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Flexible Least Squares for Approximately 
Linear Systems 

ROBERT KALABA AND LEIGH TESFATSION 

Absfmcf -The problem of filtering and smoothing for a system de- 
scribed by approximately linear dynamic and measurement relations 
has been studied for many decades. Yet the potential problem of mis- 
specified dynamics, which makes the usual probabilistic assumptions 
involving normality and independence questionable at best, has not 
received the attention it merits. A pmbability-free multicriteria “flexible 
least squares” filter that meets this misspecification problem head on is 
proposed. A Fortran program implementation is provided for this filter, 
and references to simulation and empirical results are given. Although 
there are close connections with the standard Kalman filter, there are 
also important conceptual and computational distinctions. The Kalman 
filter, relying on probability assumptions for model discrepancy terms, 
provides a unique estimate for the state sequence. In contrast, the 
flexible least squares filter provides a family of state sequence estimates, 
each of which is vector-minimally incompatible with the prior dynamical 
and measurement specifications. 

I. INTRODUCTION 

OLLOWING World War 11, probabilistic methods F attained a dominant position in filtering and smooth- 
ing theory [l]. Early studies focused on linear system 
identification problems arising in radar and communica- 
tions for which the theoretical specifications were essen- 
tially correct, with for which model discrepancy terms 
were reasonably modeled as random quantities with 
known distributions. For such problems, probabilistic 
methods could credibly be used to construct scalar mea- 
sures for theory and data incompatibility in the form of 
likelihood or posterior distribution functions. 

More recently, however, the social and biological sci- 
ences have presented filtering and smoothing problems of 
critical importance for which the processes of interest are 
highly nonlinear and poorly understood. In attempting to 
apply standard filtering and smoothing techniques to such 
a problem, a data analyst typically has to replace the 
unknown nonlinear process relations with an approximate 
system of linear relations. The resulting model discrep- 
ancy terms then incorporate model specification errors 
from various conceptually distinct sources-e.g., imper- 
fectly specified measurements versus imperfectly specified 
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state dynamics; hence it is questionable whether these 
discrepancy terms are either jointly or separately gov- 
erned by meaningful probability relations. More gener- 
ally, it is difficult to provide any credible way to scale and 
weigh the discrepancy terms relative to one another. 

In decision theory, incommensurability of this type is 
typically handled by multicriteria optimization techniques 
[21. However, such techniques have not yet been exploited 
systematically in state estimation theory. Rather, cur- 
rently available filtering and smoothing techniques require 
the data analyst to provide probability assessments for all 
discrepancy terms. In consequence, social and biological 
scientists attempting to apply these techniques are often 
forced to resort to conventional probability specifications 
such as normality and independence that may have little 
public credibility. 

This paper proposes a probability-free multicriteria fil- 
ter for the estimation of approximately linear dynamical 
systems. Briefly stated, this “flexible least squares” (FLS) 
filter solves the following multicriteria optimization prob- 
lem: Characterize the set of all state sequence estimates 
which achieve vector-minimal incompatibility between im- 
perfectly specified linear theoretical relations and process 
observations. 

The FLS filtering and smoothing problem for approxi- 
mately linear dynamical systems is set out in Section 11. 
The FLS recurrence relations for the solution of this 
problem are derived in Section 111. Section IV considers 
the relationship between FLS and Kalman filtering. Con- 
cluding remarks are given in Section V. A Fortran pro- 
gram GFLS which implements the FLS recurrence rela- 
tions for this application is provided in an appendix. 

11. THE BASIC PROBLEM 

Consider a system whose state at time t ,  t = 1,2; * ., is 
an n-dimensional vector x,. It is believed that the state 
transition equations for the system take the approximately 
linear form 

x,, , = F (  t ) X ,  + .(t), t = 1,2; . . , (1) 
where F ( t )  is a known n x n square matrix, and d t )  is a 
known n-dimensional column vector. At each time t ,  an 
m-dimensional vector y ,  of observations is obtained. The 
measurement relations are assumed to take the approxi- 
mately linear form 

y ,  = H ( t ) x ,  + b ( t ) ,  t = 1 , 2 , * - . ,  (2) 
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where H ( t )  is a known m X n rectangular matrix and b( t )  
is a known m-dimensional column vector. 

Each possible sequence of estimates i l , i2 , . . .  for the 
state vectors entails two conceptually distinct types of 
model specification errors: namely, measurement errors 
consisting of the discrepancies [ y ,  - H ( t  12, - b(t 11 be- 
tween the actual and the estimated observation at each 
time t ;  and dynamic errors consisting of the discrepancies 
[i,, , - F ( t  E, - a(t 11 that arise due to misspecification of 
the state transition equations. The basic filtering and 
smoothing problem then involves multicriteria optimiza- 
tion. Given a sequence of observation vectors 
y , , y , ; . - , y ,  up to timeAT with T > 1, determine the 
state sequence estimates X ,  = (i1; . e ,  i,), which in some 
sense make both types of specification error as small as 
possible. 

Suppos? a dynamic cost cD(2?,, T )  and a measurement 
cost c , (X, ,T)  are separately assessed for the two dis- 
parate types of model specification ercors entailed by the 
choice of a state sequence estimate X,.  On the basis of 
both tractability and general intuitive appeal, these costs 
are taken to be sums of squared discrepancy terms. 

More precisely, for any given state 2equence estimate 
J?,, the dynamic cost associated with X ,  is taken to be 

T - 1  

c o ( J ? J )  = c [ % + I  - (W)i ,  + 4 ) ) l ’  
1 = 1  

.W)[%+l -(m)-4 + m)] (3) 

and the measurement cost associated with J?, is taken to 
be 

Here D ( t )  and M ( t )  are square, symmetric, positive defi- 
nite scaling matrices of orders n and m, respectively. 
Having nonzero off-diagonal terms in these matrices 
would presume knowledge about the relative signs of the 
discrepancy terms, a presumption that is not very reason- 
able when discrepancy terms result from model misspeci- 
fication. Nevertheless, these matrices are left in 
general form because it does not impede the analytical 
treatment presented as follows. 

If the prior beliefs (1) and (2 )  concerning the dynamic 
and measurement relations are absolutely true, then the 
actual state sequence X ,  = ( x , ;  *, x,)  would result in 
zero values for both cD and c,. In any real-world appli- 
cation, we would of course expect to see positive dynamic 
and measurement costs !associated with each potential 
state sequence estimate X,. Nevertheless, not all of these 
state sequence estimates are equally interesting. Specifi- 
cally, we yould not be interested in a state sequence 
estimat: X, if it were cost-sybordinated by another esti- 
mate X ;  in the sense that X: yielded a lower value for 
one type of cost without increasing the value of the other. 

. 

(a) (b) 
Fig. 1. Trade-offs between dynamic and measurement costs. (a) Cost 

possibility set. (b) Cost-efficient frontier. 

We therefore focus attention on the set of state se- 
quence estimates that are not cost-subordinated by any 
other state sequence estimate. Such estimates are re- 
ferred to as flexible least squares (FLS) estimates. Each 
FLS estimate shows how the state vector could have 
evolved over time in a manner minimally incompatible 
with the prior dynamic and measurement specifications 
(1) and (2) .  Without additional model criteria to augment 
(1) and (21, restricting attention to any proper subset of 
the FLS estimates is a purely arbitrary decision. Conse- 
quently, the FLS approach envisions the generation and 
consideration of all of the FLS estimates in order to 
determine commonalities and divergencies displayed by 
these potential state trajectories. 

The collection C F ( T )  of cost vectors (c , ,c , )  associ- 
ated with the FLS estimates is referred to as the cost-efi- 
cient frontier. Given the cost specifications (3) and (41, the 
frontier is a downward sloping strictly convex curve in the 
cD - c, plane. (See Fig. 1.) 

Once the FLS estimates and the cost-efficient frontier 
are determined, three different levels of analysis can be 
used to investigate the incompatibility of the theoretical 
relations (1) and (2) with the observation vectors 
y , , . . . , y , .  First, the frontier can be examined to deter- 
mine the efficient trade-offs between the dynamic and 
measurement costs c D  and c M .  For example, one can 
determine the minimum measurement cost that would 
have to be paid in order to achieve zero dynamic cost, i.e., 
an exact fit of the state transition equations (1). Second, 
descriptive summary statistics (e.g., average values and 
standard deviations) can be constructed for the trajecto- 
ries traced out by the FLS estimates along the frontier. 
Finally, the trajectories traced out by the FLS estimates 
can be directly examined from left to right along the 
frontier to assess the effects of decreasing the implicit 
penalty imposed for dynamic versus measurement cost. 

Reference [3] applies this three-stage FLS analysis to a 
time-varying linear regression problem, a special case of 
(1) and (2) with scalar observations (m = l), no forcing 
terms, and state transition matrices F ( t  set identically 
equal to the identity matrix. For this application the 
components of the 1 X n vectors H ( t )  are interpreted as 
explanatory variables for the scalar observations y , ,  the 
state vectors x ,  are interpreted as coefficient vectors for 
the “linear regression” relations (21, and the state transi- 
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tion equations (1) with F ( t ) =  I and a ( t ) =  0 are inter- 
preted as smoothness relations governing the evolution of 
the coefficient vectors over time. 

An empirical FLS study of coefficient stability for a 
well-known log-linear regression model of U.S. money 
demand over the volatile period 1959-1985 is undertaken 
in [4]. Interesting insights are obtained concerning shifts 
in the coefficients at economically reasonable points in 
time. In [51, the FLS approach is used to develop a new 
measure of productivity change; the coefficients charac- 
terizing the production process are allowed to evolve 
slowly over time. The new measure compared favorably 
with more traditional measures when tested for U.S. 
agricultural data. 

How are the cost-efficient frontier and the FLS esti- 
mates actually generated? Section I11 suggests what might 
be done. 

111. THE FLEXIBLE LEAST SQUARES FILTER 

of the process increases and additional observation vec- 
tors are obtained. 

Suppose that the time is T >, 2. Observation vectors 
have previously been obtained for times 1,. . -, T - 1, and 
a new observation vector y, has just become available. 
Any choice of an estimate x, for the current time-T state 
vector incurs two costs. First, a measurement cost is 
incurred if there is a discrepancy between the actual 
observation vector y, and the estimated observation vec- 
tor [ H(t)x, + b(T)]. Second, consideration must also be 
given to the minimum achievable incompatibility cost over 
the earlier part of the process, conditional on the state 
estimate for time T being x,. The time-separability of 
the cost functions (3) and (4) implies that this latter cost 
depends only on x, and the observation vectors through 
time T - 1 .  

Let a function be introduced to represent the minimum 
incompatibility cost that can be achieved through time 
T - 1, conditional on any given time-T state vector x,: 

In view of the strict convexity of the cost-efficient 
frontier, each point on this frontier solves a problem of = the minimum incompatibility cost attainable 
the form “minimize c,,,, subject to cD = constant.” +me- through choice of xl, x2;  . ., x,- I, condi- 
quently, each FLS state sequence estimate X, = tional on the state vector at time T being 

X T .  
of the form 

4 ( x T ; p ’ T  

(6)  
(E,,. a ,  2,) can be generated as the solution to a problem 

The FLS estimate for the time-T state vector, conditional 
on p and the observation vectors obtained through time 
T ,  is then found by solving the minimization problem (5) m i n [ p C D ( X T , T ) + C ~ ( X , , T ) ] ,  

XT 

where p is a suitably chosen Lagrange multiplier lying 
between 0 and + W. Hereafter the bracketed expression in 
(5) will be referred to as the incompatibility cost associ- 
ated with X,, conditional on p and T .  The multiplier p,  
multiplied by - 1, gives the slope of the cost-efficient 
frontier at the solution point for (5); thus p parameter- 
izes the trade-offs attainable between dynamic and mea- 
surement cost along the cost-efficient frontier. 

The FLS approach envisions the generation of the 
entire cost-efficient frontier, together with the corre- 
sponding FLS state sequence estimates. Numerical exper- 
iments (e.g., [3]) have shown that the cost-efficient fron- 
tier can be adequately sketched out by solving the 
minimization problem (5) over a rough grid of p-points 
increasing by powers of ten. 

How is this minimization to be done? The solution of 
(5) appears to be a formidable problem. Since each state 
vector x, is n-dimensional, the first-order necessary con- 
ditions for the solution of (5) constitute a linear two-point 
boundary value problem in nT scalar unknowns. Fortu- 
nately, as will now be shown, problem ( 5 )  can be reduced 
to its proper dimensionality, n ,  through the use of a 
dynamic programming technique. 

A. The Basic FLS Filter 

Let p > 0 be given. A recursive procedure will now be 
developed for the exact sequential solution of the incom- 
patibility cost minimization problem (5) as the duration T 

min( [y , - (H(T)x ,+b(T) ) ] ’M(T)  
X T  

. [ Y T  - (H(T)x ,+  W))] + 4(x, ;PJ--W (7) 

x r L s (  p ,  T )  = arg min { . . . } . (8) 

Let this FLS estimate be denoted by 

X T  

At time T it is necessary to prepare for the appearance 
of an observation vector at time T + 1. To do this, one 
needs to know the cost function +(x,+ p,  T ) .  This cost 
function is given by 

4(x,+1;P7T) = min(P[X,+1 - ( F ( T ) x , + a ( T ) ) ] ’  

* D ( T ) [ x , + ,  - ( F ( T ) x ,  +4w1 
+ [Yr - ( H ( T ) x ,  + W))]’ 
.M(T) [y , - (H(T)x ,+b(T) ) I  

+ 4(x,;P7T-1)}. ( 9) 

X T  

The recursive relationship (9) can be given a dynamic 
programming interpretation. Conditional on any possible 
state vector x,+~ for time T +1,  the choice of a state 
estimate x, for time T incurs three types of cost. First, 
there is a dynamic cost associated with the estimated state 
transition from time T to time T + 1. Second, there is a 
measurement cost associated with the discrepancy be- 
tween the estimated and the actual time-T observation 
vector. And third, there is a minimum achievable incom- 
patibility cost based on everything that is known about the 
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process through time T - 1, conditional on the time-T 
state vector being x,. Selecting x ,  to minimize the sum 
of these three costs yields the minimum achievable incom- 
patibility cost based on everything that is known about the 
process through time T ,  conditional on the time-(T + 1) 
state vector being x T +  

Using (91, the cost functions 4 ( x 2 ;  p ,  11, 4 ( x 3 ;  p ,  2), . . . 
can be determined one after the other. At time T ,  assume 
that the function +(x,; p,  T - 1) is known. An observation 
vector yT then becomes available, and the function 
4 ( x T +  p,  T )  can be determined. To start matters off, it 
is assumed that an initial cost function 4(x , ;p ,O)  is given. 
For the particular cost specifications (3) and (41, this 
initial cost is identically zero. More generally, however, 
the initial cost could summarize whatever beliefs one has 
concerning the cost of estimating that the system is in 
state x l  at time T =  1 before an observation vector at 
time T = 1 has been received. 

The connection between the minimization problems ( 5 )  
and (7) is straightforward. Using relationship (9) with 
4 ( x l ; p , 0 )  = 0, the cost function 4 ( x T ;  p,  T - 1) can be 
expanded in the form 

4 ( x , ;  p ,  2- - 1) 

T - 1  

- - min { p  c [ x r + , - F ( t ) x i - a ( t ) ] ‘ D ( t )  
X I , X ~ , “ ’ . X T - - ~  = 1 

.[xt+l - ~ ( i ) x r  - a ( t ) ]  

+ c [ Y f  - H ( t ) x ,  - W ) ] ’  
T - 1  

r = 1  

From general considerations in linear-quadratic control 
theory, it is known that if the cost function appearing in 
the righthand side expression in (9) is given by 

4( ~ r ;  P , T - 1)  = x+Qr-  I (  

- 2 P T - I ( P ) ’ X T +  rT- l (P)?  (11) 
where QT-  , (p )  is a real n X n symmetric matrix, then the 
cost function appearing on the lefthand side has the form 

4( X T +  I ; I-L 7 T )  = x++ I QT(  P )  X T +  I 

- 2 P A P ) ’ X T + I  + 4 - 4 .  (12) 
We shall show this below in detail. 

First, suppose the initial cost function takes the 
quadratic form 

4 ( x i ; ~ , O )  = x ; Q d ~ ) x i  - 2 ~ d ~ ” ) ’ x i  + r o ( ~ ) ,  (13) 
where the n X n matrix Q J p )  is symmetric and positive 
semidefinite. As earlier noted, this function summarizes 
our knowledge of the cost of estimating that the system is 
in state x l  at time T = 1 before an observation vector at 
time T = 1 has been received. For the particular cost 
specifications (3) and (4), the coefficient terms Q o ( p ) ,  
p,,(p), and r&) are all zero. 

Let us now determine the recurrence relations connect- 
ing Q,(p> ,  p T ( p ) ,  and r T ( p )  with Q,- I(pu), P,- &), and 
r r P l ( p )  for an arbitrary time T > 1, where the n X n 
matrix Q,- I(p) is symmetric and positive semidefinite. 
Consider (9) for any given x , + ~ .  The large curly brack- 
eted term in (9) breaks down into quadratic, linear, and 
constant parts with respect to x,, as follows: 

( . . . } =  .+[ PF(  T ) ’ D (  T )  F( T )  

+ H ( T ) ’ M ( T ) H ( T )  + Q T - I ( P ) ] x T  

Recalling definitions (3) and (4) for cD and cM, it is then 
immediately seen that the minimization problem (7) is an 
alternative representation for the incompatibility cost 
minimization problem (5). 

The recurrence relation (9) is a special case of a multi- 
criteria filter shown elsewhere [6] to generalize various 
well-known filters such as those of Kalman 171, Viterbi [SI, 
Larson-Peschon [9], and Swerling [lo]. It illustrates how 
one might formulate and update a cost-of-estimation 
function for a dynamic process when discrepancy terms 
are not given a probabilistic interpretation. The recur- 
rence relation (9) thus replaces the use of Bayes’ rule, 
which would be employed if discrepancy terms were inter- 
preted as random quantities having known probability 
distributions and satisfying various independence restric- 
tions. This point will be elaborated in Section IV, below. 

B. A More Concrete Representation for the FLS Filter 

It will now be shown how the basic recurrence relation 
(9) can be more concretely represented in terms of recur- 
rence relations for an n X n matrix Q T ( p ) ,  an n X l  
vector p T ( p ) ,  and a scalar r , (p) .  

- 2 P , - l ( P ) ’ ) x ,  + P [ x T + I  - a(T)I’D(T) 

’ [x ,+ l -a(T)]  + [ Y , - b ( T ) l ’ M ( T ) ~ Y , - b ( T ) 1  

+ T T -  I( P I .  (14) 
To do the minimization called for in (91, the derivative 
with respect to x ,  of the right-hand side of (14) is set 
equal to the null vector, which yields 

o = [ p ~ (  T ) ’ D (  T ) F (  T )  + H (  T ) ’ M (  T ) H (  T )  

+ Q T - ~ ( P ) ] x T  

-(PcL[xT+I - 4 0 1  ID( T )  F( T )  
+ [ Y ,  - W ) ] ’ w W ( T )  + P , - l ( P ) ‘ ) ’ .  (15) 

Assuming the bracketed term in (15) is invertible (e.g., 
assuming the positive semidefinite matrix Q T -  &) is pos- 
itive definite, or that either F ( T )  or H ( T )  has rank n),  
the optimizing vector x ,  is given by 

x T  = [ F F (  T)’D(  T )  F( T )  + H (  T ) ’ M (  T )  H (  T )  

+ Q r - d ~ ) I - I  
X ( P F ( T ) ’ D ( T ) [ x , + ,  - 4 T ) I  

+ H ( T ) ‘ W T ) [  Yr - W)] + P T - l ( P ) ) .  (16) 
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In a similar manner, we find for r T ( p )  that 

T A P )  = r T - l ( P )  + [ Y ,  - b ( T ) ] ’ M ( O [  Y ,  - W)] 
+ P a ( T ) ’ D ( T ) a ( T )  

- sT(P) ’ [VT(PcL) ’1 -14P) .  (27) 
The relations (241, (261, and (27) constitute the desired 
recurrence relations for Q,<p>, p T ( p ) ,  and r,(p). 

Finally, using these recurrence relations, the FLS filter 
estimate (8) for the state vector at time T 2 1 can also be 
given a more concrete representation. Let 

U T ( P )  = H ( T ) ’ M ( T ) H ( T )  + Q T - ~ ( P ) ,  (28) 
and let 

+ ( P )  = H ( T ) ’ M ( T ) [ Y ,  - W)I+ P T - d P ) .  (29) 

XFLS(PU,T) = [U,(P)] - l z T ( P ) .  (30) 

Then 

C. FLS Smoothed State Estimates 

Consider the problem of obtaining the FLS smoothed 
estimate for the state vector x T  at time T as the length of 
the process increases from T to T + 1 and an additional 
observation vector y,+ is obtained. 

In preparation for time T + 1, the quadratic, linear, and 
constant terms Q,(p), p T ( p ) ,  and r T ( p )  characterizing 
the cost function in (12) have been calculated and stored. 
As a byproduct of this calculation, the unique cost-mini- 
mizing x ,  as a function of x , + ~  has been determined in 
accordance with (18) to be x ,  = s T ( p )  + G,(p)x,+ ,. Us- 
ing (30) updated to time T + 1, the FLS filter estimate for 
the state vector at time T + 1 is given by 

4 4 3 P , T + 1 )  = [ ~ , + , ( P ~ I - ’ ~ , + , ( P ~ .  (31) 
The FLS smoothed estimate for the time-T state vector 
x,, based on the observation vectors y , ;  . - , y T + ,  for 
times 1 through T + 1, is then given by 

x r L s (  P 7 T + 1) = S T (  P )  + G T (  P 1xr4; ( P ,  + 1) . (32) 
More generally, given any fixed time t, O g t  G T ,  the 

FLS smoothed estimate x@’(p, T + 1) for the state vec- 
tor x ,  at time t ,  based on the observation vectors 
y l ;  - a ,  y,+ for times 1 through T + 1, is found by solving 
the system of equations 

X I  = SAP) + Gt(P)x ,+ ,  

x7- = S A P )  + G T ( P ) X T + l  

x,+ I = xr4; ( P , T + 1 ) . 

(33a) 

(33b) 

in reverse order, starting with the initial condition 

Relations (30) and (33) for generating the FLS filtered 
and smoothed state estimates result naturally from the 
dynamic programming procedure used to update incom- 
patibility cost. Alternative formulas for generating these 
state estimates could be obtained from (30) and (31) using 
appropriate matrix manipulations (see [ll]). Based on 
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past numerical experience, however, we elected to adhere 
closely to the dynamic programming formulation. 

A Fortran program GFLS for generating the FLS fil- 
tered and smoothed state estimates by means of the 
relations (30) and (33) is provided in an appendix to this 
paper. In simulation experiments conducted to date with 
GFLS on an IBM Model 3090, the generated FLS esti- 
mates have satisfied the first-order necessary conditions 
for the cost-minimization pi-oblem ( 5 )  up to the maximum 
degree of accuracy (fourteen to sixteen digits) permitted 
by the double-precision word length employed. Our em- 
pirically based belief, then, is that the suggested proce- 
dure for determining the FLS filtered and smoothed state 
estimates is numerically stable and highly accurate. 

IV. RELATIONSHIP WITH KALMAN FILTERING 

FLS and Kalman filtering address conceptually distinct 
problems. FLS treats a multicriteria model specification 
problem that does not require probability assumptions 
either for its motivation or for its solution: the characteri- 
zation of the set of all state sequence estimates that 
achieve vector-minimal incompatibility between imper- 
fectly specified theoretical relations and process observa- 
tions. Kalman filtering is a point estimation technique 
that determines the most probable state sequence for a 
stochastic model assumed to be correctly and completely 
specified. Nevertheless, when applied to approximately 
linear systems, the two approaches satisfy duality rela- 
tions which generalize the well-known duality [7, p. 421 
between the noise-free regulator problem and maximum a 
posteriori probability estimation. 

Conceptual differences between FLS and Kalman fil- 
tering are examined in Section IV-A. In Section IV-B the 
Kalman filter recurrence equations are derived by means 
of simple cost-function arguments that mimic the steps 
outlined in Section 111-B for the derivation of the FLS 
recurrence relations. Probabilistic arguments (e.g., Bayes’ 
Rule or iterated expectations) are not required. Con- 
versely, in Section IV-C it is seen that the FLS recurrence 
relations for generating any particular state sequence 
estimate along the cost-efficient frontier reduce to infor- 
mation filter equations, the “inverse” of Kalman filter 
equations, if the model discrepancy terms are assumed to 
satisfy various independence and normality restrictions. 
Implications of these duality relations are discussed in 
Section IV-D. 

A. Conceptual Differences Between FLS and 
Kalman Filtering 

Previous sections of this paper investigate how filtering 
and smoothing might be undertaken for the approxi- 
mately linear system (1) and (2) when the dynamic and 
measurement discrepancy terms w, = [ x , ,  I - F ( t ) x ,  - 
a(t)] and c, = [ y ,  - H ( t ) x ,  - b(t)]  are incommensurable 
model specification errors. A multicriteria FLS solution is 
proposed for this problem. As seen in Section 111, this 
multicriteria solution can be implemented by means of a 

family of Riccati-type recurrence relations. The Riccati- 
equation form of these recurrence relations is not surpris- 
ing; it has been known for decades [12] that linear- 
quadratic minimization leads to recurrence relations of 
this type. What is new is the probability-free motivation 
provided for why one should be interested in this entire 
family of recurrence relations. 

Suppose, instead, that the following probability rela- 
tions, commonly assumed in Kalman filtering studies, are 
introduced for the discrepancy terms w, and U ,  and for 
the initial state vector xl: 

[PDF for w,] = M O ,  S( t  1); 
[PDF for U,] = M O ,  R(t));  
(w,) and (U,) are mutually and serially independent 

[PDF for xI1 = N ( x $ ,  Zl);  
xI is distributed independently of U ,  and w, for each t. 

(34) 
Under assumptions (341, the discrepancy terms w, and U ,  

are interpreted as white noise random vectors with known 
Gaussian probability‘ density functions (PDF’s) governing 
both their individual and joint behavior. In particular, w, 
and U ,  are now supposed to be perfectly commensurable 
quantities that can be scaled and weighed relative to one 
another. The FLS interpretation for w, and U ,  as concep- 
tually distinct apple-and-orange model specification er- 
rors incorporating everything unknown about the dynamic 
and measurement aspects of the process in thus dramati- 
cally altered. 

Combining the measurement relations (2) with the 
probability relations (34) permits the derivation of a prob- 
ability density function P(Y,lX,) for the observation 
sequence Y,  = (yI;  . ., y , )  conditional on the state se- 
quence X ,  = (x l ,  * * * ,  x,). Combining the dynamic rela- 
tions (1) with the probability relations (34) permits the 
derivation of a “prior” probability density function P( X , )  
for X,. The multiplication of these two derjved probabil- 
ity density functions yields the joint probability density 
function for X ,  and Y,, 

The joint probability density function (35) elegantly com- 
bines the two distinct sources of theory and data incom- 
patibility-measurement and dynamic-into a single 
scalar measure of incompatibility for any considered state 
sequence X,. 

Given the probability relations (34), the usual Kalman 
filter objective is to determine the maximum a posteriori 
(MAP) state sequence, i.e., the state sequence which 
maximizes the posterior probability density function 
P(X,IY,). Since the observation sequence Y,  is assumed 
to be given, this objective is equivalent to determining the 
state sequence which maximizes the product of P(X,IY,) 
and P(Y,). By the agreed upon rules of probability the- 
ory, 

where, as earlier explained, the right-hand expression in 

processes; 

P(Y,IX,).P(X,) = P ( X , , Y , ) .  (35)  

P(  XTIY,) * P(  Y,) = P(YT1XT). P(  X,) 9 (36) 
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(36) can be evaluated using (I), (21, and the probability 
relations (34). Determining the MAP state sequence is 
thus equivalent to determining the state sequence that 
minimizes the scalar “incompatibility cost function” 

either for the error covariance matrix Z(TIT) and the 
state estimate x(TIT)-the standard Kalman filter equa- 
tions (see [7] and [13, pp. 105-120])-or for the inverse 
“information matrix” C - ’ ( T I T )  and the modified state 

What has been achieved by the introduction of the 
probability relations (34)? Without relations such as (341, 
the dynamic and measurement discrepancy terms cannot 

B. Cost Deriuution ofthe Kulman Filter 
Recurrence Relations 

be scaled and weighed relative to one another. The filter- 
ing and smoothing problem is thus intrinsically a multicri- 
teria optimization problem: Conditional on the given ob- 
servations, determine the state sequence estimates which 
are in some sense minimally incompatible with each of 
the imperfectly specified theoretical relations (1) and (2). 
Given the probability relations (341, however, the discrep- 
ancy terms are transformed into perfectly commensurable 
“disturbance terms” impinging on correctly specified the- 
oretical relations in accordance with known probability 
distributions. In this case, MAP estimation seems an 
emminently reasonable way to proceed. The multicriteria 
optimization problem is thus transformed into the scalar 
optimization problem of determining the most probable 
state sequence for a stochastic model assumed to be 
correctly and completely specified. 

Making use of Bayes’ rule, Larson and Peschon [91 
develop a recurrence relation for the sequential updating 
of the posterior density function P(X,IY,) as the dura- 
tion T of the process increases and additional observation 
vectors are obtained. This recurrence relation is used to 
determine recursively the MAP state sequence for each 
time T.  The Larson-Peschon filter is derived under as- 
sumptions (34) without the requirement that the PDF‘s be 
Gaussian; nonlinearity of the dynamic and measurement 
relations is also permitted. Larson and Peschon show that 
their filter reduces to the Kalman filter when Gaussian 
distributions and linear dynamic and measurement rela- 
tions are assumed. 

For example, suppose for simplicity that the forcing 
terms a(t)  and b( t )  in the dynamic and measurement 
relations (1) and (2) are identically zero. For this case, 
Larson and Peschon obtain the relations 

C - ’ ( T  + 1IT + 1) = H ( T  + l ) ‘R(T + l ) - ’ H ( T  + 1) 

+ [ F (  T ) C (  TIT)F( T ) ’ +  S( T ) ]  - I ;  

+ C ( T  + 1IT + l ) H ( T  +1)’ 

x (  T + 1IT + 1) = F (  T ) x (  TIT)  

. R (  T + 1) - I [  y ,+  1 - H( T + 1)F( T ) x (  TIT)].  
(38) 

In (38), x ( T + l I T + I )  is the MAP estimate for the state 
vector at time T + 1, conditional on the observation vec- 
tors obtained through time T + 1; and C(T + 1IT + 1) is 
the error covariance matrix for x(T  + 1IT + 1). By use of 
appropriate matrix inversion formulas, the relations (38) 
can be transformed into a pair of recurrence relations 

It will now be shown that the recursive relations (38) 
can alternatively be derived by means of simple intuitive 
cost considerations, without reliance on probabilistic ar- 
guments. 

As in Section IV-A, suppose for simplicity that the 
forcing terms d t )  and b( t )  in (1) an (2) are identically 
zero. For any time T > 1, let X, denote the T-length state 
trajectory (xI; . ., x,); and let the time-T incompatibility 
cost function be specified by 

C ( X T 7 T )  = { c [x,+1 - W)x, l ’S( t ) - ’ [x ,+1-  F(t)Xtl 

T 

+ c [ Y t  - H(t)x,I’R(t)-’[y,  - H(t)x, l  
f = l  

+[XI - x , * ] ’ C , ’ [ x ,  - x ; ]  . ) (39) 

Also, let the time-1 incompatibility cost function be speci- 
fied by 

C( X i ,  1) = [ x1 - x ,* ]‘C ’[ x I - x 1. (40) 

Given the probability relations (341, the time-T incompat- 
ibility cost function (39) coincides with the previously 
defined incompatibility cost function (37) apart from a 
nonessential constant term. Finally, for any time T 1, let 
C F ( x , ,  T )  denote the minimum cost (39) attainable at 
time T ,  conditional on the time-T state vector being x,. 

By definition, the state-conditioned cost function 
CF(x,,1) for time 1 coincides with the time-1 cost func- 
tion c ( X , ,  1); hence it has the quadratic form 

C F ( x , , l )  = [ x l  - x ( l ~ l ) ] ’ Z - ’ ( l ~ l ) [ x ,  - x ( l l l ) ] ,  (41a) 

where 

Z-I(111) = C;l; (41b) 

x (  111) = x;” .  (41c) 

Note that x(ll1) is the state vector x ,  which minimizes 
the state-conditioned cost function CF(x , ,  1). 

Suppose the state-conditioned cost function C”(x,, T )  
for some time T 2 1 has the quadratic form 

C F ( x , , T )  = [x,- x ( T ( T ) ] ‘ Z : - ’ ( T ( T )  

. [ x ,  - X(TIT)] + k,, (42) 

where k ,  is independent of x,. As shown in [6, Section 
4.31, the state-conditioned cost function for time T + 1 
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satisfies the recurrence relation 

C F ( x T + ’ , T + l )  = min{Ac(xT,x,+,,T+1) 
X T  

+ c F ( x T 7 ~ ) } ,  (43a) 

where 

AC(XT,XT+I,T + 1) 

- = [ % + I  - F ( T ) x T I ’ S ( T ) - ’ [ x T + , -  F(T)x,l 

+ [ Y T -  H ( T ) x , ] ’ R ( T ) - ’ [ y ,  - H ( T b 7 . 1  (43b) 

denotes the total change in cost associated with the 
transition from T to T + 1. Substituting (42) into (43a), it 
follows by straightforward calculations (analogous to those 
in Section 111-B) that the state-conditioned cost function 
for time T + 1 has the quadratic form 

CF(X,+ ,, T + 1) 

= - x ( T  + 1IT + l ) ] ’ X - ’ ( T  + 1IT + 1) 

(44) 

where %T + 1IT + 1) and x(T + 1IT + 1) satisfy the recur- 
sive relations (38). As is clear from (441, x(T  + 1IT + 1) is 
the state vector x T +  I that minimizes the state-condi- 
tioned cost function C F ( x T + I ,  T + 1). 

The terms %T + 1IT + 1) and x(T + 1IT + 1) appearing 
in the cost expression (44) thus coincide with the error 
covariance matrix and state estimate generated by the 
Kalman filter recurrence relations derived from (38). Note, 
also, that the quadratic and linear coefficient terms 
Z-’(T + 1IT + 1) and X-’(T + 1IT + l )x (T  + 1IT + 1) for 
the cost expression (441, considered as a function of xT+ 
coincide with the information matrix and modified state 
estimate generated by the information filter equations. It 
is not surprising, then, that the cost arguments used to 
derive the recursive relations (38) for these terms are 
entirely analogous to the cost arguments used in Section 
111-B to determine recursive relations for the quadratic 
and linear coefficient terms Q T ( p )  and p T ( p )  for the cost 
expression 4 ( x T +  p,  T ) .  

In summary, the Kalman and information filter recur- 
rence relations can be derived for approximately linear 
systems using simple cost arguments, without recourse to 
probabilistic arguments such as Bayes’ rule or iterated 
expectations. All that is needed is that the basic cost 
function used to measure theory and data incompatibility 
be a quadratic function exhibiting time-separability. 

C. The FLS Recurrence Relations as Information 
Filter Equations 

Conversely, the FLS recurrence relations associated 
with any given point p on the cost-efficient frontier 
reduce to a variant of the information filter equations if 
the theoretical relations (1) and (2) are augmented by 
probability relations of the form (34). 

Specifically, suppose the dynamic weight matrix p D ( t )  
is taken to be the inverse of the covariance matrix S( t )  for 
w,, and the measurement weight matrix M ( t )  is taken to 
be the inverse of the covariance matrix R ( t )  for ut,  for 
each time t ;  and suppose also that the initial cost matrix 
QJp)  is taken to be the inverse of the covariance matrix 
X I  for the initial state vector x I .  In this case the matrix 
U T ( p )  in (28) corresponds to the inverse of the “measure- 
ment-update’’ error covariance matrix Z T I T )  and the 
vector z T ( p )  in (29) corresponds to the modified state 
estimate Z - I ( T ( T ) x ( T J T ) .  Moreover, the matrix Q T ( p )  
corresponds to the inverse of the “time-update” error 
covariance matrix Z ( T  + lIT), defined 113, ch. 31 to be the 
error covariance matrix for the MAP estimate of x T + ,  
based on observations through time T.  

D. Duality Implications 

If the probability relations (34) are justified for a given 
filtering and smoothing application, they should of course 
be incorporated in the estimation procedure, However, 
for many important applications-particularly in the so- 
cial sciences-obtaining agreement among researchers re- 
garding probability relations such as (34) can be difficult. 

For example, the process observations may be the out- 
come of a nonreplicable experiment, so that no objective 
test of these relations can be carried out. Also, the 
theoretical relations may represent tentatively held con- 
jectures concerning a poorly understood process; or they 
may be a linearized set of relations obtained for an 
analytically intractable nonlinear process, as in many 
aerospace filtering and smoothing problems. In these 
cases it is doubtful whether the discrepancy terms are 
governed by any meaningful probability relations. Inde- 
pendence restrictions, in particular, are questionable and 
troublesome. 

For these reasons, the FLS procedure, with its minimal 
assumptions concerning discrepancy terms, appears to 
offer a useful complement to existing filtering and 
smoothing techniques. Moreover, the FLS duality rela- 
tions discussed in previous sections may shed some light 
on the robustness properties of the Kalman filter. 

It is now conventional to interpret any quadratic crite- 
rion function representing sums of squared dynamic and 
measurement errors-e.g., the Kalman filter criterion 
function (39)-as a log-likelihood expression arising from 
some underlying stochastic model in which model discrep- 
ancy terms are interpreted as independent and normally 
distributed random variables. Yet it is also known that 
Kalman filtering works remarkably well in some contexts 
in which these strong stochastic assumptions are not even 
remotely satisfied. A partial explanation for this robust- 
ness is that the Kalman filter criterion function can be 
given an alternative interpretation: namely, as a cost 
function embodying the criterion that model discrepancy 
terms be small. 

“Smallness” should not be confused with “random- 
ness.” Postulating that x i +  I is close to [ F ( t ) x ,  + a(t)l 
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does not mean that the discrepancy term [ x , , ~  - F( t ) x ,  
- a( t ) ]  is necessarily a random vector. As numerous 
experiments with FLS have shown (see, e.g., [3]), the 
postulate of small dynamic and measurement discrepancy 
terms is a powerful assumption that allows state trajecto- 
ries to be tracked and recovered with surprising qualita- 
tive accuracy at each point along the cost-efficient fron- 
tier. 

V. CONCLUSION 

The main purpose of this paper is to present a proba- 
bility-free multicriteria approach to the problem of filter- 
ing and smoothing when prior beliefs concerning dynam-- 
ics and measurements take an approximately linear form. 
In particular, model discrepancy terms are treated as 
model specification errors that may not have any mean- 
ingful probabilistic description. Applications are envi- 
sioned in various fields, particularly in the social and 
biological sciences, where obtaining agreement among 
researchers regarding probability relations for discrep- 
ancy terms is difficult. 

The essence of the proposed FLS procedure is the 
cost-efficient frontier. This frontier, a curve in a two- 
dimensional cost plane, provides an explicit and system- 
atic way to determine the efficient trade-offs between the 
separate costs incurred for dynamic and measurement 
specification errors. 

The estimated state sequences whose associated cost 
vectors attain the cost-efficient frontier, referred to as 
FLS estimates, show how the state vector could have 
evolved over time in a manner minimally incompatible 
with the prior dynamic and measurement specifications. 
Each FLS estimate has the property that it is not possible 
simultaneously to reduce both the dynamic and the mea- 
surement cost by choice of an alternative state sequence 
estimate. The similarities displayed by the FLS estimates 
suggest working hypotheses regarding the evolution of the 
actual state vector. The divergencies displayed by these 
estimates reflect the residual uncertainty inherent in the 
problem specifications regarding the exact nature of this 
evolution. Without additional prior information, restrict- 
ing attention to any proper subset of the FLS estimates is 
an arbitrary decision. 

A Fortran program GFLS for implementing the FLS 
filtering and smoothing procedure for approximately lin- 
ear systems is provided in the appendix. This program has 
been used in both simulation and empirical studies of 
time-varying linear regression ([31-[51). 

Nonlinear systems are studied from the multicriteria 
FLS point of view in [6]. 

APPENDIX 

This appendix provides a Fortran program GFLS that 
implements the sequential FLS solution of the bicriteria 
filtering and smoothing problem posed in Section 11. The 
program has received extensive testing. In addition, the 
program incorporates a check of the sequential FLS solu- 

tion based upon using the standard first-order con- 
ditions for the solution of the incompatibility cost mini- 
mization problem (5).  

The variable names used in the GFLS program adhere 
strictly to those used in the body of the paper. Moreover, 
numerous comment statements are interspersed through- 
out the program that are geared to the equation numbers 
used in the paper. 

User inputs are required in a subroutine INPUT. This 
subroutine initializes the penalty weight p, the total num- 
ber of observation vectors TCAP, the state vector dimen- 
sion n ,  the observation vector dimension m, and the 
initial cost function coefficient terms po(p), and 
r&). The program is currently dimensioned for TCAP Q 
110, n Q 15, and m Q 15. 

Subroutine INPUT also requires the user to set two 
flags. The first flag, IFLAGR, is set equal to 1 if the user 
wishes to generate evaluations for the constant terms 
r T ( p )  in the cost functions (121, and is set equal to 0 
otherwise. The second flag, IFLAGS, is set equal to 1 if 
the user wishes to generate smoothed state estimates in 
addition to filtered state estimates, and is otherwise set 
equal to 0. If the user sets IFLAGS= 1, the program 
automatically carries out a test of the first-order con- 
ditions for the incompatibility cost minimization prob- 
lem (5). 

User inputs are also required in a subroutine MODEL. 
For each current time T ,  subroutine MODEL generates 
the n x n state transition matrix F(T) ,  the n X 1 dynamic 
forcing term a(T) ,  the m X n measurement matrix H ( T ) ,  
the m X l  measurement forcing term b(T) ,  the n X n  
dynamic weight matrix D ( T ) ,  the m X m  measurement 
weight matrix M ( T ) ,  and the m X 1 observation vector y , .  
For simulation studies, the observation vector y ,  is gen- 
erated in accordance with the relation y ,  = H ( T ) x ,  + 
b(T)+ U , ,  where xT is an n X 1 user-specified state vector 
and U ,  is an m x 1 user-specified discrepancy term. The 
user-specified state vector x T  is stored in an array TRUEX 
for later comparison with the numerically generated FLS 
smoothed estimate for x T .  

The GFLS program contains subroutines for all needed 
matrix operations. Currently, these subroutines are di- 
mensioned for 15x15 matrices. To keep the number of 
subroutines to a minimum, vector and scalar operations 
are carried out with these matrix subroutines by consider- 
ing some vectors to lie in the first column of a 15x15 
matrix, and some scalars to be the upper-left component 
of a 15 X 15 matrix. 
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CALL IOIN(N.BB) 
CALL SUB(N.N.BB.bA. CC ) 
CALL MUL(N.N.N.D.CC.OD) 
CAI  L MULCON(N.N.AflU.DD. ONE U )  

CALL MUL(N,N.N.f,G.AA) 
CALL IOIN(N.BB) 
CALL SUB(N.N.BB.bA. CC ) 
CALL MUL(N.N.N.D.CC.OD) 
CAI  L MULCON(N.N.AflU.DD. ONE U )  

C 
C 
C 

G f l I l N G  PNEY - G 1 * Z t O t i f U l * A  I N  10.(26) 

C G f l T l N C  5 - V*(2 . At4U'C.A) I N  fQ.(15) 
c 

CALL MUL(N.N.l.C.A.BB) 
CA1 L MULCON( NI I , M U ,  BB, CC ) 
CALL SUB(N. I .I ,CC .DO) 
CALL ~J l (N ,N . l .V .OD.S)  
lF(1FLltS.fQ.O) CO 10 2 1 0  

00000530 
00000540 
00000550 
00000560 
00000510 
00000580 
00000590 
0 0 0 0 0 6 0 0 
00000610 
00000620 
OOOOD630 
00000640 
00000650 
00000660 
00000670 
00000680 
00000690 
00000700 
000007lO 
OOOOOlZO 
00000130 
0000014Q 
00000750 
00000760 
00000710 
00000180 
00000790 
00000800 
00000810 
00000820 
00000830 
oooO0840 
00000850 
00000860 
OOOOOE70 
00000880 
00000890 
0 0 0 0 0 9 0 0 
00000910 
00000920 
00000930 
00000940 
00000950 
00000960 
00000970 
000009EO 
00000990 
00001000 
00001010 
ODOOlDZO 
00001030 
OOOOlOlO 
0000l050 
00001060 
DO001070 
0000l0B0 
00001090 
00001100 
00001 I IO 
00001120 
00001 I30 
00001140 
oooollso 
00001 160 
ODOOll70 
0000ll80 
00001190 
00001200 
0000l2l0 
00001220 
00001230 
OOOOl240 
00001 250 
00001260 
0000 I270 
0000l280 

c 
C 
C 

65 

C 
C 
C 

410 
C 
c 
C 

90 
EO 
70 

C 
C 
C 

150 
C 
t 

G t l l l N G  THE f LS  f l L l t R  I S T I H A T E  fOR XTCAP - UINV'Z I N  E Q . 0 0 )  

CALL INV(N.U.AA) 
CALL MU1 (N.N, 1 .AA. I ,  X I  CAP) 
Do 65 I - l . N  
X ( I .1CAP) -X lCAP( I .1 )  
CONTINUE 
If (I fLAGS.EQ. l )  GOTO 410 

PRINTING Wl THE f L S  f l C l t R  ESTIMATE fOR XTCAP 

CALL OUIPUI(ICAP.N.X.IRUEX) 
I f ( I f LAGS.EO.0 )  GOT0 510 
CONTINUE 

G I T l l N G  SflWlHIO E S l l M A T t S  fDR X I .  . .  , X I C A P - I  I N  E O S . ( 3 3 A )  

ICAP1-ICAP- I 
DO 10 T - I , l C A P I  
1-TCAP-7 
W 80 I - l . N  
X( I.LJ-SS(I,L) 
W 90 J-1.N 
X( I .L)-X( I . L ) tGG( l . J . I  
CONTINUE 
CONTINUE 
CONlINUf 

. ) *X (J . I  .tl) 

PRINTING OUT THE f L S  ESTIMATES FOR X I .  ..., X lCAP 

DO IS0 1-1.ICAP 
CALL OUlPUl( l .N.X.1RUEI) 
CONI INUE 
VALIDATION TEST: HOU WELL Do THE f L S  f5lIHAlfS SATISFY THE 
I IRST-0 f iDER CO'~DI1lO' iS (OR T H f  COST h l N l M l Z A 1 I O N  PROBL[H (5) 
CALL 15CISTl1, Y Y  I 

. . . . . . 
0000 1630 
0000 1640 
00001 650 
00001 660 
00001670 
00001680 
00001690 
OOOOl700 
00001710 
00001 120 
00001 130 
00001 140 
00001750 
00001760 
00001 710 
00001 180 
00001 190 
00001800 
ooOol8lO 
0000l820 
00001830 
oooO1840 
00001850 
00001E60 
Dwol870 
00OOlWO 
M)001890 
00001900 
00001910 
00001920 
00001930 
00001940 
00001950 
00001960 
OOOOl970 
00001980 
00001990 
00002000 

STOP 00002010 
fND 00002020 

510 CONlINUE 

C 00002030 
C U:lLII SUBROUTINES fDR ADOITION, MULTIPLICATION. I R A N S W S I I I O N .  00002040 
C SUBTRACTION. INVERSION. f l U L I l P L l C A I l D N  BY A SCALAR. S H I f T .  AND 00002050 
C fORMATlON 01 AN l D f N l l l Y  M A T R I X  00002060 
C 00002070 
C C E l A l h l N G  I H I  SUfl C=L+B Cf T W O  NROU X MCOL HATRICES A AND E 00002080 
c 

SiiBRCUlitif L33[t~RCU.y:CL.A.B.C) 
IMPLICI1 IXAL'B(A H .0  2) 
D l r i h S l O N  A ( 1 5 . l 5 ) . E ( I 5 . 1 5 ) . C (  15, 15) 
DO IO 1-1.NROU 
DO 20 J-I .RCOL 
C ( I , J ) - A ( I . J ) + B ( I . J )  

20 CDNl lNUf  
10 CONllNUE 

RETURN 

00002090 
DOOO2lOO 
DO002 I IO 
00002120 
00002 I30 
00002140 
00002 150 
00002 160 
00002170 
00002 180 

END 00002190 
C 00002200 
C OBTAINING THf PRODUCT C=A*B Of AN NRDY X L MATRIX A AN0 AN 00002210 
C L X MCOL MAIRIX  B 00002220 
C 

SUBROUTINE MU1 (NRW.  L ,MCOL.A.B.C) 
IMPLIC IT  REAL*8(A-H.O-Z) 
DIMENSION A(15,15),8(15,l5),C(15,15) 
DO IO I-I.NROW 
W 20 J-I.MC0L 
SW.0 .ODtOO 
W 30 X-I,L 
SUn-SUn+A(l  ,K)*B(K.J) 

30 CONTlNUf 
C (  I ,J)-SUfl 

20 CONTINUE 
IO CDNlINUf 

RETURN 
E NO 

00002230 
00002240 
00002250 
00002260 
00002270 
00002280 
00002290 
00002300 
00002310 
00002320 
00002330 
00002340 
00002350 
00002360 
oooO2370 

C 00002380 
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C 
C 

OBTAINING THE TRANSPOSE B OF AN NROY X MOL MIRIX A 

SUBROUT INL lRANS(NRoY.MC0L ,A, 8) 
IMPLICII REAL90(A-H.O-2) 
DIMENSION A(IS,l5),8(15~I5) 
W IO I-I.NRUU 
DO 20 J-I .ROL 
0(J.I)*A(I ,J) 

20 CONllNUE 
IO CONTINUE 

REIURN 
END 

00002390 
00002400 
00002410 
oooO2420 
00002430 
00002440 
00002450 
00002460 
00002470 
00002480 
00002490 
00002500 

W 30 L-I,N 
E(l . l ) .ONE 

30 CONTINUE 
RETURN 
END 

00003490 
00003500 
00003510 
00003520 
00003530 
00003540 
00003550 
00003560 
00003570 
00003580 
00003590 
00003600 
00003610 
00003620 
00003630 
00003640 
00003650 
00003660 
00003670 
00003680 
00003690 
00003700 
00003710 
00003720 
00003730 
00003740 
00003750 
00003760 

C 
SUBROUT IN[ lttPUl(~.TLRP.N.MOBS .QZERO. PZIRO. R Z E  RO. IF LAGR. IFLAGS) 
IMPLICIT REAL*0(A-H,O-Z) 
INTEGER TCAP 
DIMENSION QZfRO(15.15) .PIfRO(IS. 151 .RZfRO( IS. 151 
MU - 1 .  OOtOO 
TCAP - 30 
N - 2  
M B S  - 1 
DO IO J - 1.N 
M) 20 I - 1.N 
QZERO(1.J) - O.OOtO0 
PZtRO( I .J) * 0 OOtOO 
R2ERO(I.J) . 0 OO+OO 

20 CONllNUt 
IO CONTINUE 

I f  LACR. 1 
I f  L A G S - l  
RLIURN 
END 

SUBROUTINE )IODEL(T, F ,A, H,0,0.N, Y ,  TRUE X) 
IMPLICIT RfAL48(A-H.O-Z) 
REA1.8 M 
REAt.4 GNORM 
INTEGER 1.TCAP 
OIMENSlON F (  15.15) .A( IS. IS) ,H( 15, IS), B( 15,15) .D( 15. 15) .M(  IS. IS) 
DIMENSION Y (15.15).TRUEX( 15,110) ,ZERO(IS,I5) 
OIKNSION QZERO(LS,lS) ,PZERO(lS.lS) .RZERO(lS.15) 

1lMt.VARYING.LINEAR REGRESSION STUDY YlTH A SHIFT IN THE COEFF. 
VECIOR AT MIDPOINT OBSERVATIW TIME 1-15 (SEE SECTION 2). 
CALL INPUT(MU. TCAP. N, MOBS, PZERO. PIE RO. RZERO, IF LAGR. I FLAGS) 
SIW - 0.000tw 
w IO 1.1.15 

C 

C 
c 
C 

C 
C 
C A AN0 0 

OGIA!klNG IHt DlFftRENCf C-A 0 0ElU[fN hROU X MCOL MATRICES 
00007510 . . . . . . . . 
00002520 
00002530 
OwOZS40 
00002550 

C 

20 
IO 

SUBROUIINE SU8(NROY.MCOL.A.B.C) 
lMPLICI1 REAL'0(A-H.O-Z) 
DIMENSION A(l5.l5),0(l5.l5).C(l5,lS) 
DO IO I-1,NROY 
W 20 J-1 .MCOL 
C( I .J)*A( I .J)-0( I .J) 
CONTINUE 
CONTINUE 
RETURN 
END 

0000256o 
00002570 
00002580 
00002590 
00002600 
00002610 
00002620 
00002630 
00002640 
00002650 L 

C OBll!hiNG THE INVERSE C OF A K X K MAIRIX A 
C 

SUBROUT INE INV(K.A,C) 
IMPLICIT REAL'B(1-H.0-2) 
DIMENSION A(l5,15),~(1S,30) .C( IS. IS) 
W 5 J-1.K 
W 6 l-l,K 
B(I.J)-A(I .J) 

6 CONTINUE 
5 CONTINUE 

K2-K'Z 
DO 7 J-l,K 
W 8 I.1,K 
B( I , :*J) -0. OOtOO 
IF( I .EQ.J) 8( I .K+J)-l .OOtOO 

8 CONTINUL 
7 CONTINUE 

00002660 
00002670 
00002680 

00003770 
00003780 
00003790 
00003800 
00003810 
00003820 

00003840 
00003050 
00003060 
00003870 
00003880 
00003890 
00003900 
00003910 
00003920 
00003930 
00003940 
00003950 
00003960 
00003970 
00003900 
00003990 
00004000 
000040 IO 
00004020 
00004030 
00004040 
00004050 
00004060 
00004070 
00004080 
00004090 
00004100 
00004 I IO 
00004 I20 
00004 I30 
00004140 
00004 150 
00004160 
00004170 
00004100 
00004 190 
00004200 
000042 IO 
00004220 
00004230 
00004240 
00004250 
00004260 
00004270 
00004200 
00004290 
00004300 
00004310 
00004320 
00004330 
00004340 
00004350 
00004360 
00004370 
00004380 
00004390 
00004400 
00004410 
00004420 
00004430 
00004440 
00004450 
o0004460 
oooo4470 
00001480 
00004490 
oooo4500 
00004510 
00004520 
00001530 
00004540 
OWSM 
00004560 
00004570 
00004500 
00004590 

0000383a 

00002690 .~ ...... 
00002700 
000027 IO 
00002720 
00002730 
00002740 
00002750 
00002760 
00002770 
00002780 b 10 J-1;15 

ZLRO(I,J) - 0.00+00 
CONllNUE 
CONTINUE 
CALL IOEN(N.F) 
CALL WIFT(N,l,ZfRO.A) 

AT-ffLMI(1) 

H( I ,  I)-DS IN( IO.ODtOOt( AT) ) 4 
H( 1 .2)-OCOS( IO .O(kOOt(AT) ) 

CALL WIFl (  WBS. 1 ,  ZERO, 8) 
CALL lDEN(N.0) 
CALL IOEN(H0BS.M) 
I f  (7.61.15) GOTO IS0 
lRUtX(l.1) - 2.00*00 
TRUtX(2.T) - 3.00*00 
GOTO 175 

150 IRUEX(I,T) - 4.00t00 
1RU1If2.lI . 5 ODIOO 

H( I ,  I ) . I .  ODtOo 
H(1,2)-1 .oDt00 

iF(1.tp.t) 60 TO 200 

200 CONIIWE 

-. . . -. - - 
00002790 
00002000 
OOoO2810 20 

IO 00002020 
00002830 C 

E THE PIVOT OPERATION STARTS HERE 
-. . . - - - - 
00002040 
00002050 
00002060 
00002870 
oooo2sso 
00002090 
OoW2900 
000029 IO 
00002970 

.o.o1Dtoo 

C 
C TO IMPROVE THE ROUS 
C 

-. . . - - - - 
00002930 
00002940 
00002950 

W 14 1.1.K 
I f ( 1  tQ.1) 60 TO 14 
AIL-B(I.L) 
DO 15 J-L,KZ 
B(I.J).B(I,J)-AIL'B(L.J) 
CONTINUE 
CONTINUE 

00002960 
ooooiiio 
00002980 
00002990 
00003000 
00003010 
00003020 
00003030 
00003040 

IS 
14 
9 17s coiiiiii ' 

UU y(~,~).H(l,l)*TRUtX(l,T) - OBLf(CNORM(0)) t H(I.2)*IRUEX(2.T) t SIWU'UU 
RETURN 

CONI INUI 
l% 43 I i 1 . K  
W 46 J-1.K 
t (  I .J)=B( I .K+J) 
COfi l  I hJE 

EN0 
46 45 00001050 C 

SUBROUTINE WT Wl(T ,N.X , TRUEX) 
IMPLICIT REAL*8(h-H.O-Z) 
INTfUR 1 
OlHENSlON X( l5,110).1RUfX( IS. 110) 
I .T 

CONTINUE 
RiTURN 
EN0 

OBTAINING THE PRODUCT C.4 
MATRIX A 

00003060 
00003070 
00003080 

C 
C 
C 

00003090 
1 Of SCALAR C AND NRW X MCOL A 00003100 

00003110 
00003120 
00003130 

I IE(6.100) 1, ( X (  I ,  1) , I * I ,  N) 
100 fORMAI(lH0,'ll~f EQUALS', I3/1X.'FLS ESTIFATES' ,7X.2025.10) 

YRllE(6.200) (lRUEX( I ,I), 1-1  .N) 

RETURN 
E NO 

VALIDATION TEST: HOY YELL Do THE F L S  LSTIMATES SATISFY THE 
F I R S l - O R D E R  CONDITIONS FOR THE COST MINIMIZATION PROBLEM ( 5 )  

200 fokPAl(lX,'TRUE X VALUtS'.7X.2D25.IO) 

C 
C 

C 
SUBROUTINE MULCON(NROU.MCOL ,C ,A.CA) 
IMPLICIT REAL*B(A-H.O-Z) 
OlHfNSlON A(l5.IS).CA(IS.IS) 
DO IO I=I.NROU 
DO 20 J-I.KOL 
CA( I .J)-C*A( I . J )  

20 CONTINUE 
IO CONTINUE 

RETURN 
EN0 

00003 I40  
00003is0 
00003160 
00003170 
00003180 
00003190 
00003200 
00003210 
00003220 

C 
SU0RWT INE fOCTSl(X, Y Y )  
IHPLlClT REAL*0(A-H,O-Z) 
INTEGER 1.TPI ,TCAP,TCAPI 00003230 

00003240 
C 
C 
C 

PUTTING AN NROU X MCOL FATRIX A INTO AN NROY X MCOL MATRIX B RIAL.8 M.M . . . . - . . 
00003250 
00003260 
00003270 
00003200 
00003290 
00003300 
00003310 
00003320 
00003330 
00003340 
00003350 
00003360 

DiMiNSl& 
OlMtMSlMl 
OlMENS ION 
OlMENS ION 
OlMENSlW 

QZERO(l5.1S).PZERO(lS,l5),RZERO(l5,l5) 
XT(1S.15~,X(1~.110).XT1(IS.IS).~(15.I5) 
PZEROT(I5.15).EE(15.15),CO(15,15).Vl(15,15).YY(15, 
f(15.15) A I S .  IS) .H( 15.15) . B ( I S .  15) ,D(l5,l5) ,M( 15. 
V(15,15) ,TRUEX(IS. I IO) 
Wtr15.15l.Em(15.15),EM1(15,l5),Y(15,l5),x1Pl(l5.l5 

I .EOT( IS, 15) ,U( 15. IS) . V (  IS. IS) .FOCD( 15, 15) 
olntlslow W 20 J-l.MC0L 

B(I,J)-A[I,J) 
CONllNUE 20 

IO tONllNUf 
RElURN 

. ~ ..--.-- 
FOW THE STATE VECTOR FOR T I M E  I - I 
CALL INPUTIMU.TCAP.N.MO0S. OZERO. PZERO. RZERO. I F  LAGR. IFLAGSl 

C 

END 

FOWING THE N X N IDENTITY MATRIX E 
C 

w-io0 1.1;m 
Xl( l .1 )  . X(1.1) 
CONTINUE 
FORM THE INITIAL lNCREMENlAL COST CO . -(Xl'QO - PO') 
CAI I TRANSfY. 1 .XT.XllI 

00003370 100 
C 

. . . . . . . . 
00003380 
00003390 
00003400 

L 
SUBROUTINE IOEN(N.E) 
IMPLICIT REAL*8(A-H.O-Z) 
DIMINSION E115.151 00003410 
i E R O . O ; O ~ 0 6  
ONE.1 .wtoo 
W IO I-l.N 
DO 20 J-1.N 
fII.JI-2ERO 

00003420 
00003430 
00003440 
00003450 

C 

C 00003460 
00003410 
00003480 

-- -- . . . . -. .. 
FOP4 7Hf T I M E - I  STATE VECTOR XI -,-.-, ~ 

20 CONllNUL 
IO CONTINUE 

W 300 I.1.Y 
XT(I.1) - X(I.1) 
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30J CONIlNUt 
C f O W  1Hf T I M E - I  OBSERVATION VECTOR V I  

W 400 J-l.m)BS 
Vl(J.1) * YV(J.1) 

f OW 
CALL 
CALL 
CALL 
CALL 
lF(1 
f ORM 
1P1 - I t 1 
DO 500 I - l . N  
IlPl(1.1) * X ( I . I P I )  

500 CONIINUt 
C f 0 W  U - M U ’ ( X l P 1  - f ( 1 ) X I  . A ( l ) ) ’ * D ( l )  

CALL R D f ( N , I l P I . X l , F . A . E D )  
CALL lPANS(N. I ,  EO. E 01) 
CALL W L ( l , N , N , E O l , O , t )  
CALL WLCM(( I .N ,AI IU.  E , U )  

c low Y - U*f 

600 

100 
BOO 

c 
c 

c 
36 

31 
c 
200 

CALL I I I L ( I , N . N . U . F , V )  
GOT0 8 0 0  
CONllNUE 
W 100 I - l . N  
Y ( 1 , l )  - O.ODtO0 
CONllNUE 
CONTIWE 
O E l t l l N E  THE FOC DISCREPANCIES FOR TINE I 
61VfN BY FOCO - CO t V t Y 
CALL AMl(1.N.CO.V.E) 
CALL M O ( l . N . E . Y . F O C 0 )  
PRINT Wl THE FOC OlSCREPANCltS FOCO FOR T I M E  
WRITE (6.36) I 
FOPJUI(IHO.’FOC DISCREPANCIES FOR TIHE’. 1 3 )  
Y R l T l  ( 6 . 3 1 )  ( f O C O ( l , I ) , l - l , N )  
f O P J U l ( l X .  13010.2) 
U P M I E  I H t  I N I T I A L  INCREMENTAL COST CO 
CALL WLCM( I .N. C,  U .CO) 
CONl l l l lE  
RETUMI 
E NO 

I 

0 0 0 0 4 6 0 0 
00004610 
00004620 
00004630 
00034640 
00004650 
00004660 
00004670 
00004680 
00004690 
00004100 
000041 IO 
00004120 
00004130 
00034140 
00004150 
00004160 
00004710 
00004180 
00004190 
00004800 
00004810 
00004820 
00004830 
00004840 
00004850 
00004860 
00004810 
00004880 
00004890 
00004900 
00004910 
00004920 
00004930 
00004940 
00004950 
00004960 
00004910 
00004980 
00004990 
00005000 
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SUBRWIIMt TOR EVALUATING THE tlEASUREf4ENl S P E C I F I C A T I O N  ERROR 
En. (VI - H(I)XI - B(1) )  FOR Tin[ I 

SUBROU7lME M E  (N. lWS.Yl ,  X I  .H, B. En)  
I W P L I C I I  RLAL*B(A-H,O-Z)  
OlntNSlffl V I (  15.15) . X T (  15,15) .H( 15 .  I 
D l M N S I M  H X I I S . I S I . H X P B L 1 S . I S I  

,151 

Citt IUL(ROBZ,N;I,H;XI,H~) 
CALL NXI(POBS, I ,  HX , B. HXPB) 
CALL SUB(W8S. I .Y l .HXPB,EH)  
RETURN 
[NO 

SUBRWIINE fOR EVALUAI lNG THE DYNAMIC S P f C l f l C A l l O N  ERROR 
ED (XTPI  . f ( 1 ) X l  - A ( 1 ) )  fOR TIME I 

SUBRWIINE ROE(N.XIP1 . X l . f . A . t O )  
I n P L l C l I  RfAL*B(A-H.O-Z)  
DlnEMSlffl XlPI(15.15),Xl(IS.I5).F(15. 
OlnfNSlffl f X l (  I S .  15) . F X l P A (  IS. IS) 
CALL W L ( N , M , l , f , X T , F X l )  
CALL N B ( N . l . F X I . A . F X I P A )  
CALL S U B ( N , I . X l P I  . F X l P A . E D )  
RETURN 

15). tD(  IS. 15) 

Ow05050 

00005l00 
oow5110 
00005120 
0 0 0 0 5 1 3 0  
00005l40 
OOW5150 
0 0 0 0 5 1 6 0  
00005110 
00005180 
00005190 
00005200 
OOWSZlO 
00005220 
00005230 
00005240 
00005250 
00005260 
00005210 
00005280 

E NO 00005290 
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