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An 8-Zone ISO-NE Test System with
Physically-Based Wind Power

Wanning Li, Student Member, IEEE, and Leigh Tesfatsion, Member, IEEE

Abstract—This study extends the agent-based 8-Zone ISO-NE
Test System to include wind turbine agents, each characterized
by location, physical type, and an output curve mapping local
wind speed into wind power output. Increases in wind power
penetration (WPP) are modeled as build-outs of investment
queues for planned wind turbine installations. The extended
system is used to study the effects of increasing WPP under
both stochastic and deterministic day-ahead market (DAM)
formulations for security-constrained unit commitment (SCUC).
For each tested WPP, the expected cost saving resulting from a
switch from deterministic to stochastic DAM SCUC is found
to display a U-shaped variation as the reserve requirement
(RR) for deterministic DAM SCUC is successively increased.
Moreover, the RR level resulting in the lowest expected cost
saving systematically increases with increases in WPP.

Index Terms—Wind power penetration, electric power system,
agent-based test system, wind turbine agents, day-ahead market,
security-constrained unit commitment, stochastic optimization

NOMENCLATURE FOR SCUC FORMULATIONS

Sets:
G Set of all dispatchable generators g
G(z) Set of dispatchable generators g at zone z
L ⊂ Z× Z Set of transmission lines `
LO(z) Subset of lines ` originating at zone z
LE(z) Subset of lines ` ending at zone z
S Set of scenarios s
T Set of hourly time periods t = 1, . . . , T
Z Set of zones z
Input Parameters:
ag Production cost coefficient ($/MW) for g
bg Production cost coefficient ($/(MW)2) for g
B` Inverse of reactance (pu) on line `
ccold,g Cold-start cost coefficient ($) for g
chot,g Hot-start cost coefficient ($) for g required to

satisfy chot,g ≤ ccold,g
cD,g Shut-down cost coefficient ($) for g
cN,g No-load cost coefficient ($) for g
E(`) End zone for line `
fmax` Power limit for transmission line `
NLsz(t) Zone-z net load in hour t, given s
Lsz(t) Zone-z load in hour t, given s
O(`) Originating zone for line `
Pmaxg Maximum power limit for g
Pming Minimum power limit for g

Latest revision: 1 Feb 2017. W. Li (wanningli.ee@gmail.com) is with
the Department of Electrical and Computer Engineering, and L. Tesfatsion
(tesfatsi@iastate.edu) is with the Department of Economics, both at Iowa
State University, Ames, IA 50011 USA. This work has been supported in
part by DOE awards DE-AR00002014 and DE-OE0000839.

RR System-wide spinning reserve requirement
(MW) for deterministic DAM SCUC

RD,g Online ramp-down rate (MW/∆t) for g
RTD,g min{Pmaxg , RD,g∆t} (MW) for each g
RU,g Online ramp-up rate (MW/∆t) for g
RTU,g min{Pmaxg , ·RU,g∆t} (MW) for each g
RSD,g Shut-down ramp rate (MW/∆t) for g
RTSD,g min{Pmaxg , RSD,g∆t} (MW) for each g
RSU,g Start-up ramp rate (MW/∆t) for g
RTSU,g min{Pmaxg , RSU,g∆t} (MW) for each g
So Positive base power (in three-phase MVA)
Tcold,g No. of cold-start hours for g1

TD,g Minimum down-time for g (in hours)
TU,g Minimum up-time for g (in hours)
Toff,g No. of hours that g must be initially offline if

0 > v̂g(0); 0 if 0 < v̂g(0)
Ton,g No. of hours that g must be initially online if

0 < v̂g(0); 0 if 0 > v̂g(0)
v̂g(0) g’s on/off status in hour 02

W s
z (t) Zone-z wind power in hour t, given s

αsz(t) Power-balance slack term (MW) at zone z in
hour t, given s

∆t Time-period length (one hour)
γsz(t) Absolute value of αsz(t)
Γ Penalty ($/MW) for power-balance slack
πs Probability of scenario s
Variables and Functions:
ISO Decision Variables:
psg(t) Power output for g in hour t, given s
vg(t) g’s on/off status (1/0) in hour t
θsz(t) Voltage angle (radians) at zone z in hour t,

given s
Functions of ISO Decision Variables:
CD,g(t) Shut-down cost ($) for g in hour t
CN,g(t) No-load cost ($) for g in hour t
CU,g(t) Start-up cost ($) for g in hour t
CsP,g(t) Dispatch cost ($) for g in hour t, given s
fs` (t) Power on line ` in hour t, given s
Hg(t) Hot-start indicator for g; a value of 1 (0)

indicates a hot (cold) start for g in hour t
psg(t) Maximum available power output for g in

hour t, given s

1If generator g at the start of hour t has been off-line for at least Tcold,g
consecutive hours prior to t, any start-up of g in t incurs the cold-start cost
ccold,g . Otherwise, any start-up of g in hour t incurs the hot-start cost chot,g .

2A positive (negative) value for v̂g(0) indicates the number of hours prior
to and including hour 0 that generator g has been turned on (off). Note that
the value of v̂g(0) cannot be zero.
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I. INTRODUCTION

W IND is one of the fastest-growing sources of electric
power in the U.S. and has been the largest new source

of renewable energy for the U.S. during the past decade [1].
The U.S. is on track for achieving the wind energy goal set out
in the Wind Vision Report [2]: namely, 35% of the nation’s
end-use electricity demands met by wind power by 2050.

Numerous researchers have sought to estimate the poten-
tial impacts of growing wind power penetration (WPP) on
existing power system operations (e.g., [3], [4], [5], [6]).
Other researchers have proposed changes in existing power
system operations to better handle the increased uncertainty
associated with increased WPP [7]. For example, new forms
of stochastic and robust optimization are explored in ([8],[9]),
while improved methods for the dynamic specification of
reserve requirement (RR) levels are proposed in [10], [11],
and [12, Parts I-II].

In these studies, WPP increases are typically modeled as
scaled-up versions of historically observed wind power levels.
However, this simple method cannot account for differences in
wind power generation arising from the combined effects of
local weather conditions, changes in the mix of wind turbine
types, and changes in the geographical placement of wind
turbines. Thus, how to model WPP increases in a practical
empirically-realistic way remains an open challenge.

This study uses a novel agent-based method to extend a
previously developed agent-based 8-Zone ISO-NE Test System
[13] by inclusion of physically-based wind turbine agents. This
permits WPP increases to be modeled in a manner reflecting
the way actual WPP increases take place over time in an en-
ergy region such as ISO-NE: namely, through additional wind
turbine investments. To illustrate the method in concrete terms,
the extended test system is used to compare the performance
of stochastic versus deterministic formulations for security-
constrained unit commitment (SCUC) in a day-ahead market
(DAM) under systematically varied WPP and RR levels.

The remainder of this paper is organized as follows. Sec-
tion II reviews the core features of the AMES Wholesale
Power Market Test Bed, and Section III describes the Eight-
Zone ISO-NE Test System, based on AMES(V4.0), which is
the foundation for all sensitivity testing reported in this study.

Our agent-based method for the construction of wind power
scenarios and WPP increases is explained in Section IV.
Section V presents two alternative DAM SCUC formula-
tions, stochastic and deterministic. Section VI presents our
sensitivity design for testing the performance of these DAM
SCUC formulations under systematically varied values for two
key treatment factors: the WPP level; and the RR level for
deterministic SCUC. Key findings are presented and discussed
in Section VII. Section VIII concludes.

II. THE AMES TEST BED

The AMES (Agent-based Modeling of Electricity Systems)
Test Bed [14] is an agent-based computational laboratory
permitting the dynamic study of wholesale power markets
operating over AC transmission grids subject to congestion.
AMES incorporates, in simplified form, the core features of the

two-settlement system design proposed by the Federal Energy
Regulatory Commission for U.S. wholesale power markets
[15]. To date, this design has been adopted in seven U.S. en-
ergy regions (CAISO, ERCOT, ISO-NE, MISO, NYISO, PJM,
SPP) encompassing over 60% of U.S. generation capacity.

The version of AMES used in the present study (V4.0) is a
modular extensible platform developed primarily in Java, with
calls to an external Python routine for handling successive
daily SCUC optimizations. As depicted in Fig. 1, and carefully
discussed in [13, Section II], the key features of AMES(V4.0)
are as follows:

1) Market Participants: These include Load Serving En-
tities (LSEs) that demand electric power in order to
service the loads of their retail customers as well as
Generation Companies (GenCos) that produce and sup-
ply electric power from both dispatchable and non-
dispatchable resources. Each participant is modeled as
a private business entity whose goal is to secure the
highest possible net earnings from its market activities
over time. At the beginning of each simulation run, the
user-specified methods of the LSEs and dispatchable
GenCos include demand bid and supply offer functions,
and they can also include learning algorithms permitting
the endogenous updating of these functions over time.

2) Central Management: Market and system operations
are centrally managed by a non-profit Independent Sys-
tem Operator (ISO) whose goal is to maintain the
reliable and efficient operation of the wholesale power
system over time.

3) Two-Settlement System: On each successive day the
ISO conducts a bid/offer-based Day-Ahead Market
(DAM) to determine hourly resource commitments and
dispatch levels for next-day operations as well as a Real-
Time Market (RTM) to correct for any imbalances be-
tween day-ahead dispatch schedules and real-time power
needs. Each market is separately settled by Locational
Marginal Pricing (LMP), i.e., the pricing of power
by the timing and location of its withdrawal from, or
injection into, the transmission grid.

4) AC Transmission Grid. The LSEs and GenCos are
located at user-specified locations across the AC trans-
mission grid. Congestion is managed via LMP.

III. THE EIGHT-ZONE ISO-NE TEST SYSTEM

The ISO New England (ISO-NE) is an independent non-
profit Regional Transmission Organization (RTO) serving the
following six New England states: Connecticut, Maine, Mas-
sachusetts, New Hampshire, Rhode Island, and Vermont. The
agent-based 8-Zone ISO-NE Test System, originally developed
in [13], is a specialization of AMES(V4.0) based on structural
attributes and data from the ISO-NE that has been successfully
used for test case development in ([16], [17], [18], [19]).

Specifically, in accordance with actual ISO-NE practice
[20], the 8-Zone ISO-NE Test System divides the ISO-
NE energy region into eight load zones: namely, Connecti-
cut (CT), Maine (ME), New Hampshire (NH), Rhode Is-
land (RI), Vermont (VT), Northeastern Massachusetts/Boston
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Fig. 1. Key features of AMES(V4.0) extended to include wind turbine agents

Fig. 2. Transmission grid for the 8-Zone ISO-NE Test System

(NEMA/BOST), Southeastern Massachusetts (SEMA), and
Western/Central Massachusetts (WCMA). As shown in Fig. 2,
the AC transmission grid connecting these eight load zones
is approximated by a meshed network consisting of twelve
transmission lines whose length, resistance, and reactance
attributes are calibrated on the basis of ISO-NE data.

As detailed in [13, Section III.B], the mix of 76 thermal
generators for the 8-Zone ISO-NE Test System is a scaled-
down version of the actual ISO-NE thermal mix in 2015. The
fuel types of these 76 thermal generators include natural gas
(47%), fuel oil (23%), nuclear (20%), and coal (10%), with
a total capacity of about 23GW. Start-up costs, no-load costs,
minimum up/down time constraints, ramping constraints, and
quadratic production cost function approximations for each of
the 76 thermal generators are based on ISO-NE and EIA data.

Complete code and benchmark data configuration files for
the 8-Zone ISO-NE Test System can be obtained at a code/data
repository site [21].

IV. AGENT-BASED MODELING OF WIND PENETRATION

A. Overview of approach

This study extends the agent-based 8-Zone ISO-NE Test
System [13] to include wind turbine agents. As depicted in
Fig. 1, a wind turbine agent is characterized at each point in
time by its attributes and methods. Its attributes include its
location (zone) and its physical aspects as determined by its
turbine type. Its methods include an output curve mapping
local wind speed into wind power output.

The base wind power penetration level specified for our
sensitivity tests is actual wind power capacity in ISO-NE in
2013, as reported in the 2013 New England Wind Integration
Study (NEWIS) [22]. Possible increases in wind power pene-
tration are modeled as build-outs of ISO-NE’s wind investment
queues as reported in this same study.

B. Approach details

The 2013 NEWIS [22] develops five categories of wind
build-out scenarios to represent successively greater wind
power penetration levels that could potentially be implemented
for ISO-NE. These build-out scenarios are categorized by
their aggregate installed nameplate capacity for onshore and
offshore wind power and by their simulated contribution to the
servicing of forecasted annual load for ISO-NE as a whole.

For the purposes of this study, Wind Power Penetration
(WPP) in any given year is defined to be the percentage
contribution of wind power to the servicing of load for that
year. Formally:

WPP =
Annual Wind Power

Annual Load
× 100% (1)

Three distinct WPP treatments at levels 2%, 10%, and 20%
are constructed from the NEWIS build-out scenarios. The
2% WPP treatment represents the actual state of wind power
development in ISO-NE in 2013. The 10% and 20% WPP
treatments represent potential future build-outs of wind invest-
ment queues in ISO-NE that would result in medium and high
wind power penetration levels, respectively. The wind sites
under each of these treatments are shown in Fig. 3.
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Fig. 3. Location of existing and potential wind sites for ISO-NE correspond-
ing to 2%, 10% and 20% wind power penetration levels. Source: [22]

The benefit of using data from the 2013 NEWIS [22]
to construct WPP treatments is that nameplate capacities of
onshore and offshore wind, as well as loads, are reported for
individual ISO-NE states as well for the ISO-NE as a whole.
This permits us to map this information into the eight load
zones comprising the 8-Zone ISO-NE Test System; cf. Fig. 2.
However, this information is not sufficient to determine wind
power outputs at the level of individual wind turbines.

To address this gap, the following four steps were taken for
each WPP treatment (2%, 10%, and 20% ). First, we roughly
specified the number and types of wind turbines to be located
within each of the eight test system load zones using the
NEWIS build-out scenario corresponding to the given WPP
treatment. Second, we obtained time-series data for wind speed
within each zone. Third, for each type of wind turbine in each
zone, we specified an appropriate output curve mapping local
wind speed into wind power output. Fourth, making use of
local wind speed data, turbine physical characteristics, and
turbine output curves, we refined the number and types of
wind turbines located within each zone to be consistent with
the given WPP treatment.3

The output curves corresponding to different types of wind
turbines were specified as in [23]. For example, the output
curve for the Gamesa G87 (2MW) type of wind turbine
installed in Massachusetts (MA) is depicted in Fig. 4.

Real-world wind speed data were obtained by location
and time for ISO-NE from the Iowa Environmental Mesonet
(IEM) ([24], [25]). The IEM collects environmental data from
cooperating members and maintains automated airport weather
observations from around the world. For instance, the Con-
necticut weather data accessible at [24] includes wind speed,

3For each WPP treatment, 2013 ISO-NE aggregate load was used for the
denominator of the WPP measure (1). For this study we did not attempt to
forecast investment-queue build-out times and load changes over these times.

Fig. 4. Output curve mapping wind speed into wind power output for the
Gamesa G87 (2MW) wind turbine. Source: [23]

Fig. 5. Wind speed at Hartford, Connecticut, from 1/1/2016 to 1/31/2016.
Source: [24]

wind direction, temperature, humidity and altimeter readings.
Figure 5 depicts the wind speed profile from 1/1/2016 to
1/31/2016 for Hartford, Connecticut.

V. TWO ALTERNATIVE DAM SCUC FORMULATIONS

A. SCUC Formulation Overview

The stochastic DAM SCUC formulation used in this study
is a stochastic version of the well-known SCUC formulation
developed in [26]. The deterministic DAM SCUC formulation
used in this study is derived from the stochastic DAM SCUC
formulation by replacing net load scenarios with expected net
load and by including a system-wide reserve requirement.

B. Stochastic DAM SCUC Formulation

The objective of the stochastic DAM SCUC formulation is
to minimize expected total energy cost subject to standard unit
commitment and system constraints. Expectations are taken
with respect to a set S of possible scenarios for future net
load, i.e., load minus wind power.4 Wind power is treated
as negative load since it is assumed to be non-dispatchable
generation with zero operating costs.

Expected total energy cost is the summation of first-stage
costs (i.e., DAM UC costs) plus the expected level of second-
stage costs (i.e., real-time dispatch costs plus penalty costs
imposed for real-time wind spillage or load curtailment).

The ISO decision variables are correspondingly classified
as follows:
• First-stage decision variables: Generator on/off commit-

ment indicator variables, not scenario-conditioned

4The construction of S is detailed in Section VI-A.
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• Second-stage decision variables: Scenario-conditioned
generator dispatch and voltage angle levels

Objective function to be minimized:∑
t∈T

∑
g∈G

[CU,g(t) + CN,g(t) + CD,g(t)]

+
∑
s∈S

πs
∑
t∈T

∑
g∈G

CsP,g(t) + Γ
∑
s∈S

πs
∑
z∈Z

∑
t∈T

γsz(t) (2)

ISO decision variables:

vg(t), p
s
g(t), θ

s
z(t), ∀s ∈ S, z ∈ Z, t ∈ T, g ∈ G (3)

ISO decision variable bounds:

vg(t) ∈ {0, 1} ∀t ∈ T, g ∈ G (4)
0 ≤ psg(t) ≤ Pmaxg ∀s ∈ S, t ∈ T, g ∈ G (5)

− π ≤ θsz(t) ≤ π ∀s ∈ S, z ∈ Z, t ∈ T (6)

Start-up cost constraints ∀g ∈ G:

CU,g(t) = max{0, Ug(t)} ;

Ug(t) = ccold,g − [ccold,g − chot,g]Hg(t)

− ccold,g
[
1− [vg(t)− vg(t− 1)]

]
, ∀t ∈ T (7)

Hot start-up constraints ∀g ∈ G:

Hg(t) = 1 if : 1 ≤ t ≤ Tcold,g; (t− Tcold,g) ≤ v̂g(0) (8)

Hg(t) ≤
t−1∑
τ=1

vg(τ) if : 1 ≤ t ≤ Tcold,g; (t− Tcold,g) > v̂g(0)

(9)

Hg(t) ≤
t−1∑

τ=t−Tcold,g

vg(τ) if : (Tcold,g + 1) ≤ t ≤ T (10)

No-load cost constraints ∀g ∈ G:

CN,g(t) = cN,gvg(t) ∀t ∈ T (11)

Shut-down cost constraints ∀g ∈ G:

CD,g(t) = max{0, Dg(t)} ;

Dg(t) = cD,g[vg(t− 1)− vg(t)], ∀t ∈ T (12)

Production costs ∀g ∈ G (scenario-conditioned):

CsP,g(t) = agp
s
g(t) + bg[p

s
g(t)]

2, ∀s ∈ S, t ∈ T (13)

Power balance constraints ∀z ∈ Z (scenario-conditioned):∑
g∈G(z)

psg(t)+
∑

`∈LE(z)

fs` (t) + αsz(t)

= NLsz(t) +
∑

`∈LO(z)

fs` (t) ;

αsz(t) = α+,s
z (t)− α−,sz (t) ;

γsz(t) = α+,s
z (t) + α−,sz (t) ;

∀s ∈ S, t ∈ T (14)

Line limit constraints ∀` ∈ L (scenario-conditioned):

fs` (t) = SoB`

[
θsO(`(t)− θ

s
E(`)(t)

]
, (15)

− fmax` ≤ fs` (t) ≤ fmax` , ∀s ∈ S, t ∈ T (16)

Capacity constraints ∀g ∈ G (scenario-conditioned):

Pming vg(t) ≤ psg(t) ≤ p̄sg(t) ≤ Pmaxg vg(t)

∀s ∈ S, t ∈ T (17)

Ramp constraints ∀g ∈ G (scenario-conditioned):

p̄sg(t)− psg(t− 1) ≤RTU,gvg(t− 1)

+RTSU,g[vg(t)− vg(t− 1)]

+ Pmaxg [1− vg(t)],
∀s ∈ S, t ∈ T; (18)

p̄sg(t)− Pmaxg vg(t+ 1) ≤RTSD,g[vg(t)− vg(t+ 1)],

∀s ∈ S, 1 ≤ t ≤ T − 1; (19)
psg(t− 1)− psg(t) ≤ RTD,gvg(t)

+RTSD,g[vg(t− 1)− vg(t)]
+ Pmaxg [1− vg(t− 1)],

∀s ∈ S, t ∈ T (20)

Minimum up-time constraints ∀g ∈ G:
Ton,g∑
τ=1

[1− vg(τ)] = 0 if Ton,g ≥ 1; (21)

t+TU,g−1∑
τ=t

vg(τ) ≥ TU,g[vg(t)− vg(t− 1)]

for (Ton,g + 1) ≤ t ≤ (T − TU,g + 1); (22)
T∑
τ=t

(
vg(τ)− [vg(t)− vg(t− 1)]

)
≥ 0

for (T − TU,g + 1) < t ≤ T (23)

Minimum down-time constraints ∀g ∈ G:
Toff,g∑
τ=1

vg(τ) = 0 if Toff,g ≥ 1; (24)

t+TD,g−1∑
τ=t

[1− vg(τ)] ≥ TD,g[vg(t− 1)− vg(t)]

for (Toff,g + 1) ≤ t ≤ (T − TD,g + 1); (25)
T∑
τ=t

(
[1− vg(τ)]− [vg(t− 1)− vg(t)]

)
≥ 0

for (T − TD,g + 1) < t ≤ T (26)

Voltage angle constraints for angle reference zone 1:

θs1(t) = 0, ∀s ∈ S, t ∈ T (27)

C. Deterministic DAM SCUC Formulation with Reserve

The deterministic DAM SCUC formulation used in this
study is derived from the stochastic DAM SCUC formulation
presented in Section V-B in two steps.

First, the scenario set S for the stochastic formulation is
everywhere replaced in the objective function and system
constraints by a single net load scenario s̄ calculated as the
expectation (probability-weighted average) of the net load
scenarios s in S. Thus, for example, the objective function for
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Fig. 6. Construction of the net load scenario set Swpp for each given WPP

the deterministic DAM SCUC formulation takes the following
reduced form:∑

t∈T

∑
g∈G

[
CU,g(t) + CN,g(t) + CD,g(t) + C s̄P,g(t)

]
+ Γ

∑
z∈Z

∑
t∈T

γs̄z(t) (28)

Second, the resulting reduced-form constraints are aug-
mented to include the following system-wide spinning reserve
requirement constraints: For each hour t ∈ T,∑

g∈G
ps̄g(t) ≥

∑
z∈Z

NLs̄z(t) +RR (29)

The determination of the spinning reserve requirement RR in
(29) is explained below in Section VI-B.

VI. SENSITIVITY DESIGN

A. Construction of WPP-Dependent Net Load Scenario Sets

As detailed in Section IV-B, each WPP treatment considered
in this study is associated with a distinct mix of wind turbines
distributed across the eight zones of the 8-Zone ISO-NE Test
System; cf. Fig. 3. Consequently, for each WPP treatment, a
given pattern of loads and wind speeds across these eight zones
results in a distinct WPP-dependent pattern of wind power
outputs and hence a distinct WPP-dependent pattern of net
loads, defined to be load minus wind power.

For each WPP treatment, a set Swpp of two-day (48 hour)
net load scenarios was constructed, making use of: (i) histor-
ical load and wind speed data for the ISO-NE; and (ii) the
relevant wind turbine output curves for this particular WPP
treatment. Each scenario s ∈ Swpp takes the form

s =
(
s(z1), . . . , s(z8)

)
(30)

where, for each i = 1, . . . , 8,

s(zi) =
(
NLszi(1), NLszi(2), . . . , NLszi(48)

)
(31)

and
NLszi(t) = Lszi(t)−W s

zi(t) , t = 1, . . . , 48 (32)

More precisely, as depicted in Fig. 6, the construction of
each s ∈ Swpp proceeded as follows. We first constructed 90
two-day (48 hour) load scenarios and 90 two-day (48 hour)
wind power scenarios for each zone zi, i = 1, . . . , 8. This

construction made use of (i) ISO-NE zonal load and wind
speed data ([24], [27]) for the month of January for three
successive years 2013-2015, and (ii) WPP-conditional wind
turbine output curves [23] allowing us to map wind speeds to
wind power outputs for the wind turbines in each zone.

Second, we derived 90 net load scenarios ŝ =
(s(z1), . . . , s(z8)) from these 90 load and wind power
scenarios by subtracting wind power from load for each zone
for each successive hour. Third, we assigned a probability
of 1/90 to each net load scenario ŝ. Fourth, we applied a
well-known scenario reduction method ([28], [29]) based
on similarity clustering to reduce this set of 90 net load
scenarios ŝ to a smaller set Swpp containing only ten net load
scenarios s. Fifth, each s in Swpp was assigned a probability
πs equal to the sum of the probabilities for the original net
load scenarios lying in its cluster.

For each WPP treatment, the elements s ∈ Swpp are
assumed to be the net load scenarios that the ISO anticipates
could be realized for zones z1, . . . , z8 over days D and D+1
from the vantage point of the DAM on the current day D-1.

B. Treatment Factors

Two treatment factors are considered in this study: (i) wind
power penetration (WPP) as defined by (1); and (ii) the reserve
requirement (RR) for deterministic SCUC appearing in (29).
As detailed in Section IV-B, the three tested WPP treatments
are 2%, 10%, and 20%. For each WPP treatment, the same
eleven RR treatments are tested: namely, 0MW, 500MW,
1000MW, . . . , 5000MW. These eleven RR values were se-
lected so that, for each WPP treatment, reserve expressed as
a percentage of peak net load ranges from 0% to 30%.5

C. Performance Metric

The metric used to compare the performance of the stochas-
tic and deterministic DAM SCUC formulations is expected
cost saving, calculated as the percentage difference in expected
total energy cost when the ISO switches from a deterministic
to a stochastic DAM SCUC formulation. As detailed in
Section V-B, total energy cost includes start-up, no-load, shut-
down, dispatch, and penalty costs.

As depicted in Fig. 7, no-load, start-up, and shut-down costs
are “first stage” UC costs determined in the DAM SCUC op-
timization. Dispatch costs and penalty costs for wind spillage
or load curtailment are “second stage” costs determined by
security-constrained economic dispatch (SCED) in the real-
time market (RTM) on the basis of actual real-time net load.6

For each (WPP,RR) treatment, the (second-day) expected
cost saving is calculated as follows.

1) Select a net load scenario sj from the ten net load
scenarios in Swpp to be the simulated-true net load
scenario for the next two days.

5For each WPP, peak net load PNLwpp is defined to be the highest possible
hourly aggregate net load that could be realized given the ten possible net load
scenarios in Swpp. For each (WPP,RR), reserve expressed as a percentage of
peak net load is then given by RRPwpp = RR/PNLwpp.

6For simplicity, it is assumed in this study that ISO-forecasted net load in
the RTM coincides with actual real-time net load.
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Fig. 7. Comparative performance testing procedure for the stochastic vs.
deterministic DAM SCUC formulations

2) Calculate the total energy cost over each of the next
two days, given WPP, RR, and sj, when the ISO
uses deterministic DAM SCUC augmented with an RR
constraint, conditional on the expected net load scenario
s̄ constructed from Swpp and its associated probabilities
πs, s ∈ Swpp.

3) Calculate the total energy cost over each of the next two
days, given WPP and sj, when the ISO uses stochastic
DAM SCUC conditional on Swpp and its associated
probabilities πs, s ∈ Swpp.

4) Let TCwpprr,sj(Det) and TCwppsj (Sto) denote the total energy
cost resulting on the second day from deterministic
and stochastic DAM SCUC, respectively. Calculate the
(second-day) Cost Saving that would result from a
switch from a deterministic to a stochastic DAM SCUC,
given WPP, RR, and sj, as follows:

CSwpp
rr,sj =

TCwpp
rr,sj(Det)− TCwpp

sj (Sto)
TCwpp

rr,sj(Det)
× 100% (33)

5) Repeat steps 1) through 4) for each of the ten load
scenarios s1, . . . , s10 in Swpp, and calculate the (second-
day) expected cost saving, given WPP and RR, as

Exp[CSwpprr ] =

10∑
j=1

πsjCSwpprr,sj (34)

D. Software Implementation

All simulations were implemented by running the
AMES(V4.0) test bed [14] on an Intel(R) Core(TM) 2 Duo
CPU E8400 @ 3Ghz machine. AMES(V4.0) uses 64-bit ver-
sions of Java (v1.8.0_25), Coopr (v3.4.7842), Python (v2.7.8),
MatLab(v2014a) and CPLEX Studio (v12.51). Two threads
were used to solve the DAM SCUC optimizations.

VII. KEY FINDINGS FOR SENSITIVITY STUDY

Figure 8 reports expected cost saving (34) as a function
of the reserve requirement (RR), conditional on three distinct
wind power penetration (WPP) settings: low (2%), moderate
(10%), and high (20%). For clarity of exposition, RR settings
are expressed as percentages of peak net load; cf. footnote 5.

One key regularity seen in Fig. 8 is the generic U-shape of
expected cost saving as a function of RR. For each given WPP
treatment, expected cost saving initially remains relatively flat

Fig. 8. Expected cost saving as a function of the reserve requirement RR for
deterministic DAM SCUC, conditional on wind power penetration (WPP)

as RR is increased and then begins to decline. As RR continues
to increase, RR reaches a “sweet spot” where expected cost
saving is minimized, i.e., where deterministic SCUC does best
in comparison to stochastic SCUC in terms of expected total
energy cost. As RR continues to increase, however, expected
cost saving dramatically rises.

The intuitive explanation for this generic U-shape is as
follows. No matter which net load scenario is realized in real
time, stochastic DAM SCUC must ensure real-time balancing
of this net load by an appropriate commitment of generation.
On the other hand, deterministic DAM SCUC commits only
enough generation to balance expected real-time net load plus
meet its reserve requirement.

Given a sufficiently low RR, deterministic DAM SCUC
commits less generation than stochastic DAM SCUC, resulting
in lower unit commitment (UC) costs; but it also runs the
risk its commitment will be insufficient to meet real-time
net load. In this case, to attain balance, either resort must
be made to more expensive “peaker” generation units or a
penalty Γ ($/MW) must be paid for wind spillage and/or load
shedding as measured by the appearance of non-zero slack
terms αsz(t) in the power balance constraints (14). Conversely,
given a high RR, deterministic DAM SCUC must resort to
a high commitment of generation to meet its high reserve
requirement; hence, its UC costs are high regardless of the
expected net load.

On the other hand, the commitment for stochastic DAM
SCUC does not depend on RR. Consequently, the expected
cost saving resulting from a switch from deterministic to
stochastic SCUC is positive for sufficiently low or high RR
settings, dramatically so for very high RR settings. Moreover,
even at the sweet-spot RR setting most favorable to determin-
istic SCUC, expected cost saving remains positive.7

A second regularity seen in Fig. 8 is that the sweet-spot
RR setting systematically increases with increases in WPP.
At higher WPP levels there is more net load volatility. Thus,
starting from a sweet-spot RR setting for a given WPP, an
increase in WPP implies that deterministic SCUC faces a
greater risk its unit commitment, selected to balance expected

7Interestingly, in the comparative SCUC study conducted in [13] in the
absence of non-dispatchable generation, expected cost saving also displays
a U-shaped variation with respect to changes in RR. However, expected
cost saving actually turns negative at the sweet-spot RR setting, meaning
deterministic SCUC strictly outperforms stochastic SCUC at this setting.
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real-time net load, will be insufficient to balance actual real-
time net load and hence will result in higher total energy costs.
To reduce these higher expected total energy costs, the only
possible option is to increase RR. Note from (33) and (34) that
any reduction in expected total energy costs for deterministic
SCUC due to an increase in RR implies a decrease in expected
cost saving because expected total energy costs for stochastic
SCUC do not depend on RR.

VIII. CONCLUSION

This study develops a novel agent-based method for the
modeling of wind power penetration (WPP). Increases in
WPP are implemented as build-outs of wind-power investment
queues, resulting in additional installations of wind turbines.
Each wind turbine is characterized by location, physical type,
and an output curve mapping local wind speed into wind
power output. This method thus permits fixed data sets for
wind speeds and loads to be used to examine the effects of
increases in WPP that would arise under variously proposed
plans for future wind turbine installations.

To demonstrate the practical use of this method, a previously
developed agent-based 8-Zone ISO-NE Test System [13] is
extended to include physically-based wind turbine agents, each
characterized by location, physical type, and output curve. The
resulting extended test system is used to explore the effects
of increasing WPP, modeled as ISO-NE investment queue
build-outs, under two alternative DAM SCUC formulations:
(i) deterministic DAM SCUC conditional on an expected net
load scenario and a system-wide spinning reserve requirement
(RR); and (ii) stochastic DAM SCUC conditional on an
ensemble of net load scenarios with associated probabilities.

One key reported finding is that the expected cost saving
resulting from a switch from (i) to (ii) is a U-shaped function
of RR for each tested WPP level. Moreover, as WPP is in-
creased, the lowest expected cost saving systematically occurs
at a higher RR level.
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