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Abstract—This study investigates the complicated nonlinear demand takes the form of fixed hourly loads (i.e., load profiles)
effects of demand-bid price sensitivity and supply-offer price caps implying essentially vertical demand curves. A key difficulty
on Locational Marginal Prices (LMPs) for bulk electric power i 1nat downstream retail markets are still largely regulated

when profit-seeking generators can learn over time how to strate- ith t-based prici that load . fities in fact
gize their supply offers. Systematic computational experiments with cost-based pricing, So that load-serving entiies In fac

are conducted using AMES’ an open-source agent_based test bed haVe I|tt|e incentive to Submit price-sensitive demand b|dS As
developed by the authors. AMES models a restructured wholesale demonstrated in [4] using human-subject experiments, and in
power market operating through time over an AC transmission  [5] using computational agent experiments, under this scenario
grid subject to line constraints, generation capacity constraints, —g|ectric power generators can easily learn to tacitly collude on
and strategic trader behaviors. . .
reported supply offers higher than true marginal costs. The
Index Terms—Restructured wholesale power markets, agent- result is dramatically higher LMPs, hence substantially higher
based test bed, locational marginal prices, demand-bid price market operation costs

sensitivity, supply-offer price caps, learning, strategic pricing, ca- .
pacity withholding, market power, price spiking, price volatility, In this study we use an agent-based test bed — AMES (V2.0)

AMES, MISO market protocols — to investigate how demand-bid price sensitivity and supply-
offer price caps affect dynamic wholesale power market per-
formance, with a particular stress on LMP response. AMES
implements a wholesale power market operating through time

FBver an AC transmission grid in accordance with core WPMP
sign features as implemented by the MISOY[6].

Sn particular, the AMES Load-Serving Entities (LSEs) and

in [3], versions of the WPMP have been implemented ( enerators report daily demand bids and supply offers to the

scheduled for implementation) in the midwest (MISO), New MES ISO for the day-ahead market. The LSEs’ demand bids

are mixtures of fixed (price-insensitive) demands and price-

England (ISO-NE), New York (NYISO), the mid-atlantic Sta’[essensitive demands.The generators’ reported supply offers

(PJM), California (CAISO), the southwest (SPP), and Texas . . . : ) "
(ERCOT) consist of price-sensitive marginal cost functions defined over

operating capacity intervals.

A core design element of the_ WPMP is a two-settlemen The AMES ISO uses these daily reported bids and offers to
system to be managed by an independent system operato . .
“ B etermine hourly LMPs and commitment levels for the next

(ISO). Roughly, a “two-settlement system” refers to the com: ) .
day as solutions to hourly DC optimal power flow problems.

bined workings of a day-ahead energy market and a real-tmﬂﬁe AMES generators use their daily settlement payments for
energy market that are separately settled each day by megns . . :

. : - e day-ahead market to adjust their daily reported supply
of Locational Marginal Pricing (LMP). Under LMP, aseparat%ﬁers via reinforcement learning. The AMES ISO has the
price for power is determined at each node of the transmissi(())ntion t0 iMpose a price ca on. reported supply offers in
grid at which power is injected or withdrawn. P P P P P PPl

As envisioned in the WPMP, and implemented in practiccgfl,n attempt to mitigate the exercise of market power by

the day-ahead market is structured as a double auction. Logg_sner?torél.l i tuller d i t th i feat
serving entities (buyers) are permitted to submit demand bid ection 1! provides a fufler description of the main 1eatures

that include price-sensitive hourly demands, and generat8 SA_MES (\gZiO)aStectlo_n IIIdepral_ns theI;AI:/IESfexperlmenta(lj
(sellers) are permitted to submit supply offers that inclu est|gn utge I 0 e_ec;mlr:te_ ynfamtlﬁ rrf1a|1 e_pe;r:)rma;ncetun ter
price-sensitive hourly supplies, systematically varied settings for the following three treatmen

In actuality, however, the day-ahead market effectivelE?CtorS: (a) the degree to which demand bids are price sensitive

functions as a one-sided auction because the bulk of the _ _ .
AMES is an acronym for Agent-based Modeling of Electricity

|. INTRODUCTION

N April 2003 the U.S. Federal Energy Regulatory Commi
sion issued a white paper [2] proposing a template for t
restructuring of U.S. wholesale power markets, referred to a
the Wholesale Power Market Platform (WPMP). As detailed
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(0 to 100%); (b) the level of the supply-offer price cap (infinite,
high, moderate, or low); and (c) the absence or presence of
generator learning capabilities. Dynamic market performance
is measured in terms of six average outcome variables: average
LMP; average total demand; average market operational cost;
average market power (as measured by the Lerner Index);
average LMP spiking; and average LMP volatility rarfge.
Experimental findings for dynamic market performance are
reported in Section IV. For example, with generator learning,
starting from an all-fixed-demand benchmark, average LMP
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is shown to increase with small increases in price sensitivijg. 1. AMES test bed architecture (agent hierarchy)

before declining monotonically. Also, with generator learning,
starting from a no-price-cap benchmark, it is shown that the
imposition of a binding supply-offer price cap can increase
average LMP spiking and volatility even though average LMP
is reduced.

Concluding remarks are given in Section V. Technical *®
definitions and calculations for average outcome variables are
provided in Appendix A.

II. OVERVIEW OF THEAMES TESTBED

As detailed in Li et al. [1], AMES (V2.0) incorporates in
simplified form various core features of the WPMP market
design as implemented in the MISO. A summary of these
core features is as follows: .

« The AMES wholesale power market operates over an
AC transmission grid starting on day 1 and continu-
ing through a user-specified maximum day (unless the
simulation is terminated earlier in accordance with a
user-specified stopping rule). Each dByconsists of 24
successive hourfl = 00,01, ..., 23.

« The AMES wholesale power market includes an Indepen-*
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSEs) and
generators distributed across the nodes of the transmise
sion grid.

o The ISO undertakes the daily operation of a day-ahead
market settled by means of locational marginal prices ®
(LMPs). The binding financial contracts determined in the
day-ahead market are carried out as planned (no shocks
to the system), hence traders have no need to engage in

day-ahead market for dai + 1.5 Each reported supply
offer consists of a price-sensitive linear-affine marginal
cost function defined over an operating capacity interval.
After receipt of these demand bids and supply offers
during the morning of dayD, the ISO determines and
publicly reports hourly power supply commitments and
LMPs for the day-ahead market for ddy + 1 as the
solution to hourly bid/offer-based DC optimal power flow
problems.

At the end of each dayD, the ISO settles all of the
commitments for the day-ahead market for day-1 on

the basis of the LMPs for the day-ahead market for day
D +1.

Each generator uses its ddy settlement payment to
adjust, via reinforcement learning, its choice of a supply
offer to be reported to the 1SO on dap + 1 for

the day-ahead market for dap + 2. Generators can
adjust the ordinates/slopes of their reported marginal
cost functions and/or the upper limits of their reported
operating capacity intervals.

Transmission grid congestion in the day-ahead market is
managed via the inclusion of congestion components in
LMPs.

Each LSE and generator has an initial holding of money
that changes over time as it accumulates profit earnings
and losses.

There is no entry of traders into, or exit of traders from,
the AMES wholesale power market. LSEs and generators
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

real-time (spot) market trading. Figure 1 schematically depicts the current architecture of
« During the morning of each day), each LSE reports the AMES test bed by solid lines. Key elements planned but

a demand bid to the ISO for the day-ahead market foot yet incorporated are indicated by dashed lines.

day D+1. Each demand bid consists of two parts: a As explained more carefully in Sun and Tesfatsion [5], the

fixed demand bid (i.e., a 24-hour load profile); and 2AMES ISO computes hourly LMPs and power commitments

price-sensitive demand bids (one for each hour), eafdr the day-ahead market by solving bid/offer-ba&sal Opti-

consisting of a linear-affine inverse demand functiomal Power Flow (OPF) problems that approximate underlying

defined over a purchase capacity interval. LSEs have no

learning capabilities; LSE demand bids are user-specifiedIn the MISO [6], generators each day are actually permitted to report

at the beginning of each simulation run.

a separate supply offer for each hour of the day-ahead market. In order to
simplify the learning problem for generators, the current version of AMES

« During the morning of each daly, each generator reportSrestricts generators to the daily reporting of only one supply offer for the day-
one supply offer to the ISO to be used for all hours of thehead market. Interestingly, the latter restriction is imposed on generators by
the ISO-NE [7] in its particular implementation of the WPMP. Baldick and
Hogan [8, pp. 18-20] conjecture that imposing such limits on the ability of
4For brevity, this conference study focuses on average effects. Detaigeherators to report distinct hourly supply offers could reduce their ability to
distributional effects are reported and examined in Li et al. [1]. exercise market power.



— Learning Module 1 conditional on variously specified generator attributes, LSE
loads, and transmission grid reactances and line limits. An

PIOD [ESe [Profits Ofers implicit assumption in these derivations is that the 1ISO knows
B Sell i i
(LUS!';‘; (Gm"" ] _the true attributes of_ t_h_e LSEs and generators. No r_nenﬂon
—_— : is made of the possibility that LSEs and generators in real-
LMPs Bids LMPs Offers .
cul world 1SO-managed wholesale power markets might learn to
| T T | exercise market power over time through strategic reporting

of their attributes.

Our experimental design extends these static training cases
both dynamically and strategically. The LSEs and generators
| repeatedly report demand bids and supply offers into the day-
ahead market over time. Moreover, we examine what happens
1 LSE 3 when generators are permitted to have learning capabilities
:'@ enabling them to strategically adjust their reported supply

offers on the basis of past profit earnings.
We start by considering thdynamic 5-node benchmark case
presented in Table I. This benchmark case is characterized
A& i1 € 'Lses by 100% fixed demand (no price sensitivity), the absence of
any supply-offer price cap, and the absence of any strategic
Fig. 2. Schematic depiction of the three core AMES test bed componenlt%:arnlng on the part of gener{.ﬂors (I.'e" reported supply .Oﬁ.ers
Learning module; DC-OPF solver, and Graphical User Interface (GUI)  CONvey true cost and capacity attributes). The transmission
grid configuration, reactances, locations of the generators and
LSEs, and initial hour-0 load levels in Table | are taken from
AC-OPF problems. To handle this computation, we haJelly [11]. The general shape of the LSE load profiles is
developed an accurate and efficient DC-OPF soD@QPFJ, adopted from a 3-node example presented in Shahidehpour
consisting of a strictly convex quadratic programming solvet al. [12, p. 296-297].
wrapped in an outer Sl-pu data conversion shell (Sun andFor each dayD, the demand bid reported by LS for
Tesfatsion [9]). The AMES ISO solves its DC-OPF problemeach hourH of the day-ahead market in ddy + 1 consists

<" _ DC-OPF Solution Module |

[ mputpata  outputData

&

by invoking DCOPFJ. of a fixed demand biqbfj(H) (in MWSs) and a price-sensitive
Generator learning is implemented in the AMES test bedgmand bid function

by a reinforcement learning moduldReLM, developed b

4 : P ers D (b, (H)) = ;(H) — 2d;(H)-pi,(H) (1)

Gieseler [10]. JReLM can implement a variety of different

reinforcement learning methods, permitting flexible represedefined over gurchase capacity interval

tation of trader learning within this family of methods. s
AMES also has a graphical user interface (GUI) with 0 < pz;(H) < SLMax;(H). (2)

separate screens for carrying out the following functions: (g) (1), the termD, (p? .(H)) denotes LSE's true reservation
creation, modification, analysis and storage of case studies; () ;e for pS(H) i.e.J the maximum dollar amount it is truly
initialization and editing of the attributes of the transmissiof;;ing to Lé MWh) for the additional S (H

-~ o= Z : g to pay (per ) for the additional powep; ;(H)
grid; (c) initialization and editing of the attributes of LSEs(in MWs). The parameter values(H) andd;(H) in (1) are
and generators; (d) specification of the learning method fPéquired to be nonnegative. ’
g_enera?ors; (e) §pecification of simulatiqn controls (e.g., theAIso, for each dayD, the supply offer reported by generator
simulation stopping rule); and (f) customizable output reports,. e in every hour of the day-ahead market for day: 1

in the form of both table and chart displays. consists of a reported marginal cost function
DCOPFJ, JRelLM, and the GUI are the core components

supporting the current implementation of the AMES test bed. MCE(pai(D)) = af(D) + 20F(D)-pai(D)  (3)

This implementation is schematically depicted in Figure 2. defined over a reportesperating capacity interval

I1l. EXPERIMENTAL DESIGN 0 < pai(D) < Capf¥(D) . (4)

This section develops an experimental design to explore dy-(3) the termM CE(pg:(D)) denotes generatdls reported
namic market performance under systematically varied settingservation value for pg;(D), i.e., the minimum dollar pay-
for demand-bid price sensitivity, the supply-offer price capnent it reports it is willing to accept (per MWh) for the power
and generator learning capabilities. As the basic foundation ®upply pg; (D) (in MWSs). The parameter valueff/(D) and
this experimental design, we consider the 5-node transmisshﬁ'(D) in (3) are required to be nonnegative.
grid configuration depicted in Figure 2. Generator; learns over time how to strategically report its

Originally due to John Lally [11], this transmission griddaily supply offers based on the profit earnings it has obtained
configuration is now used extensively in ISO-NE/PJM traininffom its past supply offer choices. In particular, the parameter
manuals to derive DC-OPF solutions at a given point in timealues (7 (D), bf(D), Cagd'V (D)) that generatori reports



MPTD,(H) e honk Ffor Log oot movss PCap. Consequently, the generators report supply offers such
200MWs 2ll R test cases that their reported marginal costs at the upper lingitgp’?V
| = Fixed Load ph(H) in Mws of their reported operating capacity intervals do not exceed
260 HWs — Maximum Potential Price-Sensitive PCap. The following four values are tested for PCap: (a)
Demand SLMaxi(H) in MWs an effectively infinite value (no PCap); (b) a “high” value
R = SLMax;(H)/MPTD,(H) = 0.50, ($120/MWh); (c) a “moderate” value §100/MWh); and (d)
forH=00,..,23 a “low” value ($80/MWh).

The third treatment factor briefly explored in this study
is generator learning capabilities. In each experiment we
impose one of two treatments: (a) generators have no learning
Fig. 3. lllustration of the construction of the R ratio for measuring relativeapabilities, hence they always report supply offers to the
demand-bid price sensitivity ISO that reflect their true cost and capacity conditions; or
(b) generators have reinforcement learning capabilities that
they use to strategically adjust their reported supply offers

on any given day D can deviate from its true supply offegqr time. For a careful description of the precise algorithmic

paramgter valuesuf, bi{ Capf). _ representation used for generator learning, see Li et al. [1].
In this study the primary treatment factor we consider is

the ratio R of maximum potential price-sensitive demand to
maximum potential total demand. More precisely, for each

Hours H

00 o1

IV. REPORT OFKEY FINDINGS

LSE j and each houf, let _ This section uses the experimental d_esign outline_d in _Sec-
tion Ill to test the effects of changes in demand-bid price-

R;(H) = SLMaz;(H) (5) sensitivity, supply-offer price caps, and generator learning on

/ MPTD,;(H) dynamic market performance as measured by the following

six average outcome variables: Avg LMP; Avg Total Demand;

(Avg Op Cost (operational cost); Avg LI (Lerner Index); Avg

LMP Spiking; and Avg LMP Volatility Range. The technical

definitions and calculations of these average outcome variables
MPTD;(H) = [p[;(H)+ SLMax;(H)] (6) are discussed in Appendix A.

_ i ) _ Table Il reports experimental findings for average outcomes
denotes LSE’s maximum potential total demand in holf  \,nqer alternative settings for R (relative demand-bid price
as the sum of its fixed demand and its maximum potentighsitivity) in the absence of a supply-offer price cap and with
price-sensitive demand in hodf. The construction of the R 5 generator learning. Table Il repeats these experiments for
ratio is illustrated in Figure 3. the case in which generators have learning capabilities and

We start with an experimental treatment in which all ofience learn to report strategic supply offers to the 1SO over
the R-values in (5) are set equal tB = 0.0 for each LSE {jqe.

j and each houd (the pure fixed-demand case). We then

where SLMaz;(H) denotes LSEj’s maximum potential
price-sensitive demand in hold as measured by the uppe
bound of its purchase capacity interval (2), and

systematically increas& by tenths, ending with the value TABLE I
. . ... AVERAGE EFFECTS OFR CHANGES WITH NO SUPPLYOFFER PRICE CAP
R = 1.0_(th_e pure price-sensitive demand case). A positive (NO PCAP) AND NO GENERATOR LEARNING
R value indicates that the LSEs are able to exercise at least
some degree of price resistance. [ R ] Avg LMP [ Avg Total Demand] Avg Op Cost [ Avg LI ]|
The maximum potential price-sensitive  demands|| 0.0 25.18 318.21 3779.17 | 0.0056
- ; 0.1 2451 299.19 3439.32 | 0.0042
SLMaz;(H) for each LSE are thus systematically increased—> 5300 57559 2100.91 1 0.0036
across exp_enments. However_, we control for confour_1d|n 03 2333 559 85 576558 0.0032
effects arising from changes in overall demand capacity ag 0.4 22.72 240.18 244654 | 0.0029
follows: For each LSEj and each houfd, the denominator 8-2 giég ggg-gg i;gg-ig 8-8352
vaIueMPT_Dj(H) in (Q) is h_eld constant across experiments {5~ 5049 18867 166219 0.0013
by appropriate reductions in the fixed demapﬁj(H) as 08 19.49 175.74 1481.15 0.0000
SLMaz;(H) is increased. Specifical\)/ PTJ;(H) is set 0.9 18.27 169.68 1408.55 | 0.0000
equal across all experiments to the hdilrfixed-load level 10 17.04 163.87 1349.49 0.0000

L-H reported for LSEj in Table I.

Moreover, we also control for confounding effects arising As seen in Table Il, in the absence of generator learning an
from changes in demand-bid functional forms. The demanghcremental increase in R starting from the benchmark case
bid ordinate and slope parameter valus;(H),d;(H)) : R=0.0 (no price-sensitive demand) has the usual intuitively-
H = 00,...,23} for each LSE; are held fixed across expected effects: Avg LMP, Avg Total Demand, Avg Op Cost,
experiments; see Li et al. [1] for the precise values used. and Avg LI all monotonically decline with increases in R.

The second treatment factor explored in this study is PCaplndeed, except for the presence of grid congestion between
($/MWh), an ISO-imposed supply-offer price cap. In experinode 1 and node 2 and a binding operating-capacity constraint
ments in which PCap is imposed, generators are not permittad generator 3 for the cases in which Avg Total Demand
to report marginal costs (reservation values) that rise abowgerelatively high, all of the Avg LI outcomes in Table Il



TABLE Il . R "
AVERAGE EFFECTS(WITH STANDARD DEVIATIONS) OF R cHances with  the C-values (ordinates) of the LSEs’ price-sensitive demand-

NO PCAP AND WITH GENERATOR LEARNING bid functions.
[ R ]| Avg LMP | Avg Total Demand| Avg Op Cost[ Avg LI ]| TABLE IV
0.0 70.10 318.21 0198.63 0.5692 AVERAGE LMP EFFECTS(WITH STANDARD DEVIATIONS) OF CHANGES IN
(3.14) (0.00) (125.88) (0.01) PCAP WITH NO DEMAND-BID PRICE SENSITIVITY(R=0.0)
0.1 73.84 286.39 8450.26 0.5755
(3.24) (0.00) (444.20) (0.01) [ [[ No PCap] PCap=120] PCap=100] PCap=80]]
0.2 81.46 254.57 7629.94 0.5933 Avg LMP with 25.18 2518 2518 25.18
(2.85) (0.05) (298.22) (0.01) no gen learning
0.3 72.67 223.84 5501.09 0.5433 .
Avg LMP with 70.10 65.72 58.00 54.96
(3.02) (1.14) (228.62) (0.01) ggn learning (3.14) (4.01) (1.51) (2.41)
0.4 30.43 198.70 3300.37 0.4341
(1.16) (2.03) (172.36) (0.01)
0.5 3)5425; 1(3%55' (212177-77335 ‘2643%5 Table IV reports Avg LMP outcomes under four alternative
06 3352 155 47 555965 | 03660 scenarios for PCap, the supply-offer price cap. For the subse-
(0.41) (2.86) (135.01) (0.01) guent interpretation of these findings, it is important to recall
0.7 ] 2813 145.84 187791 1 0.2815 from Section Il that PCap is a price cap on generator-reported
(0.60) (4.23) (151.64) .01 marginal costs andot on LMPs per se. In the presence of
08| 26.75 133.99 1627.45 | 0.2547 ginal _ ot p . p
(0.54) (4.96) (157.23) (0.01) congestive grid conditions, LMPs can separate from generator-
0.9 25.09 120.17 1388.31 | 0.2342 reported marginal costs and hence from PCap.
0.51) (5:43) (132.60) (0.01) None of the three numerical PCap values in Table IV is
1.0 23.23 108.51 1184.18 0.2078 e p -
(0.48) (5.80) (125.88) (0.01) binding in the absence of generator learning, hence the Avg

LMP outcome$25.18/MWh with no generator learning pro-
vides a common benchmark valtiedowever, with generator

would be zero. Generators have no learning capabilities Afgming, each of thgse three PCap values results in an Avg
are reporting their true cost and capacity conditions to the 1SYIP putcome thf"‘t _d|ff_ers from the Avg LMP outcome with
each day, hence they are not making any deliberate efforts"f Price cap. This indicates that th_ese three PCap Ieve_ls are
exercise market power. Rather, as explained more carefuIlqulr'i'(_jl'm_]'l on generator-reported marginal costs. More precisely,
Li et al. [1], the grid congestion is causing some separati(ﬂ'lb'nd'ng PCap level means tha'_[ one or more generators have
of LMP values both from each other (cross-sectionally acrolgen forced_to reduc_e tr_le_ordlnate/slope values and/or the
the grid) and from generator marginal costs, and the bindiﬂ"f‘gﬁ’per operating capacity limits of the supply offers they report

operating-capacity constraint causes separation of genera‘?the ISO.

marginal costs from each other. Both effects result in non-zero”S intuitively expected, Avg LMP monotonically decreases
values for Avg LI. as PCap is decreased in increments from an effectively infinite

Comparing the no-learning Table Il results to the resulféalue (No Price Cap) to a low valugf0/MWh). Due tp learn-
with generator learning reported in Table lll, it is seen that'd and network effects, however, the relationship between

generator learning has strong effects on average outconfégap and LMP outcomes is more complicated than indicated

With generator learning, Avg LMP, Avg Op Cost, and Avg ley this AY9 LMP effept. . .

are all dramatically higher for every level of R even though " particular, note in Table IV that Avg LMP with no price
Avg Total Demand is lower. The reason is that the profi€aP i8370.10/MWh whereas Avg LMP for PCaf$120/MWh
seeking generators quickly learn to tacitly collude on highelS Only 365.72/MWh. This finding indicates that ,the high
than-true reported marginal costs even when demand bids Bfe@P levels120/MWh is binding on the generators’ reported
fully price sensitive (R=1.0) and the generators are competifigf'ginal costs even though this PCap level is substantially
for limited demand. higher than the resulting valu&5.72/MWh for Avg LMP. A

Moreover, with generator learning, Avg LMP and AVgsimilar comment holds for the remaining two PCap levels.

LI exhibit a counterintuitive behavior: as R is incrementally 1he explanation for this finding is that the distribution of
increased from R=0.0 (no price-sensitive demand) to R:éﬁﬂPs across_t_he 24 hours of a day can exhibit substantial spik-
(some price-sensitive demand), both Avg LMP and Avg (ing and volatility that are obscured when only daily Avg LMP

actually increase. These initial increases occur even thougjffcomes are considered. For example, as shown in Figure 4,
Avg Total Demand and Avg Op Cost are monotonically/'¢ Maximum LMP value attained during peak demand hours

declining. From a policy standpoint, it is interesting to notga" Pe sustantially higher than Avg LMP calculated across all
that the current R ratio is about 0.01 for the MISO [6]. 24 hour_s. Thus, the imposition of a price cap can be a binding
As explored more fully in Li et al. [1], these initial increasegonstraint on generator-reported marginal costs during peak

in Avg LMP and Avg LI appear to be robust phenomengemand hours even if not in other hours. Since generators are

that arise from complicated interactions between learning aﬂaly pe_rmltted to rep(zjrt one _sulepIy offe(rj per day, i tgndlngd
network effects. The “critical R value” R* at which Avg constraint on reported marginal costs during peak deman

LMP and Avg LI exhibit a turning point from increasin
9 9p 9 6As shown in Li et al. [1], in the no-learning case the price cap level PCap

to d_ecreasing depends on (_)ther mainta_ined pgrameter Vac!H? becomes binding on generator-reported marginal costs when it drops
settings. For example, R* varies systematically with changestaiow $35.40/Mwh.



—+—NoPCap  —8-PC3p=120 —4—PC3p=100 ——PCap=80 website of the IEEE Task Force on Open-Source Software
o (http://lewh.ieee.org/cmte/psace/CANESkforce/index.htm).
5000 In particular, we conduct systematic experiments with
roro AMES to determine the complex effects of changes in
demand-bid price sensititivity, supply-offer price caps, and
generator learning on wholesale power market performance —

5000 e
4000
20.00

2000 in particular, on dynamic LMP response — due to potentially
o : ; , , , congestive grid conditions and to potentially binding capacity
o . = 15 0 2 constraints on power generation. A more detailed study of

LMP spiking and volatility patterns in response to systematic

Fig. 4. Average hourly LMPs during the final market day under alternativehanges in these treatment factors is provided in Li et al. [1].
supply-offer price caps with no demand-bid price sensitivity (R=0.0) and with
generator learning

APPENDIX A

CALCULATION OF AVERAGE EFFECTS

4500 <7

This appendix explains the definition and calculation of the
average outcome effects reported in Section IV.

Thirty runs were conducted for each treatment factor con-
| Volatiley figuration corresponding to 30 different random seeds. These
K seeds were generated using the standard Java “random” class.
See Li et al. [1] for a listing of these seed values.
Each run terminates at a “final day” determined in accor-
B B Wl DO dance with the following stopping rule: Either end at day
100 or end at the earliest day for which each generator has
Fig. 5. Average LMP spiking and volatility range effects of supply-offelconverg_J_ed to the choice of a single reporte_d supply offer with
price caps with no demand-bid price sensitivity (R=0.0) and with generatprobability at least 0.999. For each calculation below, only the
learning final-day data for each run are used. Note, however, that this

final-day data consists of scheduled hourly outcomes for the
24 hours of the day-ahead market on the subsequent day.

hours translates into a binding supply-offer constraint for every plso, for the reported findings in Table IV and Figs. 4
hour. and 5 with an imposed PCap, with no demand-bid price

Moreover, as examined at much greater length in Li &ensitivity (R=0.0), and with generator learning, an occasional
al. [1], the introduction of a binding PCap level can in somgadequacy event occurred in a small number of runs around
cases worsen LMP spiking and volatility while in other casefie peak-demand hour 17 in that total generator reported ca-
LMP spiking and volatility are dampened. For example, gsacity was insufficient to meet total fixed deman@ihese few
seen in Figure 5 for the tested scenario with no demanfims/hours are excluded from the averages calculated below,
bid price sensitivity (R=0.0) and with generator learning, thgyt for expositional simplicity we ignore this complication in
introduction of the strongly binding PCap lev8BO/MWh  the calculation descriptions.
increases both spiking and volatility whereas the introduction avg LMP ($/MWh) is calculated as follows. First, for
of the more moderately binding PCap lei00/MWh has each transmission grid node and each hour, determine the

40.00
33.00

3000 77
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2000 17
15.00
10.00
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the opposite effect. average hourly LMP across all 30 runs. Second, for each
hour, determine the average of these run-averaged hourly
V. CONCLUDING REMARKS LMP values across all five nodes. Finally, average these node-

averaged and run-averaged hourly LMP values across all 24
Restructured wholesale power markets are complex systems, .+ get Avg LMP.

encompassing nonlinear physical constraints, complicated in'Avg Total Demand (MWs) is calculated as follows. First,

stitutional arrangements, and the behavioral dispositions @f oach of the three LSEs and for each hour. determine the
potentially s_trateg|c human participants. To be compelling andye.g average cleared (satisfied) price-sensitive demand across
useful, studies of such systems must take all three elemefis3g runs. Second. for each LSE and each hour. add the LSE’s
into proper account. As _cz_;lrefully d'SCUSS?d in _[8]’ this hg&eq demand and average cleared price-sensitive demand to
prove(_j to be extre_m_ely difficult to accomplish using standaréiet the LSE’s average total demand. Third, for each hour, sum
analytlc_al and statistical tools. ) these LSE average total demands across the three LSEs to get
In this study we demonstrate the potential usefulness Qferage total demand. Finally, average these hourly average

an agent-based test bed, AMES, for the exploratory stugita| demands across all 24 hours to get Avg Total Demand.
of restructured wholesale power markets operating through

time over an AC transmission grid subject to line constraints,’As discussed in Li et al. [1], inadequacy events are an important hidden
generator Capacity constraints, and strategic trader behaviépst of price caps, since in practice they would require special actions to be
AMES was first released as open-source software at the IEEE by the ISO (e.g., reserve procurement, load shedding). AMES (V2.0)
‘ p ) - rts a tick-count of inadequacy events. Future versions of AMES will
PES General Meeting (June 2007) and is available at theorporate adequacy protection procedures based on empirical ISO practices.



Avg Op Cost (ISO market operational co$th) is calculated REFERENCES
as follows. First, f_or each of the five gen_erators and f(P:[] H. Li, J. Sun, and L. Tesfatsion, “Separation and Volatility of Locational
each hour, determine the average total variable cost of the Marginal Prices in Restructured Wholesale Power Markets,” Working
generator across all 30 runs based on the generatmsted Paper, ISU Economics Department, in progress. _

. é@ FERC, Notice of White Paper, U.S. Federal Energy Regulatory Commis-

supply offer and subsequent hourly power commitment levels gjon “april 2003.
as determined by the 1S©®.Second, for each hour, deter{3] P. Joskow, “Markets for power in the united states: An interim assess-
mine the average of these run-averaged total variable costMent’ The Energy Journal, vol. 27, no. 1, pp. 1-36, 2006.

lculati i t Third th 4] S. Rassenti, V. L. Smith, and B. Wilson, “Controlling market power and
calculations across all Tive generators. Ird, average eprice spikes in electricity networks: Demand-side biddirig;bceedings
generator-averaged and run-averaged hourly total variable costof the National Academy of Sciences, vol. 100, no. 5, pp. 2998-3003,

calculations across all 24 hours to get Avg Op Cost. 2008. _ . .
. . . [5] J. Sun and L. Tesfatsion, “Dynamic testing of wholesale power
The Lerner Index for an_y generatorsupplylng a positive market designs: An open-source agent-based framewdBlofhpu-
amount of power B; is defined as follows: tational Economics 30 (2007), pp. 291-327. Preprint available at:
www.econ.iastate.edu/tesfatsi/DynTestAMES.JSLT.pdf
LI-(P ) . [LMPk(z‘) —Mci(PGi)] (7) [6] MISO. (2008) Home page. Midwest ISO, Inc. [Online]. Available:
Gy — LMP,;) . www.midwestiso.org/

[7] ISO-NE. (2008) Home page. ISO New England, Inc. [Online]. Available:
In (7), k(i) denotes the nodal location of generatoL MPy, ;) www.iso-ne.com/

. Y ) _ [8] R. Baldick and W. Hogan,“Capacity constrained supply function equi-
denotes the LMP at nOd,e(l)' and MC‘(PGl) denotes gener librium models of electricity markets: Stability, non-decreasing con-

atori's true marginal COSt_ of supplyingcR. _ straints, and function space iterations,” Working Paper Series, Program on
Avg LI (pure number) is calculated as follows. First, for Workable Energy Regulation (POWER), University of California Energy

Al it Institute, Revised August 2002.
each run, for each hour, and for each gener th apositive [9] J. Sun and L. Tesfatsion, “DC optimal power flow formulation and

power commitment B; for this run and hour, determine " sojution using QuadProgJProceedings, IEEE Power Engineering So-
the generator’'s Lerner Index (7). Second, for each hour and ciety General Meeting, Tampa, Florida, June 2007. Full working paper

; ; wavailable: www.econ.iastate.edu/tesfatsi/DC-OPF.JSLT.pdf
for each generator, determine the average of this generat?fo? C. Gieseler, “A java reinforcement learning module for the repast toolkit:

Lerner Indices across all of the runs for which he had a gacilitating study and experimentation with reinforcement learning in
positive power commitment for this hour. Third, for each hour, social science multi-agent simulations,” Department of Computer Science,
determine the average of these run-averaged Lerner Indif} ?'Owa State University, M.S. Thesis, 2005.

r

. . . J. Lally, “Financial transmission rights: Auction example,”fimancial
across all generators who were committed during this hoUr transmission Rights Draft 01-10-02, m-06 ed. 1SO New England, Inc.,

for at least one run. Finally, determine the average of these January 2002, section 6.

_ _ ; M. Shahidehpour, H. Yamin, and Z. LMarket Operations in Electric
generator-averaged and run-averaged Lerner Indices acrosE%JILOWer Systems.  New York, NY: IEEEMiley-Interscience, John Wiley
24 hours to get Avg LI. & Sons. Inc., 2002.

The Lerner Index is a simple commonly-used measure of
market power in electricity and other markets, but it has severe
drawbacks as well. A more careful examination of market

power in relation to demand-bid price sensitivity and supply- ) ) ) . )
f# . . ided in Li et al. 1 Hongyan Li received his M.S. degree in Electric Power Systems from
offer price caps is provided in Li et al. [1]. Xian Jiaotong University (China) in 1997. He served as an engineer for

The Avg LMP Spiking §/MWh) depicted in Figure 5 is the Sifang & Huaneng Power System Control Corporation (China) for seven
calculated as follows. First, for each run and for each of tgars. He is currently pursuing a Ph.D. degree in Electrical and Computer

five t .. id d lculat dal LMP iki Engineering at lowa State University. His principal research area is power
Ve transmission grid nodes, calculate noda Spiking %?stem economics, with a particular focus on the efficiency and reliability of

the maximum absolute difference between successive houdytructured wholesale power markets.
LMPs across all 24 hours. Second, for each node, determine
the average of these nodal LMP spiking measures across all
30 runs. Third, determine the average of these run-averaged

nodal LMP spiking measures across all five nodes to get Avgnjie Sun received his Ph.D. degree in Economics from lowa State
LMP Spiking. University in 2006. He is currently a Financial Economist with the Office

The Avg LMP Volatility Range $/MWh) depicted in Fig- of_ th_e Comptroller of the Cu_rrency, u.s. Trgasu_ry, Wa_shington_D.(_:. His
principal research areas are financial economics, industrial organization, and

ure 5 is calculated as follows. First, for each run and fQfypiied econometrics, with a particular focus on restructured wholesale power

each of the five transmission grid nodes, calculate the nodalrkets.

LMP volatility range as [maxLMP-minLMP] across all 24

hours. Second, for each node, determine the average of these

nodal LMP volatility range measures across all 30 runs.

Third, determine the average of these run-averaged nodal LM#yh Tesfatsion received her Ph.D. degree in Economics from the Uni-

volatility range measures across all five nodes to get the Amsny of Mlnnesota in 1975. _She is currently P_rofessor of Economlcs and

LMP Volatility R thematics at lowa State University. Her principal research area is Agent-

Olatlity kange. based Computational Economics (ACE), the computational study of economic

8 ) ) ) processes modeled as dynamic systems of interacting agents, with a particular
“That is, these average total variable cost calculations are made by the k30,5 on restructured electricity markets. She is an active participant in IEEE

using the marginal cost functiomeported by generators to the ISO as partpoyer Engineering Society working groups and task forces focusing on power

of their reported supply offers, because these are the functions actually Usgfnomics issues and a co-organizer of the ISU Electric Energy Economics

by the ISO in its DC-OPF problems in an attempt to achieve efficient powgts) Group. She serves as associate editor for a number of journals, including
commitment levels. The ISO does not know the generators’ true marginal c recently establishetburnal of Energy Markets.

functions.



TABLE |
INPUT DATA FOR THE DYNAMIC 5-NODE BENCHMARK CASE NO DEMAND-BID PRICE SENSITIVITY(R=0.0);NO SUPPL¥OFFER PRICE CAKNO PCAP);
AND NO GENERATOR LEARNING

Base Value3
So Vo
100 10
Kb 7
5 0.05
Branch
From To lineCaf  X*
1 2 250.0 0.0281
1 4 150.0 0.0304
1 5 400.0 0.0064
2 3 350.0 0.0108
3 4 240.0 0.0297
4 5 240.0 0.0297
Gen ID atNode FCost a b Capt Ccap’/ Init$
1 1 1600.0 14.0 0.005 0.0 110.0 $1M
2 1 1200.0 15.0 0.006 0.0 100.0 $1M
3 3 8500.0 25.0 0.010 0.0 520.0 $1M
4 4 1000.0 30.0 0.012 0.0 200.0 $1M
5 5 5400.0 10.0 0.007 0.0 600.0 $1M
LSE
ID atNode L-06 L-01 L-02 L-03 L-04 L-05 L-06 L-07
1 2 350.00 322,93 305.04 296.02 287.16 29159 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 24993 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33
ID atNode L-08 L-09 L-10 L-11 L-12 L-13 L-14 L-15
1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83
ID atNode L-16 L-17 L-18 L-19 L-20 L-21 L-22 L-23
1 2 408.25 448.62 430.73 426.14 421.71 41269 390.37 363.46
2 3 349.93 38453 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61

aFor simplicity, the base apparent powss (MVA) and base voltagd/, (kV) are chosen so base impedarig satisfiesZ, = V.2/S, = 1.
bTotal number of nodes

CSoft penalty weightr for voltage angle differences

dUpper limit PkUm (in MWs) on the magnitude of real power flow in brankm

®ReactanceXy,,, (in ohms) for branchkm

fL-H: Load (in MWs) for hour H, where H=00,01,...,23



