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Abstract— This study reports on the model development and operates over a realistically rendered transmission grid. To our
open-source implementation (in Java) of an agent-based compu- knowledge, AMES is the first non-commercial open-source

tational wholesale power market organized in accordance with framework permitting the computational study of the WPMP
core FERC-recommended design features and operating over a design

realistically rendered transmission grid. The traders within this ) ) ]
market model are strategic profit-seeking agents whose leaming ~ We are currently using the AMES framework to investigate
behaviors are based on data from human-subject experiments. the intermediate-term performance of wholesale power mar-

Our key experimental focus is the complex interplay among kets operating under the WPMP market design. In particular,

_structur_al conditions, market protocols, and learning behaviors we are exploring the extent to which this design is capable of
in relation to short-term and longer-term market performance.

Findings for a dynamic 5-node transmission grid test case are SUPPOrting the efficient, profitable, and sustainable operation
presented for concrete illustration. over time of existing generation and transmission facilities,

despite possible attempts by some market participants to
gain individual advantage through strategic pricing, capacity
withholding, and induced transmission congestion.

In April 2003 the U.S. Federal Energy Regulatory Commis- To illustrate concretely the potential usefulness of the
sion proposed th#/holesale Power Market Platform (WPMP)AMES framework for this purpose, experimental findings are
as a template for all U.S. wholesale power markets (FER@ported below for a dynamic extension of a static five-node
[1]). This design recommends the operation of wholesajgansmission grid test case used extensively for training pur-
power markets by Independent System Operators (ISOs)gyses by the ISO-NE and PJM. In the static training case, the
Regional Transmission Organizations (RTOs) using locationgénerators are assumed to report their true cost and production
marginal pricing to price energy by the location of its injectiogapacity attributes to the ISO; the possibility that generators
into or withdrawal from the transmission grid. Versions ofmight engage in strategic reporting behavior is not considered.
this design have been implemented in New England (ISGh contrast, the AMES generators use reinforcement learning
NE), New York (NYISO), the mid-Atlantic states (PJM),to decide the exact nature of the supply offers (marginal cost
the Midwest (MISO), and the Southwest (SPP), and adoptgghctions and production intervals) that they daily report to the
for implementation in California (CAISO). Joskow [2, p. 6]JAMES ISO for use in the WPMP day-ahead market. We show
reports that ISO/RTO operated energy regions now inclugigat all of the AMES generators learn over time to implicitly
over 50% of the generating capacity in the U.S. collude on the reporting of higher-than-true marginal costs,

The complexity of the WPMP market design has madeus considerably raising total variable costs of operation at
it extremely difficult to undertake economic and physicghe ISO-determined “optimal” solutions.
reliability studies of the design using standard statistical andQur long-run goal is to develop AMES into a framework
analytical tools. Strong opposition to the market design thisat rings true to industry participants and policy makers and
persists among some industry stakeholders due in part tqhat can be used as a research and training tool. We envi-
perceived lack of sufficient performance testing. sion academic researchers and teachers using this framework

In recent years, however, powerful new agent-based cofg- increase their qualitative understanding of the dynamic
putational tools have been developed to analyze this degigeration of restructured wholesale power markets. Industry
of complexity. The present study reports on the developmegérticipants should be able to use the framework to familiarize
and implementation of an agent-based framework for testifigemselves with market rules and to test business strategies.
the dynamic efficiency and reliability of the WPMP markejnd policy makers should find the framework useful for
design. This framework — referred to AMES (Agent-based conducting intensive experiments to explore the performance

Modeling of Electricity Systems) — models strategic tradergf actual or proposed market designs from a social welfare
interacting over time in a wholesale power market that igewpoint.

organized in accordance with core WPMP features and that
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The AMES framework currently incorporates in stylized

World

form several core elements of the WPMP market design as T
implemented by the New England Independent System Oper- . I |

ator (ISO-NE) and the Midwest Independent System Operator B -
(MISO), respectively. By adhering closely to the architecture T [y Commitment
of these regional energy markets, we have been able to take [[suwes | [ setirs Setement
advantage of the business practice manuals, training guides,
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and reports publicly released by the ISO-NE [3] and the MISO Ljd Gm‘fm ;-75::fr_-1-_-_: _DT_R:._}_E?};_'
[4] for use by their market participants. These publications | o P e T i | i |1 perid |
provide a wealth of specific implementation details missing
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from the more abstract WPMP template. Fig. 1. AMES Architecture (Agent Hierarchy)
The core elements of the WPMP market design that have

been incorporated into the AMES framework to date are as

follows:

Monthly Loop
FTR Market
Daily Loop >

Hourly Loop

The AMES wholesale power market operates over an
AC transmission grid for DMax successive days, with
each day D consisting of 24 successive hours H =
00,01, ...,23.

The AMES wholesale power market includes an Indepen-
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSES) and
Generators distributed across the nodes of the transmis-

D+1 Day-Ahead Market |

Re-Bid Period |
sion grid.
The AMES ISO undertakes the daily operation of the
transmission grid within a two-settlement system con- End

sisting of a Real-Time Market and a Day-Ahead Market,
each separately settled by meandawfational marginal
pricing.

During the afternoon of each day D the AMES ISO

determines power commitments atutational marginal - AMES |SO to help ensure that forecasted loads and reserve
prices (LMPs)for the Day-Ahead Market for day D+1 raqiirements are always met. Figures 1 and 2 schematically

based on Generator supply offers and LSE demand bigigpict the architecture and dynamic flow of this extended
(forward financial contracting) submitted during hours\pes framework.

00 — 11 of day D. As explained more carefully in Sun and Tesfatsion [5], the
At the end of each day D the AMES ISO produces anflyies |SO determines hourly power commitments/dispatch
posts a day D+1 comm|tment sch_edule_for Generatog els and LMPs for the Day-Ahead Market and Real-Time
and LSEs _and settles these financially binding contragig, 1 ¢ by solvingDC Optimal Power Flow (OPFproblems

on the_ basis of day D+1 LMPS' that approximate underlying AC OPF problems. To handle
Any d'ﬁer?‘f_‘ces arising during day Dfl be_tween reakhese aspects, we have developed an accurate and efficient
time conditions and the day-ahead f|nanC|§1I COntr"’“%?rictly convex quadratic programming (SCQP) solver module,
s_ettled at the end of _day D must be settled in the Re%b'uadProgJ wrapped in an outer DC OPF data conversion
Time Market at real-time LMPs for day D+1. shell, DCOPFJ (Sun and Tesfatsion [6]). The AMES 1SO

Transmission _grid cqngest_ion in the Day_-Ahead Ivlark%tolves its DC OPF problems by invoking QuadProgJ through
is managed via the inclusion of congestion componenti-opgj.

in LMPs.

Fig. 2. AMES Dynamic Market Activities: Global View

Trader learning is implemented in the AMES framework

Five additional elements that will subsequently be incorpdy a reinforcement learning moduldReLM developed by
rated into AMES to reflect more fully the dynamic operationdbieseler [7]. JReLM can implement a variety of different
capabilities of the WPMP market design are: f@grket power reinforcement learning methods, permitting flexible repre-
mitigation measures (b) bilateral trading, which permits sentation of trader learning within this family of methods.
longer-term contracting; (c) a market fiimancial transmission In later extensions of AMES, other possible trader learning
rights to permit AMES traders to hedge against transmissianethods (e.g. social mimicry and belief learning) will also be
congestion costs arising in the Day-Ahead Market;qgQurity considered.
constraintsincorporated into the DC OPF problems solved The QuadProgJ/DCOPFJ and JReLM modules for ISO grid
by the AMES ISO for the Real-Time Market and Day-operation and trader learning constitute the core components
Ahead Market as a hedge against system disturbances; aogporting the implementation of the AMES wholesale power
(e) a(Resource Offer) Re-Bid Perioduring each day D as market framework. This implementation is schematically de-
part of a resource adequacy assessment undertaken bypilted in Figure 3.



assumed to report to the ISO their true marginal cost functions

Learning Module: JReLM

\ |
II II and true production limits. Our findings for this no-learning
[ e | [ e ] case, reported in Sun and Tesfatsion [5], reveal the complicated
‘| Buyers | ‘| s | effects _of d_all_y load profiles, tra_nsm_|55|on co_ngestlon, gnd
(ESES) (Generators) production limits on LMP determination over time, even in

Submit bids to ISO Submit offers to ISO
Receive results from ISO Receive results from ISO

the absence of strategic reporting by Generators.
We next ran this dynamic five-node test case under the as-

| ) | sumption that the profit-seeking Generators can report strategic
\ B P o D on . N, \ supply offers to the 1SO. More precisely, the Generators still
i must report their true production limits to the 1SO; but they

L DCOPFY | can now learn over time what marginal cost attributes to report

\ O Raconv ths DO OPF sauen fom QuadProg) | to the ISO in an attempt to increase their profit earnings. Using
u a well-known stochastic reinforcement learning algorithm ex-

‘ SCQP Solver Module: QuadProgJ

plained in detail in Sun and Tesfatsion [5], each profit-seeking
Generator learns over time which marginal cost function to

Fig. 3. Core Module Components of the AMES Framework report to the 1ISO based on the profits it has earned from
previously reported functions.
LSE 3 To control for random effects, outcomes for the learning
@—D Node 5 Node 4 |— .
case are reported below in the form of mean and standard de-

_ viation values obtained for twenty runs using twenty different
seed values. In these twenty runs, all five Generators appear to
“converge” by day 422 to a sharply peaked choice probability
distribution in which a probability of 0.999 is assigned to a
single supply offef. Consequently, all learning outcomes re-

Node 1&9 é Node 21 T | Node3 ported_below are for day 422. Tables Il and Il provide_z d_etailed
v numerical solution values (means and standard deviations) for
LSE1 \SYJLsE2 real power production levels and LMPs on day 422.
Figure 5 displays the (mean) solution values obtained for
Fig. 4. A Five-Node Transmission Grid Configuration production for each of the 24 hours on day 422, along with

the corresponding solution values obtained for day 422 in the
absence of Generator learnihdn the no-learning case, note
I1l. DYNAMIC FIVE-NODE TEST CASE that the “peaker” (high cost) Generator 4 is only dispatched to
Consider a situation in which five Generators and thrgwoduce energy at the peak load hour 17. In the learning case,
LSEs are distributed across a 5-node transmission grid laswvever, Generator 4 is able to use strategic supply offers to
depicted in Figure 4. Originally due to John Lally [8], this five-ensure it is dispatched at approximately its upper production
node transmission grid configuration is now used extensivdiyit (200MWSs) throughout each hour of the day. Also, in
in ISO-NE/PJM training manuals to solve for DC-OPF soluthe no-learning case the “cheap” Generator 5 is regularly
tions at a given point in time conditional on variously specifiedispatched at a high production level during each hour of the
marginal costs and production limits for the Generators amidy, but in the learning case it is backed way down because
variously specified price-insensitive loads for the LSEs. This strategic supply offers make it appear to be a relatively
implicit assumption in these static training exercises is thatore expensive Generator. As detailed in Sun and Tesfatsion
the true cost and true production limits of the Generators df, this heavier reliance on costlier generation in the learning
known. No mention is made of the possibility that Generatorsise approximately triples the total variable cost of operation.
in real-world 1ISO-managed wholesale power markets mightFigure 6 graphically depicts the 24-hour (mean) LMP solu-
learn to exercise market power over time through stratedion values for the learning case along with the 24-hour LMP
reporting of their cost and production attributes. solution values for the no-learning case. Interestingly, although
In this section we illustrate how the AMES wholesaléhe LMPs for the learning case are considerably higher than
power market framework can be used to transform these statie LMPs for the no-learning case, they are also less volatile
training exercises into a more realistic dynamic form witlaround the peak load hour 17. Consequently, the ISO is not
strategically learning Generators. Detailed grid, productioable to use the appearance of price spikes in peak load hours
and load input data for a specific dynamic five-node test cage detect the considerable exercise of market power by the
are provided in Table . learning Generators. Rather, some form of direct auditing of
We first ran this dynamic five-node test case under a “rihe Generators’ cost attributes would seem to be required.

learning” assumption for Generators, i.e. Generators were
2The meanconvergence time across the five Generators was only 62 days.
1The transmission grid configuration, reactances, locations of the Genera2Given the stationarity of the daily load profiles and the Generators’ cost
tors and LSEs, and initial hour-0 load levels in Table | are taken from Lallfunctions and production limits, and the absence of system disturbances, in
[8]. The general shape of the LSE load profiles is adopted from a 3-notte no-learning case the 24-hour outcomes obtained for any one day are the
example presented in Shahidehpour et al. [9, p. 296-297]. same as for any other day.



Fig. 5.

24-Hour Production: No Learning
(Generators Report True MC Functions)
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TABLE |
DyNAMIC 5-NODE TESTCASE— DC OPF SRUCTURALINPUT DATA (SI)

Base Values
So Vo
100 10
K2 P
5 0.05
Branch
From To
1 2
1 4
1 5
2 3
3 4
4 5
Gen ID atNode
1 1
2 1
3 3
4 4
5 5
LSE
ID atNode
1 2
2 3
3 4
ID atNode
1 2
2 3
3 4
ID atNode
1 2
2 3
3 4

lineCap
250.0
150.0
400.0
350.0
240.0
240.0

FCost

1600.0
1200.0
8500.0
1000.0
5400.0

L-0G
350.00
300.00
250.00

L-08
358.86
307.60
256.33

L-16
408.25
349.93
291.61

Xxd
0.0281
0.0304
0.0064
0.0108
0.0297
0.0297

14.0
15.0
25.0
30.0
10.0

L-01
322.93
276.80
230.66
L-09
394.80
338.40
282.00
L-17
448.62
384.53
320.44

b

0.005
0.006
0.010
0.012
0.007

L-02
305.04
261.47
217.89
L-10
403.82
346.13
288.44
L-18
430.73
369.20
307.67

L-03
296.02
253.73
211.44
L-11
408.25
349.93
291.61
L-19
426.14
365.26
304.39

Cap’
110.0
100.0
520.0
200.0
600.0

L-04
287.16
246.13
205.11

L-12
403.82
346.13
288.44

L-20
421.71
361.47
301.22

Init$
$1M
$1M
$1M
$1M
$1M

L-05
291.59
249.93
208.28

L-13
394.80
338.40
282.00

L-21
412.69
353.73
294.78

L-06
296.02
253.73
211.44

L-14
390.37
334.60
278.83

L-22
390.37
334.60
278.83

L-07
314.07
269.20
224.33

L-15
390.37
334.60
278.83

L-23
363.46
311.53
259.61

aTotal number of nodes

bSoft penalty weightr for voltage angle differences
CUpper limit PkUm (in MWSs) on the magnitude of real power flow in brankin

dReactanceXy,,, (in ohms) for branchim

€L-H: Load (in MWs) for hour H, where H=00,01,...,23



TABLE I
LEARNING DYNAMIC 5-NODE TESTCASE— MEANS AND STANDARD DEVIATIONS FOR SOLUTION VALUES (SI) ON DAY 422FORREAL POWER
PRODUCTIONLEVELS (IN MWS)

Hour  p&y  piiP  pgn  pe3P  phs  peP  phy PP phs P
00 110.00 0.00 99.80 0.88 280.40 10.92 189.37 29.60 220.42 21.84
01 109.92 0.36 99.64 1.59 220.92 17.07 185.74 37.25 214.17 28.21
02 109.85 0.67 99.53 2.10 182.18 22.66 182.11 4250 210.73 32.93
03 109.81 0.83 99.47 2.35 163.20 2551 179.72 45.31 208.98 35.57
04 109.78 0.98 99.42 2.60 144.96 28.69 177.50 48.31 206.74 38.51
05 109.80 0.91 99.45 2.48 154.08 27.03 178.61 46.79 207.86 37.00
06 109.81 0.83 99.47 2.35 163.20 2551 179.72 45.31 208.98 35.57
07 109.88 0.52 99.59 1.84 201.60 19.83 184.36 39.92 212.17 30.52
08 110.00 0.00 99.81 0.86 300.60 9.85 190.23 27.16 222.16 19.91
09 110.00 0.00 99.82 0.80 382.48 5.95 193.70 18.22 229.20 12.83
10 110.00 0.00 99.82 0.79 403.03 5.22 194.57 16.43 230.97 11.41
11 110.00 0.00 99.83 0.78 413.12 4.92 195.00 15.65 231.84 10.81
12 110.00 0.00 99.82 0.79 403.03 5.22 194.57 16.43 230.97 11.41
13 110.00 0.00 99.82 0.80 382.48 5.95 193.70 18.22 229.20 12.83
14 110.00 0.00 99.82 0.81 372.38 6.36 193.27 19.19 228.33 13.60
15 110.00 0.00 99.82 0.81 372.38 6.36 193.27 19.19 228.33 13.60
16 110.00 0.00 99.83 0.78 413.12 4.92 195.00 15.65 231.84 10.81
17 110.00 0.00 99.84 0.71 506.19 3.25 197.68 10.36 239.88 7.11
18 110.00 0.00 99.83 0.74 464.70 4.18 197.02 13.32 236.04 9.13
19 110.00 0.00 99.83 0.75 454.09 4.26 196.73 13.57 235.14 9.30
20 110.00 0.00 99.83 0.76  443.90 4.37 196.30 13.91 234.36 9.53
21 110.00 0.00 99.83 0.77 423.24 4.69 195.43 14.97 232.71 10.29
22 110.00 0.00 99.82 0.81 372.38 6.36 193.27 19.19 228.33 13.60
23 110.00 0.00 99.81 0.86 311.06 9.30 190.67 25.92 223.06 18.93

Cag/ Cag/ Cag/ Cag/ Caf/
110.0 100.0 520.0 200.0 600.0
TABLE Ill

LEARNING DYNAMIC 5-NODE TESTCASE— MEANS AND STANDARD DEVIATIONS FOR SOLUTION VALUES (SI) ON DAY 422FORLMPs (NODAL
BALANCE CONSTRAINTMULTIPLIERS, IN $/MWH)

Hour L[MP; LMP{P [MP, LMPSP  [IMP; LMPFP [MP, LMP{P [MP; LMPZP
00 5274 1233 11030 58.16 99.39  48.02 69.40 2156 5570  13.06
01 5270 1226 10056  49.61 9149 4116  66.56 1944 5516  12.82
02 5268  12.23 94.18  44.34 86.32  36.92 64.69  18.12 5481  12.67
03 5266 1222 91.02  41.79 83.75  34.86 63.77  17.46 54.63  12.60
04 5263  12.23 87.96  39.38 81.27 3290 6286 16.84 5445 1254
05 5265  12.23 89.49  40.57 8251  33.86 63.32 1715 5454 1257
06 5266  12.22 91.02  41.79 83.75  34.86 63.77  17.46 54.63  12.60
07 5269  12.24 97.38  46.96 88.91  39.03 65.63  18.78 54.98  12.75
08 5275 1237 11352  61.04 10201 5033  70.35  22.28 55.87  13.15
09 5279 1256 12659  73.16 11261  60.05 7415 2531 56.58  13.52
10  52.80 1262 129.87 7628 11527 6255 7511  26.09 56.75  13.61
11  52.80 1265 13148  77.83 11657  63.79 75.58  26.48 56.84  13.66
12 5280 1262 12987 7628 11527 6255 7511  26.09 56.75  13.61
13 5279 1256 12659  73.16 11261  60.05 7415 2531 56.58  13.52
14 5278 1253 12498 7164 11130  58.83 73.68  24.93 56.49  13.47
15 5278 1253 12498 7164 11130  58.83 73.68  24.93 56.49  13.47
16  52.80 12.65 13148  77.83 11657  63.79 75.58  26.48 56.84  13.66
17 5273 1281 14726  92.89 12934 7590  80.10  30.38 57.58  14.07
18 5280 1281  139.68 8572 12322  70.13 77.95  28.50 57.26  13.93
19 5280 1278 13800 8410 121.86  68.83 77.46  28.08 57.17  13.87
20 5280 1275 136.38 8254 12055  67.58 77.00  27.68 57.09  13.82
21 5281 1268 133.09 79.38  117.88  65.04  76.05  26.87 56.93  13.71
22 5278 1253 12498 7164 11130  58.83 73.68  24.93 56.49  13.47
23 5276 1239 11519 6256  103.36 51.54  70.83  22.66 55.96  13.19




