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Abstract—This study investigates the complicated nonlinear
effects of demand-bid price sensitivity and supply-offer price caps
on Locational Marginal Prices (LMPs) for bulk electric power
when profit-seeking generators can learn over time how to strate-
gize their supply offers. Systematic computational experiments
are conducted using AMES, an open-source agent-based test bed
developed by the authors. AMES models a restructured wholesale
power market operating through time over an AC transmission
grid subject to line constraints, generation capacity constraints,
and strategic trader behaviors.

Index Terms—Restructured wholesale power markets, agent-
based test bed, locational marginal prices, demand-bid price
sensitivity, supply-offer price caps, learning, strategic pricing, ca-
pacity withholding, market power, price spiking, price volatility,
AMES, MISO market protocols

I. I NTRODUCTION

I N April 2003 the U.S. Federal Energy Regulatory Commis-
sion issued a white paper [2] proposing a template for the

restructuring of U.S. wholesale power markets, referred to as
the Wholesale Power Market Platform (WPMP) . As detailed
in [3], versions of the WPMP have been implemented (or
scheduled for implementation) in the midwest (MISO), New
England (ISO-NE), New York (NYISO), the mid-atlantic states
(PJM), California (CAISO), the southwest (SPP), and Texas
(ERCOT).

A core design element of the WPMP is a two-settlement
system to be managed by an independent system operator
(ISO). Roughly, a “two-settlement system” refers to the com-
bined workings of a day-ahead energy market and a real-time
energy market that are separately settled each day by means
of Locational Marginal Pricing (LMP). Under LMP, a separate
price for power is determined at each node of the transmission
grid at which power is injected or withdrawn.

As envisioned in the WPMP, and implemented in practice,
the day-ahead market is structured as a double auction. Load-
serving entities (buyers) are permitted to submit demand bids
that include price-sensitive hourly demands, and generators
(sellers) are permitted to submit supply offers that include
price-sensitive hourly supplies.

In actuality, however, the day-ahead market effectively
functions as a one-sided auction because the bulk of the
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demand takes the form of fixed hourly loads (i.e., load profiles)
implying essentially vertical demand curves. A key difficulty
is that downstream retail markets are still largely regulated
with cost-based pricing, so that load-serving entities in fact
have little incentive to submit price-sensitive demand bids. As
demonstrated in [4] using human-subject experiments, and in
[5] using computational agent experiments, under this scenario
electric power generators can easily learn to tacitly collude on
reported supply offers higher than true marginal costs. The
result is dramatically higher LMPs, hence substantially higher
market operation costs.

In this study we use an agent-based test bed – AMES (V2.0)
– to investigate how demand-bid price sensitivity and supply-
offer price caps affect dynamic wholesale power market per-
formance, with a particular stress on LMP response. AMES
implements a wholesale power market operating through time
over an AC transmission grid in accordance with core WPMP
design features as implemented by the MISO [6].1

In particular, the AMES Load-Serving Entities (LSEs) and
generators report daily demand bids and supply offers to the
AMES ISO for the day-ahead market. The LSEs’ demand bids
are mixtures of fixed (price-insensitive) demands and price-
sensitive demands.2 The generators’ reported supply offers
consist of price-sensitive marginal cost functions defined over
operating capacity intervals.

The AMES ISO uses these daily reported bids and offers to
determine hourly LMPs and commitment levels for the next
day as solutions to hourly DC optimal power flow problems.
The AMES generators use their daily settlement payments for
the day-ahead market to adjust their daily reported supply
offers via reinforcement learning. The AMES ISO has the
option to impose a price cap on reported supply offers in
an attempt to mitigate the exercise of market power by
generators.3

Section II provides a fuller description of the main features
of AMES (V2.0). Section III explains the AMES experimental
design used to determine dynamic market performance under
systematically varied settings for the following three treatment
factors: (a) the degree to which demand bids are price sensitive

1AMES is an acronym for Agent-based Modeling of Electricity
Systems. See Sun and Tesfatsion [5] for a detailed description of
an earlier version of AMES (V1.3). Downloads, manuals, and tuto-
rial information for all AMES version releases can be accessed at
http://www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm .

2The actual ratio of cleared price-sensitive demand to cleared fixed demand
in the MISO is currently very small (about 1%).

3The MISO currently imposes a price cap on supply offers only under
extreme conditions. Consequently, this price cap is more of a “damage control”
device than a device for controlling market power.
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(0 to 100%); (b) the level of the supply-offer price cap (infinite,
high, moderate, or low); and (c) the absence or presence of
generator learning capabilities. Dynamic market performance
is measured in terms of six average outcome variables: average
LMP; average total demand; average market operational cost;
average market power (as measured by the Lerner Index);
average LMP spiking; and average LMP volatility range.4

Experimental findings for dynamic market performance are
reported in Section IV. For example, with generator learning,
starting from an all-fixed-demand benchmark, average LMP
is shown to increase with small increases in price sensitivity
before declining monotonically. Also, with generator learning,
starting from a no-price-cap benchmark, it is shown that the
imposition of a binding supply-offer price cap can increase
average LMP spiking and volatility even though average LMP
is reduced.

Concluding remarks are given in Section V. Technical
definitions and calculations for average outcome variables are
provided in Appendix A.

II. OVERVIEW OF THE AMES TEST BED

As detailed in Li et al. [1], AMES (V2.0) incorporates in
simplified form various core features of the WPMP market
design as implemented in the MISO. A summary of these
core features is as follows:

• The AMES wholesale power market operates over an
AC transmission grid starting on day 1 and continu-
ing through a user-specified maximum day (unless the
simulation is terminated earlier in accordance with a
user-specified stopping rule). Each dayD consists of 24
successive hoursH = 00, 01, ...,23.

• The AMES wholesale power market includes an Indepen-
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSEs) and
generators distributed across the nodes of the transmis-
sion grid.

• The ISO undertakes the daily operation of a day-ahead
market settled by means of locational marginal prices
(LMPs). The binding financial contracts determined in the
day-ahead market are carried out as planned (no shocks
to the system), hence traders have no need to engage in
real-time (spot) market trading.

• During the morning of each dayD, each LSE reports
a demand bid to the ISO for the day-ahead market for
day D+1. Each demand bid consists of two parts: a
fixed demand bid (i.e., a 24-hour load profile); and 24
price-sensitive demand bids (one for each hour), each
consisting of a linear-affine inverse demand function
defined over a purchase capacity interval. LSEs have no
learning capabilities; LSE demand bids are user-specified
at the beginning of each simulation run.

• During the morning of each dayD, each generator reports
one supply offer to the ISO to be used for all hours of the

4For brevity, this conference study focuses on average effects. Detailed
distributional effects are reported and examined in Li et al. [1].

Fig. 1. AMES test bed architecture (agent hierarchy)

day-ahead market for dayD + 1.5 Each reported supply
offer consists of a price-sensitive linear-affine marginal
cost function defined over an operating capacity interval.

• After receipt of these demand bids and supply offers
during the morning of dayD, the ISO determines and
publicly reports hourly power supply commitments and
LMPs for the day-ahead market for dayD + 1 as the
solution to hourly bid/offer-based DC optimal power flow
problems.

• At the end of each dayD, the ISO settles all of the
commitments for the day-ahead market for dayD +1 on
the basis of the LMPs for the day-ahead market for day
D + 1.

• Each generator uses its dayD settlement payment to
adjust, via reinforcement learning, its choice of a supply
offer to be reported to the ISO on dayD + 1 for
the day-ahead market for dayD + 2. Generators can
adjust the ordinates/slopes of their reported marginal
cost functions and/or the upper limits of their reported
operating capacity intervals.

• Transmission grid congestion in the day-ahead market is
managed via the inclusion of congestion components in
LMPs.

• Each LSE and generator has an initial holding of money
that changes over time as it accumulates profit earnings
and losses.

• There is no entry of traders into, or exit of traders from,
the AMES wholesale power market. LSEs and generators
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

Figure 1 schematically depicts the current architecture of
the AMES test bed by solid lines. Key elements planned but
not yet incorporated are indicated by dashed lines.

As explained more carefully in Sun and Tesfatsion [5], the
AMES ISO computes hourly LMPs and power commitments
for the day-ahead market by solving bid/offer-basedDC Opti-
mal Power Flow (OPF) problems that approximate underlying

5In the MISO [6], generators each day are actually permitted to report
a separate supply offer for each hour of the day-ahead market. In order to
simplify the learning problem for generators, the current version of AMES
restricts generators to the daily reporting of only one supply offer for the day-
ahead market. Interestingly, the latter restriction is imposed on generators by
the ISO-NE [7] in its particular implementation of the WPMP. Baldick and
Hogan [8, pp. 18-20] conjecture that imposing such limits on the ability of
generators to report distinct hourly supply offers could reduce their ability to
exercise market power.
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Fig. 2. Schematic depiction of the three core AMES test bed components:
Learning module; DC-OPF solver, and Graphical User Interface (GUI)

AC-OPF problems. To handle this computation, we have
developed an accurate and efficient DC-OPF solver,DCOPFJ,
consisting of a strictly convex quadratic programming solver
wrapped in an outer SI-pu data conversion shell (Sun and
Tesfatsion [9]). The AMES ISO solves its DC-OPF problems
by invoking DCOPFJ.

Generator learning is implemented in the AMES test bed
by a reinforcement learning module,JReLM, developed by
Gieseler [10]. JReLM can implement a variety of different
reinforcement learning methods, permitting flexible represen-
tation of trader learning within this family of methods.

AMES also has a graphical user interface (GUI) with
separate screens for carrying out the following functions: (a)
creation, modification, analysis and storage of case studies; (b)
initialization and editing of the attributes of the transmission
grid; (c) initialization and editing of the attributes of LSEs
and generators; (d) specification of the learning method for
generators; (e) specification of simulation controls (e.g., the
simulation stopping rule); and (f) customizable output reports
in the form of both table and chart displays.

DCOPFJ, JReLM, and the GUI are the core components
supporting the current implementation of the AMES test bed.
This implementation is schematically depicted in Figure 2.

III. EXPERIMENTAL DESIGN

This section develops an experimental design to explore dy-
namic market performance under systematically varied settings
for demand-bid price sensitivity, the supply-offer price cap,
and generator learning capabilities. As the basic foundation for
this experimental design, we consider the 5-node transmission
grid configuration depicted in Figure 2.

Originally due to John Lally [11], this transmission grid
configuration is now used extensively in ISO-NE/PJM training
manuals to derive DC-OPF solutions at a given point in time

conditional on variously specified generator attributes, LSE
loads, and transmission grid reactances and line limits. An
implicit assumption in these derivations is that the ISO knows
the true attributes of the LSEs and generators. No mention
is made of the possibility that LSEs and generators in real-
world ISO-managed wholesale power markets might learn to
exercise market power over time through strategic reporting
of their attributes.

Our experimental design extends these static training cases
both dynamically and strategically. The LSEs and generators
repeatedly report demand bids and supply offers into the day-
ahead market over time. Moreover, we examine what happens
when generators are permitted to have learning capabilities
enabling them to strategically adjust their reported supply
offers on the basis of past profit earnings.

We start by considering thedynamic 5-node benchmark case
presented in Table I. This benchmark case is characterized
by 100% fixed demand (no price sensitivity), the absence of
any supply-offer price cap, and the absence of any strategic
learning on the part of generators (i.e., reported supply offers
convey true cost and capacity attributes). The transmission
grid configuration, reactances, locations of the generators and
LSEs, and initial hour-0 load levels in Table I are taken from
Lally [11]. The general shape of the LSE load profiles is
adopted from a 3-node example presented in Shahidehpour
et al. [12, p. 296-297].

For each dayD, the demand bid reported by LSEj for
each hourH of the day-ahead market in dayD + 1 consists
of a fixed demand bidpF

Lj(H) (in MWs) and a price-sensitive
demand bid function

Dj(pS
Lj(H)) = cj(H) − 2dj(H) · pS

Lj(H) (1)

defined over apurchase capacity interval

0 ≤ pS
Lj(H) ≤ SLMaxj(H) . (2)

In (1), the termDj(pS
Lj(H)) denotes LSEj’s true reservation

value for pS
Lj(H), i.e., the maximum dollar amount it is truly

willing to pay (per MWh) for the additional powerpS
Lj(H)

(in MWs). The parameter valuescj(H) anddj(H) in (1) are
required to be nonnegative.

Also, for each dayD, the supply offer reported by generator
i for use in every hour of the day-ahead market for dayD +1
consists of a reported marginal cost function

MCR
i (pGi(D)) = aR

i (D) + 2bR
i (D) · pGi(D) (3)

defined over a reportedoperating capacity interval

0 ≤ pGi(D) ≤ CapRU
i (D) . (4)

In (3) the termMCR
i (pGi(D)) denotes generatori’s reported

reservation value for pGi(D), i.e., the minimum dollar pay-
ment it reports it is willing to accept (per MWh) for the power
supply pGi(D) (in MWs). The parameter valuesaR

j (D) and
bR
j (D) in (3) are required to be nonnegative.
Generatori learns over time how to strategically report its

daily supply offers based on the profit earnings it has obtained
from its past supply offer choices. In particular, the parameter
values (aR

i (D), bR
i (D), CapRU

i (D)) that generatori reports
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Fig. 3. Illustration of the construction of the R ratio for measuring relative
demand-bid price sensitivity

on any given day D can deviate from its true supply offer
parameter values (ai, bi, CapUi ).

In this study the primary treatment factor we consider is
the ratioR of maximum potential price-sensitive demand to
maximum potential total demand. More precisely, for each
LSE j and each hourH, let

Rj(H) =
SLMaxj(H)
MPTDj(H)

(5)

where SLMaxj(H) denotes LSEj’s maximum potential
price-sensitive demand in hourH as measured by the upper
bound of its purchase capacity interval (2), and

MPTDj(H) = [pF
Lj(H) + SLMaxj(H)] (6)

denotes LSEj’s maximum potential total demand in hourH
as the sum of its fixed demand and its maximum potential
price-sensitive demand in hourH. The construction of the R
ratio is illustrated in Figure 3.

We start with an experimental treatment in which all of
the R-values in (5) are set equal toR = 0.0 for each LSE
j and each hourH (the pure fixed-demand case). We then
systematically increaseR by tenths, ending with the value
R = 1.0 (the pure price-sensitive demand case). A positive
R value indicates that the LSEs are able to exercise at least
some degree of price resistance.

The maximum potential price-sensitive demands
SLMaxj(H) for each LSE are thus systematically increased
across experiments. However, we control for confounding
effects arising from changes in overall demand capacity as
follows: For each LSEj and each hourH, the denominator
valueMPTDj(H) in (6) is held constant across experiments
by appropriate reductions in the fixed demandpF

Lj(H) as
SLMaxj(H) is increased. Specifically,MPTJj(H) is set
equal across all experiments to the hour-H fixed-load level
L-H reported for LSEj in Table I.

Moreover, we also control for confounding effects arising
from changes in demand-bid functional forms. The demand-
bid ordinate and slope parameter values{(cj(H), dj(H)) :
H = 00, . . . , 23} for each LSE j are held fixed across
experiments; see Li et al. [1] for the precise values used.

The second treatment factor explored in this study is PCap
($/MWh), an ISO-imposed supply-offer price cap. In experi-
ments in which PCap is imposed, generators are not permitted
to report marginal costs (reservation values) that rise above

PCap. Consequently, the generators report supply offers such
that their reported marginal costs at the upper limitsCapRU

of their reported operating capacity intervals do not exceed
PCap. The following four values are tested for PCap: (a)
an effectively infinite value (no PCap); (b) a “high” value
($120/MWh); (c) a “moderate” value ($100/MWh); and (d)
a “low” value ($80/MWh).

The third treatment factor briefly explored in this study
is generator learning capabilities. In each experiment we
impose one of two treatments: (a) generators have no learning
capabilities, hence they always report supply offers to the
ISO that reflect their true cost and capacity conditions; or
(b) generators have reinforcement learning capabilities that
they use to strategically adjust their reported supply offers
over time. For a careful description of the precise algorithmic
representation used for generator learning, see Li et al. [1].

IV. REPORT OFKEY FINDINGS

This section uses the experimental design outlined in Sec-
tion III to test the effects of changes in demand-bid price-
sensitivity, supply-offer price caps, and generator learning on
dynamic market performance as measured by the following
six average outcome variables: Avg LMP; Avg Total Demand;
Avg Op Cost (operational cost); Avg LI (Lerner Index); Avg
LMP Spiking; and Avg LMP Volatility Range. The technical
definitions and calculations of these average outcome variables
are discussed in Appendix A.

Table II reports experimental findings for average outcomes
under alternative settings for R (relative demand-bid price
sensitivity) in the absence of a supply-offer price cap and with
no generator learning. Table III repeats these experiments for
the case in which generators have learning capabilities and
hence learn to report strategic supply offers to the ISO over
time.

TABLE II
AVERAGE EFFECTS OFR CHANGES WITH NO SUPPLY-OFFER PRICE CAP

(NO PCAP) AND NO GENERATOR LEARNING

R Avg LMP Avg Total Demand Avg Op Cost Avg LI

0.0 25.18 318.21 3779.17 0.0056
0.1 24.51 299.19 3439.32 0.0042
0.2 23.92 279.69 3100.91 0.0036
0.3 23.33 259.85 2765.58 0.0032
0.4 22.72 240.18 2446.54 0.0029
0.5 22.10 220.88 2143.65 0.0026
0.6 21.35 204.09 1888.46 0.0022
0.7 20.49 188.67 1662.19 0.0013
0.8 19.49 175.74 1481.15 0.0000
0.9 18.27 169.68 1408.55 0.0000
1.0 17.04 163.87 1349.49 0.0000

As seen in Table II, in the absence of generator learning an
incremental increase in R starting from the benchmark case
R=0.0 (no price-sensitive demand) has the usual intuitively-
expected effects: Avg LMP, Avg Total Demand, Avg Op Cost,
and Avg LI all monotonically decline with increases in R.

Indeed, except for the presence of grid congestion between
node 1 and node 2 and a binding operating-capacity constraint
on generator 3 for the cases in which Avg Total Demand
is relatively high, all of the Avg LI outcomes in Table II



5

TABLE III
AVERAGE EFFECTS(WITH STANDARD DEVIATIONS) OF R CHANGES WITH

NO PCAP AND WITH GENERATOR LEARNING

R Avg LMP Avg Total Demand Avg Op Cost Avg LI

0.0 70.10 318.21 9198.63 0.5692
(3.14) (0.00) (125.88) (0.01)

0.1 73.84 286.39 8450.26 0.5755
(3.24) (0.00) (444.20) (0.01)

0.2 81.46 254.57 7629.94 0.5933
(2.85) (0.05) (298.22) (0.01)

0.3 72.67 223.84 5501.09 0.5433
(3.02) (1.14) (228.62) (0.01)

0.4 39.43 198.70 3300.37 0.4341
(1.16) (2.03) (172.36) (0.01)

0.5 35.75 170.75 2717.73 0.4185
(0.48) (2.42) (157.73) (0.01)

0.6 33.52 155.47 2259.65 0.3660
(0.41) (2.86) (135.01) (0.01)

0.7 28.73 145.84 1877.91 0.2815
(0.60) (4.23) (151.64) (0.01)

0.8 26.75 133.99 1627.45 0.2547
(0.54) (4.96) (157.23) (0.01)

0.9 25.09 120.17 1388.31 0.2342
(0.51) (5.43) (132.60) (0.01)

1.0 23.23 108.51 1184.18 0.2078
(0.48) (5.80) (125.88) (0.01)

would be zero. Generators have no learning capabilities and
are reporting their true cost and capacity conditions to the ISO
each day, hence they are not making any deliberate efforts to
exercise market power. Rather, as explained more carefully in
Li et al. [1], the grid congestion is causing some separation
of LMP values both from each other (cross-sectionally across
the grid) and from generator marginal costs, and the binding
operating-capacity constraint causes separation of generator
marginal costs from each other. Both effects result in non-zero
values for Avg LI.

Comparing the no-learning Table II results to the results
with generator learning reported in Table III, it is seen that
generator learning has strong effects on average outcomes.
With generator learning, Avg LMP, Avg Op Cost, and Avg LI
are all dramatically higher for every level of R even though
Avg Total Demand is lower. The reason is that the profit-
seeking generators quickly learn to tacitly collude on higher-
than-true reported marginal costs even when demand bids are
fully price sensitive (R=1.0) and the generators are competing
for limited demand.

Moreover, with generator learning, Avg LMP and Avg
LI exhibit a counterintuitive behavior: as R is incrementally
increased from R=0.0 (no price-sensitive demand) to R=0.2
(some price-sensitive demand), both Avg LMP and Avg LI
actually increase. These initial increases occur even though
Avg Total Demand and Avg Op Cost are monotonically
declining. From a policy standpoint, it is interesting to note
that the current R ratio is about 0.01 for the MISO [6].

As explored more fully in Li et al. [1], these initial increases
in Avg LMP and Avg LI appear to be robust phenomena
that arise from complicated interactions between learning and
network effects. The “critical R value” R* at which Avg
LMP and Avg LI exhibit a turning point from increasing
to decreasing depends on other maintained parameter value
settings. For example, R* varies systematically with changes in

the c-values (ordinates) of the LSEs’ price-sensitive demand-
bid functions.

TABLE IV
AVERAGE LMP EFFECTS(WITH STANDARD DEVIATIONS) OF CHANGES IN

PCAP WITH NO DEMAND-BID PRICE SENSITIVITY(R=0.0)

No PCap PCap=120 PCap=100 PCap=80

Avg LMP with 25.18 25.18 25.18 25.18
no gen learning

Avg LMP with 70.10 65.72 58.00 54.96
gen learning (3.14) (4.01) (1.51) (2.41)

Table IV reports Avg LMP outcomes under four alternative
scenarios for PCap, the supply-offer price cap. For the subse-
quent interpretation of these findings, it is important to recall
from Section III that PCap is a price cap on generator-reported
marginal costs andnot on LMPs per se. In the presence of
congestive grid conditions, LMPs can separate from generator-
reported marginal costs and hence from PCap.

None of the three numerical PCap values in Table IV is
binding in the absence of generator learning, hence the Avg
LMP outcome$25.18/MWh with no generator learning pro-
vides a common benchmark value.6 However, with generator
learning, each of these three PCap values results in an Avg
LMP outcome that differs from the Avg LMP outcome with
no price cap. This indicates that these three PCap levels are
binding on generator-reported marginal costs. More precisely,
a binding PCap level means that one or more generators have
been forced to reduce the ordinate/slope values and/or the
upper operating capacity limits of the supply offers they report
to the ISO.

As intuitively expected, Avg LMP monotonically decreases
as PCap is decreased in increments from an effectively infinite
value (No Price Cap) to a low value ($80/MWh). Due to learn-
ing and network effects, however, the relationship between
PCap and LMP outcomes is more complicated than indicated
by this Avg LMP effect.

In particular, note in Table IV that Avg LMP with no price
cap is$70.10/MWh whereas Avg LMP for PCap=$120/MWh
is only $65.72./MWh. This finding indicates that the high
PCap level$120/MWh is binding on the generators’ reported
marginal costs even though this PCap level is substantially
higher than the resulting value$65.72/MWh for Avg LMP. A
similar comment holds for the remaining two PCap levels.

The explanation for this finding is that the distribution of
LMPs across the 24 hours of a day can exhibit substantial spik-
ing and volatility that are obscured when only daily Avg LMP
outcomes are considered. For example, as shown in Figure 4,
the maximum LMP value attained during peak demand hours
can be sustantially higher than Avg LMP calculated across all
24 hours. Thus, the imposition of a price cap can be a binding
constraint on generator-reported marginal costs during peak
demand hours even if not in other hours. Since generators are
only permitted to report one supply offer per day, a binding
constraint on reported marginal costs during peak demand

6As shown in Li et al. [1], in the no-learning case the price cap level PCap
only becomes binding on generator-reported marginal costs when it drops
below $35.40/MWh.
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Fig. 4. Average hourly LMPs during the final market day under alternative
supply-offer price caps with no demand-bid price sensitivity (R=0.0) and with
generator learning

Fig. 5. Average LMP spiking and volatility range effects of supply-offer
price caps with no demand-bid price sensitivity (R=0.0) and with generator
learning

hours translates into a binding supply-offer constraint for every
hour.

Moreover, as examined at much greater length in Li et
al. [1], the introduction of a binding PCap level can in some
cases worsen LMP spiking and volatility while in other cases
LMP spiking and volatility are dampened. For example, as
seen in Figure 5 for the tested scenario with no demand-
bid price sensitivity (R=0.0) and with generator learning, the
introduction of the strongly binding PCap level$80/MWh
increases both spiking and volatility whereas the introduction
of the more moderately binding PCap level$100/MWh has
the opposite effect.

V. CONCLUDING REMARKS

Restructured wholesale power markets are complex systems
encompassing nonlinear physical constraints, complicated in-
stitutional arrangements, and the behavioral dispositions of
potentially strategic human participants. To be compelling and
useful, studies of such systems must take all three elements
into proper account. As carefully discussed in [8], this has
proved to be extremely difficult to accomplish using standard
analytical and statistical tools.

In this study we demonstrate the potential usefulness of
an agent-based test bed, AMES, for the exploratory study
of restructured wholesale power markets operating through
time over an AC transmission grid subject to line constraints,
generator capacity constraints, and strategic trader behaviors.
AMES was first released as open-source software at the IEEE
PES General Meeting (June 2007) and is available at the

website of the IEEE Task Force on Open-Source Software
(http://ewh.ieee.org/cmte/psace/CAMStaskforce/index.htm).

In particular, we conduct systematic experiments with
AMES to determine the complex effects of changes in
demand-bid price sensititivity, supply-offer price caps, and
generator learning on wholesale power market performance –
in particular, on dynamic LMP response — due to potentially
congestive grid conditions and to potentially binding capacity
constraints on power generation. A more detailed study of
LMP spiking and volatility patterns in response to systematic
changes in these treatment factors is provided in Li et al. [1].

APPENDIX A
CALCULATION OF AVERAGE EFFECTS

This appendix explains the definition and calculation of the
average outcome effects reported in Section IV.

Thirty runs were conducted for each treatment factor con-
figuration corresponding to 30 different random seeds. These
seeds were generated using the standard Java “random” class.
See Li et al. [1] for a listing of these seed values.

Each run terminates at a “final day” determined in accor-
dance with the following stopping rule: Either end at day
100 or end at the earliest day for which each generator has
converged to the choice of a single reported supply offer with
probability at least 0.999. For each calculation below, only the
final-day data for each run are used. Note, however, that this
final-day data consists of scheduled hourly outcomes for the
24 hours of the day-ahead market on the subsequent day.

Also, for the reported findings in Table IV and Figs. 4
and 5 with an imposed PCap, with no demand-bid price
sensitivity (R=0.0), and with generator learning, an occasional
inadequacy event occurred in a small number of runs around
the peak-demand hour 17 in that total generator reported ca-
pacity was insufficient to meet total fixed demand.7 These few
runs/hours are excluded from the averages calculated below,
but for expositional simplicity we ignore this complication in
the calculation descriptions.

Avg LMP ($/MWh) is calculated as follows. First, for
each transmission grid node and each hour, determine the
average hourly LMP across all 30 runs. Second, for each
hour, determine the average of these run-averaged hourly
LMP values across all five nodes. Finally, average these node-
averaged and run-averaged hourly LMP values across all 24
hours to get Avg LMP.

Avg Total Demand (MWs) is calculated as follows. First,
for each of the three LSEs and for each hour, determine the
LSE’s average cleared (satisfied) price-sensitive demand across
all 30 runs. Second, for each LSE and each hour, add the LSE’s
fixed demand and average cleared price-sensitive demand to
get the LSE’s average total demand. Third, for each hour, sum
these LSE average total demands across the three LSEs to get
average total demand. Finally, average these hourly average
total demands across all 24 hours to get Avg Total Demand.

7As discussed in Li et al. [1], inadequacy events are an important hidden
cost of price caps, since in practice they would require special actions to be
taken by the ISO (e.g., reserve procurement, load shedding). AMES (V2.0)
reports a tick-count of inadequacy events. Future versions of AMES will
incorporate adequacy protection procedures based on empirical ISO practices.
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Avg Op Cost (ISO market operational cost,$/h) is calculated
as follows. First, for each of the five generators and for
each hour, determine the average total variable cost of the
generator across all 30 runs based on the generator’sreported
supply offer and subsequent hourly power commitment levels
as determined by the ISO.8 Second, for each hour, deter-
mine the average of these run-averaged total variable cost
calculations across all five generators. Third, average these
generator-averaged and run-averaged hourly total variable cost
calculations across all 24 hours to get Avg Op Cost.

The Lerner Index for any generatori supplying a positive
amount of power PGi is defined as follows:

LI i(PGi) =

[
LMPk(i) − MCi(PGi)

]

LMPk(i)
. (7)

In (7), k(i) denotes the nodal location of generatori, LMPk(i)

denotes the LMP at nodek(i), and MCi(PGi) denotes gener-
ator i’s true marginal cost of supplying PGi.

Avg LI (pure number) is calculated as follows. First, for
each run, for each hour, and for each generatori with a positive
power commitment PGi for this run and hour, determine
the generator’s Lerner Index (7). Second, for each hour and
for each generator, determine the average of this generator’s
Lerner Indices across all of the runs for which he had a
positive power commitment for this hour. Third, for each hour,
determine the average of these run-averaged Lerner Indices
across all generators who were committed during this hour
for at least one run. Finally, determine the average of these
generator-averaged and run-averaged Lerner Indices across all
24 hours to get Avg LI.

The Lerner Index is a simple commonly-used measure of
market power in electricity and other markets, but it has severe
drawbacks as well. A more careful examination of market
power in relation to demand-bid price sensitivity and supply-
offer price caps is provided in Li et al. [1].

The Avg LMP Spiking ($/MWh) depicted in Figure 5 is
calculated as follows. First, for each run and for each of the
five transmission grid nodes, calculate nodal LMP spiking as
the maximum absolute difference between successive hourly
LMPs across all 24 hours. Second, for each node, determine
the average of these nodal LMP spiking measures across all
30 runs. Third, determine the average of these run-averaged
nodal LMP spiking measures across all five nodes to get Avg
LMP Spiking.

The Avg LMP Volatility Range ($/MWh) depicted in Fig-
ure 5 is calculated as follows. First, for each run and for
each of the five transmission grid nodes, calculate the nodal
LMP volatility range as [maxLMP-minLMP] across all 24
hours. Second, for each node, determine the average of these
nodal LMP volatility range measures across all 30 runs.
Third, determine the average of these run-averaged nodal LMP
volatility range measures across all five nodes to get the Avg
LMP Volatility Range.

8That is, these average total variable cost calculations are made by the ISO
using the marginal cost functionsreported by generators to the ISO as part
of their reported supply offers, because these are the functions actually used
by the ISO in its DC-OPF problems in an attempt to achieve efficient power
commitment levels. The ISO does not know the generators’ true marginal cost
functions.
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TABLE I
INPUT DATA FOR THE DYNAMIC 5-NODE BENCHMARK CASE: NO DEMAND-BID PRICE SENSITIVITY(R=0.0);NO SUPPLY-OFFER PRICE CAP(NO PCAP);

AND NO GENERATOR LEARNING

Base Valuesa

So Vo

100 10

Kb πc

5 0.05

Branch
From To lineCapd Xe

1 2 250.0 0.0281
1 4 150.0 0.0304
1 5 400.0 0.0064
2 3 350.0 0.0108
3 4 240.0 0.0297
4 5 240.0 0.0297

Gen ID atNode FCost a b CapL CapU Init$
1 1 1600.0 14.0 0.005 0.0 110.0 $1M
2 1 1200.0 15.0 0.006 0.0 100.0 $1M
3 3 8500.0 25.0 0.010 0.0 520.0 $1M
4 4 1000.0 30.0 0.012 0.0 200.0 $1M
5 5 5400.0 10.0 0.007 0.0 600.0 $1M

LSE
ID atNode L-00f L-01 L-02 L-03 L-04 L-05 L-06 L-07
1 2 350.00 322.93 305.04 296.02 287.16 291.59 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 249.93 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33
ID atNode L-08 L-09 L-10 L-11 L-12 L-13 L-14 L-15
1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83
ID atNode L-16 L-17 L-18 L-19 L-20 L-21 L-22 L-23
1 2 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46
2 3 349.93 384.53 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61

aFor simplicity, the base apparent powerSo (MVA) and base voltageVo (kV) are chosen so base impedanceZo satisfiesZo = V 2
o /So = 1.

bTotal number of nodes
cSoft penalty weightπ for voltage angle differences
dUpper limit P U

km (in MWs) on the magnitude of real power flow in branchkm
eReactanceXkm (in ohms) for branchkm
fL-H: Load (in MWs) for hour H, where H=00,01,...,23


