightforward calculations (analogous to those
in Section III-B) that the state-conditioned cost function
for time T +1 has the quadratic form

CF(xT+1’T+1)
=[x —2x(T+UT+ )]’ (T+ 1T +1)

Jxre = (T +YT + D] + kyyys (44)

where 3(T +1|T +1) and x(T +1|T + 1) satisfy the recur-
sive relations (38). As is clear from (44), x(T +1|T +1) is
the state vector x,,, that minimizes the state-condi-
tioned cost function Cf(x;,,,T +1).

The terms 3(T +1|T +1) and x(T + 1|T + 1) appearing
in the cost expression (44) thus coincide with the error
covariance matrix and state estimate generated by the
Kalman filter recurrence relations derived from (38). Note,
also, that the quadratic and linear coefficient terms
ST T+YT+1) and ST+ 1T +Dx(T +1T +1) for
the cost expression (44), considered as a function of x,, ,
coincide with the information matrix and modified state
estimate generated by the information filter equations. It
is not surprising, then, that the cost arguments used to
derive the recursive relations (38) for these terms are
entirely analogous to the cost arguments used in Section
III-B to determine recursive relations for the quadratic
and linear coefficient terms Q,(u) and p,(u) for the cost
expression ¢(xr, s u,T).

In summary, the Kalman and information filter recur-
rence relations can be derived for approximately linear
systems using simple cost arguments, without recourse to
probabilistic arguments such as Bayes’ rule or iterated
expectations. All that is needed is that the basic cost
function used to measure theory and data incompatibility
be a quadratic function exhibiting time-separability.

C. The FLS Recurrence Relations as Information
Filter Equations

Conversely, the FLS recurrence relations associated
with any given point w on the cost-efficient frontier
reduce to a variant of the information filter equations if
the theoretical relations (1) and (2) are augmented by
probability relations of the form (34).
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Specifically, suppose the dynamic weight matrix uD(t)
is taken to be the inverse of the covariance matrix S(¢) for
w,, and the measurement weight matrix M(t) is taken to
be the inverse of the covariance matrix R(¢) for v,, for
each time ¢; and suppose also that the initial cost matrix
Q,(w) is taken to be the inverse of the covariance matrix
3, for the initial state vector x,. In this case the matrix
U(p) in (28) corresponds to the inverse of the “measure-
ment-update” error covariance matrix 3(T|T) and the
vector z,(u) in (29) corresponds to the modified state
estimate 3~ '(T|T)x(T|T). Moreover, the matrix Q,(u)
corresponds to the inverse of the “time-update” error
covariance matrix 3(7T +1|T), defined [13, ch. 3] to be the
error covariance matrix for the MAP estimate of x,,
based on observations through time 7.

D. Duality Implications

If the probability relations (34) are justified for a given
filtering and smoothing application, they should of course
be incorporated in the estimation procedure. However,
for many important applications—particularly in the so-
cial sciences—obtaining agreement among researchers re-
garding probability relations such as (34) can be difficult.

For example, the process observations may be the out-
come of a nonreplicable experiment, so that no objective
test of these relations can be carried out. Also, the
theoretical relations may represent tentatively held con-
jectures concerning a poorly understood process; or they
may be a linearized set of relations obtained for an
analytically intractable nonlinear process, as in many
aerospace filtering and smoothing problems. In these
cases it is doubtful whether the discrepancy terms are
governed by any meaningful probability relations. Inde-
pendence restrictions, in particular, are questionable and
troublesome.

For these reasons, the FLS procedure, with its minimal
assumptions concerning discrepancy terms, appears to
offer a useful complement to existing filtering and
smoothing techniques. Moreover, the FLS duality rela-
tions discussed in previous sections may shed some light
on the robustness properties of the Kalman filter.

It is now conventional to interpret any quadratic crite-
rion function representing sums of squared dynamic and
measurement errors—e.g., the Kalman filter criterion
function (39)—as a log-likelihood expression arising from
some underlying stochastic model in which model discrep-
ancy terms are interpreted as independent and normally
distributed random variables. Yet it is also known that
Kalman filtering works remarkably well in some contexts
in which these strong stochastic assumptions are not even
remotely satisfied. A partial explanation for this robust-
ness is that the Kalman filter criterion function can be
given an alternative interpretation: namely, as a cost
function embodying the criterion that model discrepancy
terms be small.

“Smallness” should not be confused with “random-
ness.” Postulating that x,,, is close to [F(f)x, + a(t)]
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does not mean that the discrepancy term [x,,, — F(t)x,
—a(t)] is necessarily a random vector. As numerous
experiments with FLS have shown (see, e.g., [3]), the
postulate of small dynamic and measurement discrepancy
terms is a powerful assumption that allows state trajecto-
ries to be tracked and recovered with surprising qualita-
tive accuracy at each point along the cost-efficient fron-
tier.

V. CoONCLUSION

The main purpose of this paper is to present a proba-
bility-free multicriteria approach to the problem of filter-

ing and smoothing when prior beliefs concerning dynam--

ics and measurements take an approximately linear form.
In particular, model discrepancy terms are treated as
model specification errors that may not have any mean-
ingful probabilistic description. Applications are envi-
sioned in various fields, particularly in the. social and
biological sciences, where obtaining agreement among
researchers regarding probability relations for discrep-
ancy terms is difficult.

The essence of the proposed FLS procedure is the
cost-efficient frontier. This frontier, a curve in a two-
dimensional cost plane, provides an explicit and system-
atic way to determine the efficient trade-offs between the
separate costs incurred for dynamic and measurement
specification errors.

The estimated state sequences whose associated cost
vectors attain the cost-efficient frontier, referred to as
FLS estimates, show how the state vector could have
evolved over time in a manner minimally incompatible
with the prior dynamic and measurement specifications.
Each FLS estimate has the property that it is not possible
simultaneously to reduce both the dynamic and the mea-
surement cost by choice of an alternative state sequence
estimate. The similarities displayed by the FLS estimates
suggest working hypotheses regarding the evolution of the
actual state vector. The divergencies displayed by these
estimates reflect the residual uncertainty inherent in the
problem specifications regarding the exact nature of this
evolution. Without additional prior information, restrict-
ing attention to any proper subset of the FLS estimates is
an arbitrary decision.

A Fortran program GFLS for implementing the FLS
filtering and smoothing procedure for approximately lin-
ear systems is provided in the appendix. This program has
been used in both simulation and empirical studies of
time-varying linear regression ([31-[5]).

Nonlinear systems are studied from the multicriteria
FLS point of view in [6].

APPENDIX

This appendix provides a Fortran program GFLS that
implements the sequential FLS solution of the bicriteria
filtering and smoothing problem posed in Section II. The
program has received extensive testing. In addition, the
program incorporates a check of the sequential FLS solu-
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tion based upon using the standard first-order con-
ditions for the solution of the incompatibility cost mini-
mization problem (5).

The variable names used in the GFLS program adhere
strictly to those used in the body of the paper. Moreover,
numerous comment statements are interspersed through-
out the program that are geared to the equation numbers
used in the paper.

User inputs are required in a subroutine INPUT. This
subroutine initializes the penalty weight u, the total num-
ber of observation vectors TCAP, the state vector dimen-
sion n, the observation vector dimension m, and the
initial cost function coefficient terms Qy(u), po(u), and
ro{u). The program is currently dimensioned for TCAP <
110, n <15, and m < 15.

Subroutine INPUT also requires the user to set two
flags. The first flag, IFLAGR, is set equal to 1 if the user
wishes to generate evaluations for the constant terms
r(p) in the cost functions (12), and is set equal to 0
otherwise. The second flag, IFLAGS, is set equal to 1 if
the user wishes to generate smoothed state estimates in
addition to filtered state estimates, and is otherwise set
equal to 0. If the user sets IFLAGS =1, the program
automatically carries out a test of the first-order con-
ditions for the incompatibility cost minimization prob-
lem (5).

User inputs are also required in a subroutine MODEL.
For each current time T, subroutine MODEL generates
the n X n state transition matrix F(T'), the n X1 dynamic
forcing term a(T), the m X n measurement matrix H(T),
the m X1 measurement forcing term b(T), the nXn
dynamic weight matrix D(T), the m X m measurement
weight matrix M(T), and the m X 1 observation vector y.
For simulation studies, the observation vector y; is gen-
erated in accordance with the relation y, = H(T)x; +
b(T)+ vy, where x; is an n X1 user-specified state vector
and vy is an m X1 user-specified discrepancy term. The
user-specified state vector x is stored in an array TRUEX
for later comparison with the numerically generated FLS
smoothed estimate for x;.

The GFLS program contains subroutines for all needed
matrix operations. Currently, these subroutines are di-
mensioned for 15X 15 matrices. To keep the number of
subroutines to a minimum, vector and scalar operations
are carried out with these matrix subroutines by consider-
ing some vectors to lie in the first column of a 15X15
matrix, and some scalars to be the upper-left component
of a 15X 15 matrix.
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DIMENSION QO(15,15),PO(15,15) ,RO(15,15),Q2€R0(15,15)
DIMENSION PZERO{15,15) ,RZERO(1S, 15)

DIMENSION F(15,15).A(15,15),H(15,15),B(15,15),0(15,15)
DIMENSION W({15,15),¥(15,15),TRUEX(15,110) . ¥¥(}5,110)
DIMENSTON HT(15,15) ,U(15,15),C(15,15),8(15,15),V(15,15)
DIMENSION €(15,15),2(15,15),6(15,15),QNEN(1S,15), PREN(15,15)
DIMENSION $(15,15),RNEW(15,15) ,XTCAP(15,15)  X(15,1

DIMENSION AA(15,15),B8(15,15),€C(15,15).00(i5,15), nus 15
DIMENSION FF(15,15),HH(15,15),00(15,15),PP(15.15).00(15.15
DIMENSION RR{15,15),TT(15,15)

ADDITIONAL ARRAYS 1f SMOOTHED ESTIMATES ARE TO BE CALCULATED
FOR INTERMEDIATE X VALUES (1.E., IF IFLAGS IS SET AT 1)

DIM{NSION 6G(15,15,110),55(15,110)

THE FOLLOWING SUBROUTINE IRITIALJZES THE FENALTY WEIGHT AMU,
THE NJMBER OF OBSERVATIONS TCAP, THE STATE VECTOR DIMENSION

N, THE OBSERVATION VECTOR DIMENSION MOBS, AND THE INITIAL COST
FUNCTION CHARACTERISTICS QZERO, PZERG, AND RZERO. T ALSO SETS
THE Y2LUE FOR A FLAG "IFLAGR™ TO DEYERMINE IF RNEW IS TO BE
CELOUATED (i) OR WOT (D) AND A FLAG “IFLAGS® 1O CETERMINE 1F

SMIGIRED ESTIMATES FOR INTERMEDIATE X VALUES ARE 10 BE CALCULATED

(1} G KOT (0).

CALL INPUT(£H0, TCAP N, MOBS, QZERO , PZERO, RZERO, IFLAGR, IFLAGS)
CALL SHIFT(N,N,QZERO, QO)
CALL SHIFT(N.).PZEROD, PO)
CALL SHIFT(1,1,RZERO, RO)

ENTERING- THE MAIN DO LOOP FOR GENERATING Q.P,AND R fOR
SUCCESSIVE TIMES T « 1,TCAP USING EQS.(24).(26), AND (27).

B0 50 Te),102P
CALL MSDEL(T,F
00 § 11,108
YY(1,1) = Y(1,1)
CONTINUE

AH.8,0.M, Y, TRUEX) .

GETTING UsKT*M*H + QO IN EQ.{28)

CALL MUL (MOBS,MOBS,N,M,H,AA)
CALL TRANS(MOBS,N,H,HT)
CALL MUL{N,M0BS,N HT ,AA, BR)
CALL ADD(N,N,B8,00,U)

GETYING C-FT*D

CALL TRANS(N,N,f,AA}
CALL MUL(N,N,N,AA,D,C)

GETTING N-AMU*CAF 4y

CALL MUL(N,NN,C,F,AR)

CALL MULCON(N,N,AMU, AR, B8)

CALL ADO(N,N,BB,U,W)

GETTING VeWINV IN £Q.(17)

CALL INV(N,W,V)

GETTING E « (Y-B)

CALL SUB(MOBS,),Y,B,E)

GETTING 7 = HT*M*E + PO IN EQ.(29)
CALL MUL(MOBS,MOBS, 1M, AR)

CALL MUL(N,MOBS,1,HT,AA,BB)

CALL ADD(N,1,B8,P0,2)

GETTING G = AMU*V*C IN EQ.(20)

CALL PUL(N,NN,Y,CLAR)

CELL HSLCON(N, N, AMU, AR, G)

1F{1FLAGS.£0.0) GO T0 110

STORE G FOR CALCULATION OF SMOOTHED ESTIMATES
00 10 I-1,N
00 20 J-1,N
GG(I J r) N
ZONT
cuvmwz_
CONTINYE

(1,9)

GLTTING QNEW = AMU*D*(1-F*G) IN £Q {2¢)

CALL MUL(N,N,N,F,G,AR)
CALL IDEN(N,88)

CALL SUB(N,N,B8,AA,(C)
CALL MOL(N.N.N,D,CC.0D)

CALL MULCON{N.N, AHU 0D, QNEW)

GETTING PNEW « GT*Z+QNEWT*A IN £Q.({26)

CALL TRANS(N,N,G,AA)
CALL MUL{N,N,1,AA,2,88)
CALL TRANS(N,N,QNEW,CC)
CALL MUL{N,N,1,CC,A,DD)
CALL ADD{N,1,BB,DD, PNEW)

GETTING § = Ve(Z - AMUSC*A) IN £Q.(19)

CALL MUL(N,N,1,C,A,BB)
CALL MULCON(N,],AMU,BB,CC)

CALL SUB(N,1,2,(C,0D)
CALL HJL(N 1v,00,5)
TF{1FLAGS. £Q.0) 6O 10 210
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STORE S FOR CALCULATION OF SMOOTHED ESTIMATES

00 30 1-1,N
SS(1,T)=5(1,1)

CONTINUE

CONTINVE

IF(IFLAGR.EQ.0) GO TO 310

GETTING RNEW = RO + ET*M*E + AMUSAT*D*A - ST*W*S N E€Q.{27)

CALL MUL(MOBS,MOBS, 1M, €, AR)
CALL TRANS(MOBS,),t,BB)

CALL MUL(1,MOBS, 1,88,AR,CC)
CALL ADD{1,1,R0,CC,DD)

CALL WJL(N,N.1,0,A,EE)

CALL TRANS(N.1,A,FF)

CAL MILQL, N DL EFEE b
CALL MULCON(},1,AHU, HH,00)
CALL ADD(1,1,00,00,PP)

CALL MUL{N,N,1,¥,5,00)

CALL TRANS( RR
AL
CALL
CONTINUE
1§ {T.£0. TCAP} €0 10 50

UPDATING Q0,P0, AND RO

CALL SHIFT{N,N,QNEW,Q0)
CALL SKIFT(N,),PNEW,PC)
1F(IFLAGR.£Q.0) GO 1C 50
CALL SHIFT(],],RNEW,RO)
CONTINUE

GETTING THE FLS FILTER ESTIMATE FOR XTCAP = UINV*2 IN £Q.(30)

CALL INV{N,U,AR)

CALL nuu~ N,1,AA,7,X7CAP)
D0 65 1

X(I TtAP)-XICAP(l 1)

CONTINUE
1F (IFlAGS.EQ‘I) G010 410
PRINTING QUT THE FLS FILTER ESTIMATE FOR XTCAP

CALL OUTPUT({TCAP,N,X, TRUEX)

17 (1FLAGS.£Q.0) GOTO S0

CONTINGE

GETTING SMOOTHED ESTIMATES FOR X1,..., XTCAP-1 IN £QS.(33A)
TCAPL-TCAP-1

DO 70 To1,TCAP]

L mM

l);‘(’l L)-SS(! L)
X(l L)-X(l u»ccu L LYX(J,L41)

CONTlNU[

CONTINUE

PRINTING OUT THE FLS ESTIMATES FOR X1,...,XTCAP

00 150 T=1,TCAP

CALL OUTPUT{T,N,X, TRUEX)

CONTINUE

VALIDATION TEST: HOW WELL DO THE FLS ESTIMATES SATISFY THE
FIRST-ORDER CONDITIONS FOR THE COST MINIMIZATION PROBLEM (5)
CALL FOCTST{X, YY)

CONTINUE

ST0P

END

MATKIX SUBROUTINES FOR ADDITION, MULTIPLICATION, TRANSPOSITION,

SUBTRACTION, INVERSION, MULTIPLICATION BY A SCALAR, SHIFT, AND
FORMATION OF AN IDENTITY MATRIX

OBTAINING THE SUM C-A+B OF TWO NROW X MCOL MATRICES A AND B

SUBROUTINE £DD(NROW,¥20L,A
IMPLICIT REAL*B(A-H,0-2)
DIKENSION A(15,15),B(15,15).C(15,15)
DO 10 141, NROW

00 20 Ja1,MCOL

o1, J)-A(l 3)+B(1.9)

CONTH

commui

RETURN

END

.B.C)

OBTAINING THE PRODUCT C=A*B OF AN NROW X L MATRIX A AND AN
L X MCOL MATRIX B

SUBROUTINE MUL (NROW, L MCOL,A,B,C)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION A(15,18), B(IS 15),C(15,15)
00 10 11,NROW

00 20 Je1,MCOL

SUM=0. DDtOO

00 30

sun-sum(l K)*B(K,J)
CONTI

o, J) sun

CONTINUE

CONTINUE

RETURN

N0

987

00001290
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001440
00001450
00001460
00001470
00001480
00001490
00001500
00001510
00001520
00001530
00001540
00001550
€0001560
00001570
00001580
00001590
00001600
00001610
00001620
00001630
00001640
00001650
00001660
00001670
00001680
00001630
00001700

00001920
00001930
00001940
00001950
00001960
00001970
00001980
00001990
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360
00002370
00002380
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C  OBTAINING THE TRANSPOSE B OF AN NROW X MCOL MATRIX A 00002390 DO 30 Lol N 00003490

4 00002400 E£(L,L)ONE 00003500

SUBROUTINE_TRANS (NROW,MCOL ,A, B) 00002410 30 CONTINUE 00003510

IMPLICIT REAL*B(A-H,0-1) 00002420 RETURN 00003520

DIMENSION A(15,15),8(15,15) 00002430 END 00003530

DO 10 I-1,NROV 00002440 3 00003540

00 20 J=1,MCOL 00002450 SUBROUTINE INPUT{AMV, TCAP,N,MOBS ,QZERD, PZERD,RZERO, IFLAGR, IFLAGS) 00003550

8(J,1)= A(l J) 00002460 IMPLICIT REAL*B(A-H,0-1) 00003560

20 CONTINU| 00002470 INTEGER TCAP 00003570

10 (ONTINUE 00002480 DIMINSION QZERO(15,15).PZERO(1S,15),RZERO(1S,15) 00003580

RETURN 00002490 AMU = 1.00+00 00003590

1) 00002500 TCAP = 30 00003600

¢ 00002510 Ne2 00003610

¢ OBTAINING THE DIFFERENCE C+A-B BETWEEN NROW X MCOL MATRICES 00002520 MOBS = 1 00003620

C  AMDB 00002530 0010J = 1N 00003630

C 00002540 D021 =N 00003640

SUBROUTINE SUB(NROW, H(Ol.A.B [3) 00002550 QZERO(1,J) = 0.0D+00 00003650

HPLICIT REAL*B(A-H,0 00002560 PZERO{1,J) = 0.0D+00 00003660

DIMENSION A(lS 15), 9(15 15),C(15,15) 00002570 RZERO(1,J) = 0.00+00 00003670

00 10 1<, NRON 00002580 20 CONTINVE 00003680

0 20 31 nco 00002590 10 CONTINUE 00003690

€(1,9)-A(1,9)-8(1,3) 00002600 1FLAGR=1 00003700

20 CONTINUE 00002610 1FLAGS =1 00003710

10 counuu{ 00002620 RETURN 00003720

RETURN 00002630 N 00003730

N0 00002640 ¢ 00003740

4 00002650 SUBROUTINE MODEL{T,F,A,H,B,D,M,Y,TRUEX) 00003750

o OBTAINING THE INVERSE C OF A X X K MATRIX A 00002660 IMPLICIT REAL*8{A-H,0-1) 00003760

C 00002670 REAL*8 M 00003770

SUBROUTINE INV(K,A,C) 00002680 REAL*4 GNORM 00003780

INPLICIT REAL*B(A-H,0-2) 00002690 INTEGER T,TCAP 00003790

DIMENSION A(15,15),B(15,30),C(15,15) 00002700 DIMENSION F(15,15),A(15,15),H(15,15), B(lS 15),D(15,15) ,M(15,15) 00003800

5 3=1,K 00002710 DIMENSION ¥(15,15), TRUEX(15,110),2ERO(1S, 15) 00003810

a9 DIMERSION QZERO(1S,15),PZERO(1S, 18),RIERG(15,15) 00003820

00 6 11,k 00002720 ¢ Pt

6 Ef(;rlqi}]p)cﬁ:“'d) g?,gg;;ig € TIME-VARYING LINEAR REGRESSION STUDY WITH A SHIFT IN THE COEFF. 00003840

S CONTINUE 00002750 € VECTOR AT MIOPOINT OBSERVATION TIME T=1S (SEE SECTION 2). 00003850

K2eKe2 00002760 CALL INPUT(AMU, TCAP,N, MOBS , QZERO, PZERO, RZERO, IFLAGR, IFLAGS) 00003860

SIGHA = 0.000+00 00003870

DO 7 Jel,K 00002770 2010 e ] it 00003880

0o 8 1-1.K 00002780 00 20 J-1115 00003890

B(1,240)20.0 00002790 26R0{1,) = 0.00400 00003300

1F(i.€0.9) s(x m) «1.00+00 00002800 2 com%nuz) P

8 CONTINUE 00002810 10 CONTINUE 00003920

7 CONTINUE S000eez0 CALL IDEN(N,F) 00003930

¢ CALL SHIFT(N,],2ER0,A) 00003940

€ THE PIYOT OPERATION STARTS HERE 00002840 HU1-1)o1. 00900 00003950
)l

C oLk Joo0eeso H(1,2)=1,00+00 00003960

; AT=DFLOAT m 00003970

plvor < BlLL) Oop0zer0 1F(1.£0.1) 60 T0 200 00003980

Do 13 oo, g HLL1)-DSIA(10.00100 (AT} 0.010400 00003990

3)/PIVOT 000028! (1.1)

B(L,J)=8(L,J)/! 90. H1.2)-DC05(10.00400 (AT) 00004000

1Y coutmE e 200 CONTING 00004010

€ T0 INPROVE THE ROVS 00002920 A ﬁ{;{,ﬁ"ﬂ'}s 1 2ER0.8) s

¢ 0002930 CALL_IDEN(MOBS 4) 00004040

00 18 1+1,K 00002940 If (1.67.15) 6010 150 00004050

1F(1.€Q.L) 60 0 14 00002950 TRUEX{1.T) + 2.00+00 00004060

Alt-8(1,1) 00002960 TRUEX(2,T) = 3.00+00 00004070

DO 15 JeL K2 00002970 co10 174 00004080

B(1,J)+8(1,J)-AIL*B(L,J) 00002980 150 TRUEX(1,T) = 4.00400 00004090

1S CONTINUE 00002990 TRUER{2,T) » 5.0D+00 00004100

14 CONTINUE 00003000 175 CONTINGE 00004110

9 CONTINUE 00003010 UU - DBLE(GNORM{0)) 00004120

DO 45 I-1,K 00003020 Y(1,1)=H(1,1)*TRUEX(1,T) + H(1,2)*TRUEX(2,T) + SIGMA*UU 00004130

00 46 Je1,X 00003030 RETURN 00004140

€(1,9)-B(1,KJ) 00003040 END 00004150

46 (ONTIMJE 00003050 c 00004160

45 CONTINUE 00003060 SUBROUTINE OUTPUT(T,N,X, TRUEX) 00004170

RETURN 00003070 IMPLICIT REAL*8(A-H,0-7) 00004180

¢ END gggggggg INTEGER ¥ 00004190

MENSION X(15,110), TRUEX (15,110 00004200

C  OBTAINING THE PRODUCT C*A OF A SCALAR C AND AN NROW X MCOL 00003100 f‘.[,s'o 5,10 ( ! 00004210

4 MATRIX A 00003110 WRITE(6,100) L, (X(I,L),I=1,N) 00004220

4 00003120 100 FORMAT(IHO,’TIME EQUALS’,13/1X, FLS ESTIMATES',7X,2025.10) 00004230

SUBROUTINE MULCON(NROW,MCOL,C,A,CA) 00003130 WRITE(6,200) (TRUEX(1,L},1=1,N) 00004240

IMPLICIT REALS8(A-H.0-2) 00003140 200 FORMAT(iX, TRUE X VALUES',7X.2025.10) 00004250

DIMENSION A(15,15).CA(15,15) 00003150 RETURN 00004260

D0 10 1<1,NROW 00003160 £ND 00004270

DO 20 J=1,MCOL 00003170 ¢ 00004280

CAL1,0)=C*A(1,9) 00003180 € VALIDATION TEST: HOW WELL DO THE FLS ESTIMATES SATISFY THE 00004290

20 CONTINUE 00003190 ¢ FIRST-ORDER CONDITIONS FOR THE COST MINIMIZATION PROBLEM (S) 00004300

10 CONTINUE 00003200 c 00004310

RETURN 00003210 SUBROUTINE FOCTST(X,YY) 00004320

END . 00003220 IMPLICIT REAL*B(A-H,0-2) 00004330

¢ 00003230 mnm 1, m TCAP, TCAP] : 00004340

€ PUTTING AN NROW X MCOL MATRIX A INTO AN NROW X MCOL MATRIX B 00003240 REALYS 00004350

c 00003250 omznsmu QllRD(lS 15),PZERO(15,15), nmous 15) ’ 00004360

SUBROUTINE SHIFT{NROW,MCOL,A,8) 00003260 DIMENSION XT{15,15),X(15,110),X17(185,15),E(15 00004370

IMPLICIT REAL*8(A-H,0-7) 00003270 DIMENSION PZEROT(15,15),EE(15,15),C0(15,15), m|s 15),YY(15,110) 00004380

DIMENSION A(1S,15),B(15,15) 00003280 DIMENSION F(15,15),A(15,15),H{15,15),B(15,18),D(15,15},M(15,15) 00004390

DO 10 1<) ,NROW 00003290 DIMENSION Y(15,15), TRUEX (15, 110) 00004400

00 20 J=1,MCOL 00003300 DIMENSION MH(15,15),EM(15,15),EMT(15,15),W(15,15),XTP1(1S5,15) 00004410

8(1, J)-A(l J) 00003310 DIMENSION ED(15,15),€0T(15,15),U(15,15),V(15,15),FOCD(15,15) 00004420

20 CONTINU 00003320 € = -1.00+00 00004430

10 counuus 00003330 € FORM TH[ STATE VECTOR FOR TIME T = 1 00004440

RETURN 00003340 CALL INPUT(AMU, TCAP,N,MOBS , QZERO, PZERO, RZERO, 1FLAGR, IFLAGS) 00004450

£ND 00003350 00 160 11,8 00004460

4 00003360 XT(1,1) = X(1,1) 00004470

€ FORMING THE N X N IDENTITY MATRIX £ 00003370 100 CONTINUE 00004480

¢ 00003380 4 FORM THE INITIAL INCREMENTAL COST €O = -(X1°Q0 - PO’) 00004490

SUBROUTINE 1DEN(N,E) 00003390 CALL TRANS(N,1,XT,XTT) 00004500

IMPLICIT REAL*B(A-H,0-2) 00003400 CALL WL(),N © 00004510

DIMENSION E(15,15) 00003430 CALL TRANS{N. 1,PZERO 00004520

2ER0+0. 00+00 00003420 CALL SUB(1,N.E, szm EE) 00004530

ONE=1.0D+00 00003430 CALL MULCON(3,N,C,EE,CO) 00004540

00 10 I+1,N 00003440 ¢ 00 L00P ron mt SEQUENTIAL CHECK OF THE FOC FOR Te1,TCAP 00004550

00 20 J=1,N 00003450 D0 200 T 00004560

€(1,9)=2ER0 00003460 c roun THE nn: 1 STATE VECTOR XT 00004570

20 CONTINUE 00003470 300 §o1,N 00004580

10 CONTINVE 00003480 XT(l 1) - LT 00004590
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300 CONTINVE 00004600

FORM THE TIME-T OBSERVATION VECTOR YT 00004610

DO 400 Je1,M0BS 00004620

Y1) = Y, 00004630

400 CORTINUE 00034640

CALL MODEL(Y,F,A,H,B,0,M, Y, TRUEX) 00004650

C FORM W « {YT - R(T)XT - B(T)) M(T)H(T) 00004660

CALL MUL{MOBS,MOBS,N,M,H,MR) 00004670

CALL RME(N,MOBS,YT,XT H,B,EM) 00004680

CALL TRANS{MOBS,1,EM,EMT) 00004690

CALL MUL{1,MOBS,N, EMT ,MH, W) 00004700

1F(1.€Q.TCAP) GOT0 600 00004710

4 FORM THE TIME-T+) STATE VECTOR XTP1 00004720

T4 00004730

DO 500 I=1.N 00004740

xTPl(l 1) = x{1,7P1) 00004750

500 CONTINUE 00004760

¢ FORM U = AMU*(XTPL - F(T)XT - A(T))'*D(T) 00004770

CALL RDE(N,XTPI,XT,F A, ED) 00004780

CALL TRANS(N,],ED,EDT) 00004790

CALL MUL{1,N,N,EOT,0,E) 00004800

CALL MULCON(1,N,AMU,E,V) 00004810

[4 FORM ¥ = Ut 00004820

CALL WUL(1,N,N,U,F,V) 00004830

G0TO 800 00004840

600 CONTINUE 00004850

D0 700 1-1,N 00004860

vu 1) = 0.0D+00 00004870

700 CONT 00004880

800 tounuut 00004890

c DETERMINE THE FOC D]SCR[PANCI[S FOR TIME T 00004900

c GIVEN BY FOCD = CO + V + 00004910

CALL ADD{1,N,C0,V,E) 00004920

CALL ADD(1,N.€,¥,FOCD) 00004930

4 PRINT QUT mz ro: DISCREPANCIES FOCD FOR TIME T 00004940

WRITE (6,36) T 00004950

36 FORMAT{1HO,'FOC DISCREPANCIES FOR TIME',13) 00004960

WRITE (6,37) {FOCD({1,1),1=1,N) 00004970

37 FORMAT(1X,13010.2) 00004980

[4 UPDATE THE INITIAL INCREMENTAL €OST €O 00004990

CALL MULCON{1,N,C,U,C0) 00005000

200 CONTIWE 00005010

RETURN 00005020

END 00005030

¢ 00005040

C SUBROUTINE FOR EVALUATING THE MEASUREMENT SPECIFICATION ERROR 00005050
c EM = (YT - H(T)XT - B(T)) FOR TIME T 0000!

3 00005070

SUBROUTINE RME(N,MOBS, YT, XT,H,B, EM) 00005080

IMPLICIT REAL*B(A-H,0-2 00005090

DIMENSION YT{15,15) .XT(15, 15) uus 15),B(15,15),EM(15,15) 00005100

DIMENSION HX(15, 15) HXPB(15,1 00005110

CALL WUL(MOBS N, 1, H,XT, 00005120

CALL ADD(MOBS. 1. HX, B, HXPB) 00005130

CALL SUB(MOBS,),YT HXPB,EM) 00005140

RETURN 00005150

END 00005150

4 00005170

C SUBROUTINE FOR EVALUATING THE DYNAMIC SPECIFICATION ERROR 00005180

4 ED = (XTP) - F(T)XT - A(T)) FOR TIME T 00005190

¢ 00005200

SUBROUT INE muu.xm.n,r.l.m) 00005210

IMPLICIT REAL*B(A-H,0 00005220

DIMENSION XTP1(15,15), xms 15) F(15 15),A(15,15),ED(15,15) 00005230

DIMENSION FXT(15,15),FXTPA(1S,1 00005240

CALL mun n JXT,EXT) 00005250

CALL ADD(W,1,FXT,A,FXTPA 00005260

CALL sue(u 1 "XTP1,FXTPA, £D) 00005270

RETURN 00005280

END 00005290
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