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Since optimal investment strategies generally cannot be obtained in closed form when utility 
functions exhibit non-constant risk aversion, most dynamic investment studies have focused on 
the constant risk aversion case. The present paper investigates a general class of dynamic 
investment models with fmal-period expected wealth objective for which the fmal-period utility 
of wealth function is not restricted to be constantly risk averse. Existence, monotonicity, 
concavity, dilferentiability, and absolute risk aversion properties are established for the optimal 
feedback investment strategies and dynamic programming indirect utility functions. The loss in 
final-period expected utility resulting from the use of limited foresight investments is shown to 
be bounded above by terms dependent both on the variance of myopically achievable utility and 
on the relative size of myopic and global absolute risk aversion. Finally, simulation results are 
presented which indicate the optimality of a rolling 2-period foresight horizon for a class of 
exponential utility functions exhibiting decreasing absolute risk aversion. 

1. Introduction 

In a previous paper, Hildreth (1974a) introduces an investment model of 
the form 

maxE(p(2+w’ +w2u), 
VEV 

(1) 

where x=Ex+[x-Ex]=x+o’ is a random variable representing the 
decision maker’s current wealth prospects, w2 is a random vector 
representing a possible new venture, cp( .) is the decision maker’s utility of 
wealth function, and u is the amount invested by the decision maker in the 
new venture. The Hildreth investment model generalizes a classic investment 
model due to Arrow (1971) in which current wealth prospects are assumed 
given. In subsequent papers, Hildreth and Tesfatsion (1974, 1977) and 
Hildreth (1974b, 1979) establish various comparative static properties of the 
Hildreth investment model (l), and several economic applications are 
developed. 

*This material is based upon work supported by the National Science Foundation under 
Grant No. ENG 77-28432. The author is grateful to two anonymous referees for helpful 
comments. 
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In the present paper a dynamic version of the Hildreth investment model 
is considered, having the general form 

subject to dynamic wealth constraints 

x,=%,, x.+l=Sn(~,,u,,x,)~x~R, OsnsN, (2b) 

and investment vector constraints 

u,E ~hx,), OjnSN, @cl 

where the random vectors CO,, are serially independent drawings from time- 
varying distributions. In addition to providing a dynamic generalization for 
many of the static investment problems studied by Hildreth-Tesfatsion op. 
cit., the general format of model (2) has also been used by a variety of 
previous researchers to investigate linear-quadratic macro policy problems, 
dynamic portfolio problems, and problems in discrete-time optimal growth. 

The purpose of the present paper is two-fold. First, it is well-known that 
optimal feedback investment strategies generally cannot be obtained in 
closed Form for investment models with utility of wealth functions exhibiting 
non-constant risk aversion. In consequence, such utility function 
specifications have generally been avoided in dynamic investment contexts in 
favor of more analytically tractable, if less empirically plausible, constant risk 
aversion forms.’ Following a more careful development of the basic 
investment model (2) in section 2, our first objective will therefore be to 
establish, in section 3, various qualitative characteristics of the optimal 
feedback investment strategy u“ = (u:(x), . . ., u:(x)) and associated dynamic 
programming indirect (return-to-go) utility functions F,(x), . . ., FN(x) for the 
basic model which do not depend on the utility function cp( .) exhibiting 
constant absolute or relative risk aversion. Specifically, various sets of 
sufficient conditions are given for guaranteeing the monotonicity, concavity, 
differentiability, and decreasing absolute risk aversion of the indirect utility 
functions F,(x), for determining the sign of the optimal investments u:(x) and 
their first derivatives &$(x)/ax, and for ensuring the existence of an optimal 
feedback investment strategy u”. 

Secondly, the simulation results of Rausser and Freebairn (1974) and 
Johnson and Tse (1978) suggest that in some cases the myopic selection of 
controls based on a rolling M-period foresight horizon (‘M-measurement 

‘Decreasing absolute risk aversion and non-constant relative risk aversion are generally 
considered to be the norm. See, e.g., the discussion of this point in Hirshleifer and Riley (1979, 
sec. 1.1.5). 
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feedback controls’) yields satisfactory global performance for N-period 
stochastic control problems, N > M. This is a potentially important finding, 
since limited foresight controls are often resorted to in practice. Nevertheless, 
little in the way of sensitivity analysis has yet been undertaken concerning 
the selection of M. 

For a certain class of dynamic stochastic control models that includes 
model (2) as a special case, it is known [Tesfatsion (1980a)] that a rolling 
l-period foresight horizon yields optimal global return if period-by-period 
myopic returns are perfectly positively correlated. Perfect positive correlation 
holds for various versions of model (2) with myopically specified 
intermediate-period utility functions if each state function f,( . ) is strictly 
increasing in x, and the final-period utility function cp( .) exhibits constant 
absolute or relative risk aversion. What can be said for model (2) given the 
empirically more plausible assumption that cp( . ) exhibits decreasing absolute 
risk aversion and non-constant relative risk aversion? Specifically, is the 
final-period expected utility resulting from the sequential use of M-period 
foresight investments a monotonically increasing function of M? 

In partial answer to this question, various foresight sensitivity results are 
presented in section 4 for model (2) which do not depend on cp(. ) exhibiting 
constant risk aversion. The loss in final-period expected utility resulting from 
the use of myopically selected investments u.*(x) in place of the optimal 
investments u:(x) is first shown to be bounded above by terms dependent 
both on the variance of myopically achievable utility of wealth and on the 
relative size of myopic and global absolute risk a.version, where the latter is 
defined in terms of the indirect utility functions F,(x). Foresight sensitivity 
simulation results are then presented for a special case of the basic 
investment model (2) with the final-period utility function cp( .) specified to 
lie in the class of concave, monotone increasing, decreasingly risk averse 
functions (p:R+R having the general form 

K 

cp(x)=a+bx- c ckeedkX, b,c,d,LO. 
k=l 

The class of utility functions (3) was apparently first introduced by Pratt 
(1964), and was used by Hildreth (1979) in a combined empirical and 
theoretical investigation of grain storage and hedging by farmers. 
Surprisingly, the simulation results indicate that a rolling 2-period foresight 
horizon yields optimal final-period expected utility for the class of utility 
functions (3) whenever b = 0. A rolling l-period foresight horizon is generally 
suboptimal unless ck = dk = 0, k 2 2. In all cases, final-period expected utility is 
a monotone increasing function of the foresight range M. 

Concluding comments are given in section 5. Proofs of theorems are 
outlined in an appendix. 
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2. The ba& investment model 

Consider a tinite-horizon investment model described by equations of the 
form 

x0=1, (given initial wealth state), W 

x,+1 =fn(%%xA OSnSN, (4b) 

where, for each nE (0,. .., N}, the nth period initial wealth state x, is an 
element of an open set XC R, the nth period investment u, is constrained to 
lie in an admissible investment set V(n,x,)c V for some open set VG R’, the 
nth period random ‘disturbance’ w, is an element of a set R c R”, and f. :B 
x V x X+X is a continuous’ state function, strictly increasing in x. Letting 
9 denote the o-algebra generated by the open subsets of Q, it will be 
assumed that each w, is independently governed by a probability distribution 
function p,:F+R conditioned on the current time n. In addition, it will be 
assumed that the return associated with each possible disturbance, 
investment, and state configuration (w, u,x) for the final period N is 
measured by W,,(~.~,x))=(~h+~) f or some continuous strictly increasing 
utility of wealth function cp :X--f R. 

An admissible feedback investment strategy for model (4) is defined to be 
any vector u = (uO ( . ), . . ., uN( )) of measurable functions u, :X+ V satisfying 
u.(x) E V(n, x) for each x E X. The symbol Y will be used to denote the set of 
all admissible feedback investment strategies u. The objective assumed for the 
investor will be the maximization of final-period expected utility, 

JwA&h~,(xiv),x,)), (4c) 

via selection of a feedback investment strategy UEY.~ 

‘It is assumed throughout the paper that X, V, and 0 have the usual relative topology, and 
that products of X, V, and R have the corresponding product topology. Each of the spaces X, V, 
and 0 will also be regarded as a measurable space, with u-algebra generated by its open sets. 

“The expectation operator E[ .] is more precisely delined as follows. Let QN denote the set of 
all disturbance sequences oN=(oO.. ., oN) satisfying O,E Q, OSnS N, and let fN denote the 
product c-algebra generated by all cylinder sets of the form 

where A,E.F, 04ns N. Finally, let pN(. ) denote the unique probability measure on (QN, PN) 
satisfying 

for each cylinder set 
respect to (QN,FN,pN 

.“_OA,~.FN [see Hinderer (1971, thm. A.5, p. 148)]. Expectation with 
then denoted by E[ ‘1. 
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For brevity, any investment problem satisfying specifications (4) will be 
referred to as a basic investment modeL4 The following additional restrictions 
will be imposed as needed: 

(A.l) q(x) is twice continuously differentiable, and f.(o,u,x) is twice 
continuously differentiable in u and x for each w E !Z2 and n E (0,. . ., N}. 

(A.2) Q is compact.’ 
(A.3) An optimal admissible feedback investment strategy u” exists. 
(A.4) A regular6 optimal admissible feedback investment strategy u” exists. 
(AS) q(x) is thrice continuously differentiable, and fn(o, u,x) is thrice 

continuously differentiable in u and x for each cu E Sz and n E (0,. . ., N}. 
(A.6) The admissible investment sets are increasing in x; i.e., 

V(n,x’)GV(n,x’) if x’sx’, for all x1, X~EX and nE{O,...,N}. 
(A.7) The admissible investment sets are convex in x; i.e., tV(n,x’)+ 

[l-t]V(n,x2)~ V(n,tx’ +[l-t]x2) for all rE[O,l], x1 and x~EX, and 
nE{O,...,N}. 

(A.8) V and X are convex sets, q(x) is strictly concave, and fn(o,u,x) is 
jointly concave in u and x for each o E 52 and n E (0,. . ., N}. 

(A.9) The disturbance terms o,,, . . ., wN are independent and identically 
distributed drawings from a common distribution (Q, 5,p), the state 
functions have the stationary form f:Q x Vx X+X for each 
n E (0,. . ., N}, and the admissible investment sets have the stationary 
form V(x), XEX, for each ne{O ,..., N}. 

Example 2.1. Portfolio Model [cf. Arrow (1971), Mossin (1968), Hakansson 
(1971), Bellman and Kalaba (1957), and Kalaba and Tesfatsion (1978)]. In 
each period n E (0,. . ., N} an investor must decide how to allocate his current 
wealth x,ER++= X between two investment opportunities A and B, the lirst 
yielding a positive or negative net return rate w,, 05 Iw,,I S 1, governed by a 
probability distribution function p,( . ), and the second yielding a known net 
return rate r,, Oj r,S 1. The investor’s objective is to maximize the expected 
utility of his wealth xN+ 1 at the end of period N via feedback control. 

4An axiomatization for a one-period version of the basic investment model with discrete 
probability distributions is provided in Tesfatsion (1980b). The symmetrical treatment of utility 
and probability in the basic investment model has proved to be vseful in the development of a 
new approach to adaptive control, direct criterion function updating. See Tesfatsion (1978, 
1979). -. 

‘The sole purpose of the compact a restriction is to allow the interchange of expectation and 
differentiation operations. Various alternative restrictions would serve equally well for this 
purpose. 

6An optimal admissible feedback investment strategy u“=(u~( ), . . ., vg( )) will be called 
regular if for each XEX the solution u:(x) to maxE,[F,+, ~fn(~,u.x)]=Q(u,x) over UE V(n,x) 
lies in the interior of v(n,x), with Q..(ui(x),x) negative definite, where the indirect utility 
function F,( ) is as detined in section 3. Alternative sets of suflicient conditions guaranteeing the 
existence of optimal admissible feedback investment strategies for the basic investment mod51 
can be derived using the results of Hinderer (1971). Leland (1972). and Hildreth (1974a). See, for 
example, Theorem 3.6 in section 3. 



70 L. Tesfatsion, Investment, risk aversion, and foresight 
. 

Assuming the investor’s initial wealth x,, for period 0 is positive, his initial 
wealth x,+ 1 for period n + 1 .is a simple function of his initial wealth x, for 
period n, the net return rate W,E [ - 1, l] ~52 observed for investment 
opportunity A in period n, and the amount u,, E [0,x,] = V(n, x,) of wealth he 
allocated to A in period n; namely, x,+ 1 =xn +o,u, + r,,[x. - UJ 
=f,(w,,u,,x,). Assuming utility of wealth at the end of period N is measured 
by (P(XN+ONUN+~NCXN-UNI)=(P(XN+~ ) for some strictly concave, strictly 
increasing, thrice continuously differentiable function cp :X+R, this portfolio 
problem has the basic model format, and satisfies (A.l)-(A.3) and (AS)- 
(A.8).7 

Example 2.2. Insurance Model [cf. Hildreth-Tesfatsion (1977)]. Suppose in 
each period n, 04n6 N, a decision maker in an initial capital state x, stands 
to iose an amount d. >O if a particular random event A(n) occurs, where 
A(n) is independent of A(j), i# n. In exchange for a premium c, >O he is 
offered an insurance policy that will cover this contingent loss. Suppose he 
can also elect partial coverage at a proportionally reduced premium, i.e., he 
can elect to pay a premium u,c,, Osu,s 1, and be reimbursed u,d, if the loss 
occurs. Letting w, z (o,!, of) be defined by 

o’=b-dI n n n A(tI)Y OSnSN, 

02md I n n A(.)-Cm OjnSN, 

where IA denotes the indicator function for A(n), and b, denotes assets or 
debts accumulated over period n from additional sources, the decision 
maker’s objective is to maximize the expected utility Erp(x, +o~+o$J,) of 
his final capital state xN+ 1 = xN + o.$ + wiuN subject to 

x0 =X0 (initial conditions), 

x.+1 =x.+0. +o$l,, Ojn$N. 

It follows that this insurance model has the basic model format, and satisfies 
(A.l)-(A.3) and (AS)-(A.8), if cp( .) is strictly increasing, strictly concave, and 
thrice continuously differentiable.’ 

3. Properties of the basic investment model 

Consider any basic investment model (4). For each n E {0, . . ., N} and x E X, 
let F,(x) denote the maximum attainable final-period expected utility 

‘For existence (A.3) of an optimal admissible feedback investment strategy u”, see Theorem 3.6 
in section 3. 

*See footnote 7. 
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beginning in period n with initial state x, and using feedback investment; and 
let E,[ .] denote expectation with respect to (8,f,p.). Then [Hinderer 
(1971, thm. 14.4, p. 101; pp. 104-105; thm. 17.6, p. ill)] 

FN(x)= sup ~%Cv~f,(w,~x)l, 
ueV(N.x) 

(54 

F,(x)= sup E,CF,+,~f,(~,~>x)l, OlnSN-1, WI “E VhX) 

and a feedback investment strategy V”E Y satisfies the final-period expected 
utility objective 

if and only if it satisfies the dynamic programming optimality equations 

FN(~N)=EN[V ‘fN(mN, $dxN),xN)], (74 

F,W=EnCF,+t Of. @-4l, 4 k 13 X” )I, OSnSN-1, (7b) 

for almost every disturbance sequence (wO,. . .,o,).~ The functions F,:X+R 
are generally referred to as return-to-go functions or indirect utility functions, 
the former term prevailing among system scientists and control engineers, 
and variations of the latter term prevailing among economists. 

For any twice differentiable function Q:X+R with Q’>O, let Ro:X+R 
denote the Pratt-Arrow measure of absolute risk aversion for Q( * ), defined 
by Ro(x)= -Q”(x)/Q’(x). Interpreting Q( . ) as a utility of wealth function 
for an expected utility maximizing decision maker, it can be shown [Pratt 
(1964, p. 1231 that Ro(x) is approximately equal to 2r(x,z*)/ot* for any 
zero-mean random variable z* with small variance ot*, where the risk 
premium r(x, z*)ER is the maximum amount the decision maker would be 
willing to pay to avoid a gamble on z*; i.e., r(x, z*) satisfies Q(x - r(x, z*)) 
=E,Q(x + z). Thus, in principle, RQ(x) can be directly elicited by suitable 
gamble experiments even if Q( . ) is unknown to the experimenter. The 
corresponding function xR~(x) is generally referred to as the Pratt-Arrow 
measure of relative risk aversion for Q( . ). 

Since optimal feedback investment strategies generally cannot be obtained 
in closed form for investment models with utility of wealth functions 
exhibiting non-constant absolute and relative risk aversion,’ dynamic 
investment studies have generally focused on the constant risk aversion case. 

‘More precisely, using the definitions presented in footnote 3, the optimality equations must 
hold for pN-almost every disturbance sequence UJ~E@. The symbol 0 denotes function 
composition, e.g., h 0 s(x)= h(s(x)). 
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For example, see Mossin (1968), Merton (1969), Samuelson (1969), and 
Hakansson (1970, 1971). Non-constant risk averse utility function 
specifications have for the most part been studied in the context of static 
single-period decision problems, e.g., by Arrow (1971), Sandmo (1969), Cass- 
Stiglitz (1972), Hildreth (1974a, b), and Hildreth-Tesfatsion (1974, 1977).” 
The following theorems establish characteristics of the basic model optimal 
investment strategy u0 and indirect utility functions F,(. ) which do not 
depend on the final-period utility function cp( .) exhibiting any form of 
constant risk aversion. Besides being of interest in themselves, these results 
also proved to be a tremendous aid in the design of a computer program for 
the numerical generation of II’, which was subsequently used for the foresight 
sensitivity study summarized in section 4.” 

The first result, Theorem 3.1, establishes analytical representations for the 
derivatives of the optimal investment functions ui(. ) and indirect utility 
functions F,( . ) in the interior solution case. 

Theorem 3.1. For any basic investment model satisfying assumptions (A.l)- 
(A.4), the optimal investment function v:(x) is a continuously dlfj‘erentiable 
function of the wealth state x, and the indirect utility function F,(x) is a 
strictly increasing and twice continuously dSfferentiable function of x, for each 
n E (0,. . ., N}. In particular, letting FN+ 1 ( . )=cp( . ), superscript T denote 
transpose, and d denote the point (w, vz(x),x), the r x 1 gradient vector of u:(x) 
is 

where 

Z(x)= -D”(x)-‘S,(x), @a) 

(8b) 
and D,(x) is a negative definite r x r matrix given by 

1 . (8~) 

“An exception is Neave (1974), who investigates a scalar investment model of the form 
maxE[~==,B”u,(x,-u,)+cp(k+w,u.)1 with respect to u,~[O,x,] subject to x,.+~=~+w,o,, 
nE {l,. ..,N}, with utility functions u,( . ) and cp(. ) assumed to be decreasingly absolute risk 
averse and increasingly relative risk averse. 

“For example, concavity avoids the problem of lo’cal maxima, and theoretically determined 
monotonicity properties aid the selection of appropriate step sizes for the grid storage of the 
indirect utility functions. The complete program, with extensive comments, is available upon 
request. 
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Moreover, 

13 

Pb) 

If in addition assumption (AS) holds, then the indirect utility functions 
F, :X + R are thrice continuously differentiable, 0 5 n 2 N. 

The next result, Theorem 3.2, establishes monotonicity and concavity 
properties of the indirect utility functions F,( . ) that do not depend on any 
differentiability or interiority assumptions: 

Theorem 3.2. If a basic investment model satisfies assumptions (A.3) and 
(A.6)-(A.8), then each indirect utility function F, :X+R is continuous, strictly 
increasing, and strictly concave, 0 S n 5 N. 

It is natural to conjecture that the absolute risk aversion properties 
assumed for the utility function cp( .) are inherited by the indirect utility 
functions F,( . ). However, as indicated by Theorem 3.3 and Corollaries 3.1 
and 3.2, below, inheritance of absolute risk aversion properties depends 
strongly on the structure of the state functions f,( . ) and the admissible 
investment sets V(n,x). In addition, to rigorously establish absolute risk 
aversion inheritance, it seems necessary to impose differentiability and 
interiority assumptions such as (A.l)-(A.4), which guarantee the 
differentiability of the indirect utility functions F,( . ). 

The preliminary two Lemmas 3.1 and 3.2 appear to be of independent 
interest. The first establishes preservation of decreasing absolute risk aversion 
under integration, and the second establishes preservation of decreasing 
absolute risk aversion under maximization: 

Lemma 3.1. Let X be an open subset of R, R be a subset of R”, sz 1, and P 
be a a-algebra of subsets of Q. Let u be a finite positive measure on (S&6) 
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with p(Q)>O, and let g:8 x X *R be integrable over (a, 8, p) for each x E X 
and thrice continuously dtgerentiable and strictly increasing over X for each 
w~f2. Define h:X+R by 

h(x)=.f g(w,x)CrW). 
a 

R,hx)= -g,,(~,xk(~,x) 

(10) 

(11) 

is a non-increasing function of x for p - a.e.w, then for any x E X, Rj,(x)sO, 
and R;(x)<0 unless there exist non-negative real numbers A, and B,, not both 
zero, such that 

Axgx(O,x)=Bxgxxx(orx) P-a.e.w. (12) 

Remark. Pratt (1964, thm. 5, p. 132) proves that a finite positive sum of 
decreasingly risk averse utility functions on the real line is itself a 
decreasingly risk averse utility function. Lemma 3.1 generalizes this result to 
integrals. Neave (1974, p. 43) states and uses a special case of Lemma 3.1 for 
functions g:SExX+R of the form g(w,x)=f(k+wx), where QcR and k is 
any constant. 

Lemma 3.2. Let X be any open subset of R and V be any open subset of R’, 
rz 1, and let {V(x) 1 x E X} be a collection of open subsets of V. Let h: V x X 
+R be any thrice continuously differentiable function, strictly increasing in x, 
such that 

&,(v,x)= -L(v,x)lh,(v,x) (13) 

is a non-increasing (strictly decreasing) function of x for each VE V. Suppose 
there exists a continuous piecewise difirentiable function v: X-, V satisfying 
v(x) E V(x) and 

sup h(v,x)=h(v(x),x)=s(x), XEX. (14) 
“E Y(X) 

Then R,(x)= -s”(x)/s’(x) is a well-defined non-increasing (strictly decreasing) 
function of x over X. 

Theorem 3.3. Consider a basic investment model which satis$es (Al)-(A.8). 
Suppose Rb(x)sO, XE X, and 

2 af. a%, a% [ 1 ax ax3= ax2 9 (15) 
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for all (w,v,x)~C2~ VXX and n~{o,...,N}. Then Rr,(x)2_0 and R;“(x)50 
for all xEX and nE{O,..., N}; i.e., the indirect utility functions F,:X+R 
exhibit non-negative decreasing absolute risk aversion. 

Corollary 3.1. If a basic investment model satisfies (A.l)-(AS), and R;(x)50 
and d2f,(qv,x)/~x2 =0 for all (o,v,x)~Q x Vx X and nE (0 ,..., N}, then 
R;“(x)sOfor all XEX and nE{O ,..., N}. 

Corollary 3.2. Consider a basic investment model which satisfies (A.l)-(A.4). 
Suppose R,(x) =c for all x E X, for some constant CE R, and suppose each 
state function f,( * ) has the form f,(o, v, x) = G,(o, v) + b,x for some function 
G, :sZ x V+ R and constant b, E R, + . Then 

where 

R,+)=c,, xex, nE{O,...,N}, (16) 

cN+l =c, (174 

c,=c,+1b,, OjnsN. (17b) 

The next result, Theorem 3.4, demonstrates how Theorems 3.1, 3.2, and 3.3 
can be used to establish sign and monotonicity properties for the optimal 
investment strategy u’, given certain state function specifications f.(. ) (see, 
e.g., Example 2.1 in section 2): 

Theorem 3.4. Consider a basic investment model satisfying (A.l)-(A.4) and 
(A.6)--(A.8). Suppose OE VCR, and each state functionfn( . ) has the form 

f,(o,v,x)=G,(o,v,x)v+H,(v,x). (18) 

Then 

v3x)SO E,G,(w,O,x)+~(O.x) $0. 1 (19) 

Suppose in addition (AS) holds, R;(x) 50 for all x EX, and each state 
function f,( . ) has the form 

f,(w,v,x)=G,(w)v+Hn(x), (20) 

for some functions G,( . ) and H,( . ), satisfying 

H;(x)H;‘(x)~ [H,“(x)]Z, XEX. (21) 
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. 

(22) 

Remark. It is interesting to note that (22) is false if RbsO is weakened to 
iJJ”‘lO. 

The next result, Theorem 3.5, demonstrates how the restrictions (18) and 
(20) on f,( . ) in Theorem 3.4 can be weakened if each random vector w, is 
composed of two independently distributed subvectors w! and 0,‘: 

Theorem 3.5. Consider a basic investment model satisf$ng (A.l)-(A.4) and 
(A.6)-(A.8). Suppose OE VCR, each random bector w,, has the form w, 
=(~f,o$), where of is distributed independently of 0,2, and each state 

function f,( . ) has the form 

f.(O,v,x)=G,(O’,u,x)v+H,(v,x)+Z,(W1,x). (23) 

Then 

W)~O 
aH E,G,(w,~,O,X)+~(O,X) $0. 

i iV 1 
Suppose in addition (AS) holds, R;(x)50 for all x E X, and each state function 
f,( . ) has the form 

f,((%v,x)=G,(o*)v+H,(x)+I,(co’), (25) 

for some functions G,( . ), H,( . ), and I,( . ), satisfying 

H:,(x)H;'(x) 2 [H;(x)]*, XEX. (26) 

Then 

E,G,(w,~)$O~-= ww,O 
ax 5 . 

Although the state functions in Example 2.2 of section 2 satisfy hypotheses 
(23) and (25) of Theorem 3.5, the subvectors 0,’ and w,’ for that insurance 
model are not independent. Some sign properties for u” are established in 
Hildreth-Tesfatsion (1977) for the case of correlated 0’ and CU* in a static 
single-period context, but the dynamic generalization of these results will not 
be treated in the present paper. 
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The final result of this section, Theorem 3.6, provides sufficient conditions 
for the existence of an optimal admissible feedback investment strategy 
u’EY, i.e., for assumption (A.3) to be satisfied. Define 

H, = {Xc)} x 52, (284 

H n+,={(h,u,o)lh~H,,u~D,(h),w~52}, OSnSN, (28b) 

where, for any element h,=(XO,q,,vO ,..., co.-I,un-l,Wn) in H,,D,:H,+2” is 
defined by 

D,(k)= W,,(h)), (29) 

and t,:H,+X is defined by 

=fn-l(W,-l,U,-IrX,-l)=X,. (30) 

Finally, define 

Theorem 3.6. Existence Theorem [cf. Hinderer (1970, thm. 17.12, p. 116)]. 
Consider any basic investment model (4). Assume the following conditions 
hold: 

(i) There exists a compact set Bc V such that, for each nE (0,. . ., N} and 
x E X, the admissible investment set V(n, x) is contained in B. 

(ii) Each set K, is a closed subset of H, x B, and contains the graph of a 
measurable map. 

(iii) sup IE,eOfNN(m, 0, tN(h))l< a. 
,h.“MKN 

Then there exists an optimal admissible feedback investment strategy ~~~55’; 
i.e., assumption (A.3) is satisfied. 

4. Foresight sensitivity results 

The simulation results of Rausser and Freebairn (1974) and Johnson and 
Tse (1978) indicate that in certain cases the myopic selection of controls 
based on a rolling M-period horizon yields satisfactory global return. A 
sensitivity analysis focusing on the magnitude of M would therefore seem to 
be of interest. In the present basic investment model framework, this 



78 . L. Tesfatsion, Investment, risk aversion, and joresight 

sensitivity analysis reduces to asking for the relative expected final-period 
utility associated with myopic indirect utility function specifications U,(x), 
OjnsN - 1, based on alternative foresight ranges M, where each function 
U,(x) can be interpreted as a proxy representation for the optimal indirect 
utility function F,(x) based on complete foresight. 

Specifically, consider an investor in period n of an (N + 1)-period basic 
investment problem for which the current wealth state is x. As in section 3, 
let F,+,(x’) denote the maximum attainable final-period expected utility 
beginning in period n + 1 with initial wealth state x’, x’ E X. Then, for any 
currently admissible investment selection u E V(n, x), maximum attainable 
final-period expected utility beginning in period n is given by 

G(u)-E,CF,+,~f,(o,~,x)l. (32) 

Assuming (A.3) holds, there exists an investment selection USE V(n,x) 
which maximizes G( . ) over L’(n,x). The following theorem provides an 
upper bound for the loss G(ui(x))-G(u:(x)) in linal-period expected utility 
resulting from the use of a myopically selected investment u,*(x) in place of 
vi(x): 

Theorem 4.1. Consider a basic investment model satisfying assumptions 
(A.l)-(A.4). If an inuestment v,*(x) is selected in period n which satisfies 

max -kCU~f,(3 0,x)1, 
VEV(n.xj 

(33) 

for some strictly increasing twice differentiable function U :X+R, then 

O~G(~~(~))-G(~,T(X))~~T~Y, (34) 

where 

MY)-RF~+,(Y) 
U’(Y) ’ 

(35) 

(36) 

Y-{Y~R~Y=.L( w,u,x)for some (o~,u)EQx V(n,x)}. (37) 

As indicated by inequality (34) myopic optimization in the form of (33) is 
equivalent to global optimization for the basic investment model if either all 
of the probability distributions p.( . ) are degenerate, implying c2 =O, or U( . ) 
and F,+,(. ) have the same absolute risk aversion characteristics, implying Y 
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=O. For example, using Corollary 3.2, it is easily shown that Y =0 if Rk=O, 
f,(o, u,x)= G,(o, II)+ b,x for some function G,( . ) and some constant 
h,ER+., U:X+R is defined by U(x)=cp(xE:;b,+,), and (A.l)-(A.4) 
hold. 

As demonstrated more generally in Tesfatsion (1980a), Y can be 
interpreted as an inverse measure for positive correlation in returns. 
Specifically, the correlation coefficient p”(C.JoS,,F,+ r of.) for the two random 
variables U of”( ., u,x) and F,, r of,(. , V, x) increases as Y decreases, equalling 
1 .O when Y = 0. The case Y = 0 is of course highly special. 

Now consider a basic investment model satisfying (A.3) and (A.9). By the 
stationarity assumption (A.9), the optimal investment function ui(. ) for any 
period n of this (N + l)-period investment problem is also the optimal 
investment function for period 0 of a similar (N+ 1 -n)-period investment 
problem. Stated somewhat differently, for any ME (1,. . .,N+ l}, 
upV + r _ M( . ) is the optimal investment function for period 0 of a foreshortened 
M-period basic investment model. 

One natural way to define myopic optimization in period 0 with foresight 
range M for the original (IV+ l)-period basic investment model is thus to 
postulate the use of uO,+ r -M (. ) in period 0 in place of the investment 
function t$( . ) that is optimal for period 0. Equivalently, this can be 
interpreted as the use of the myopic indirect utility function U( . )- 
F N+2-M( . ) in period 0 in place of the indirect utility function F, (. ) that is 
optimal for period 0. 

Letting Go(u)-EEOIFl of(w, u,x)] denote the maximum final-period 
expected utility starting in period 0 with initial wealth state x and arbitrary 
investment UE V(x), a plausible conjecture would then be 

WUON+~-M (x))S W.6.~ -(A,+ dx)L ME { 1,. . ., N}, xex; 

(38) 

i.e., final-period expected utility is a monotone increasing function of the 
foresight range M for every xeX. An equivalent formulation of conjecture 
(38) is 

G,(u~+,(x))~G,(u~(x)), nE{O,...,N-1}, XEX. (39) 

To test the monotonicity conjecture (39), consider a special basic 
investment model, abbreviated Model (S), given by 

(S) max EN Cv (XN + mNuN (xN ))I 7 
DE9 
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subject to 

xg=)?o, x,+1 =x”+w”v”, OSnsN, 

where 

P.(~,)=l-P”b,)=P, OjnSN, 

and cp( * ) lies in the (p* class of functions, defined to be the set of all 
functions cp:R+R having the general form 

(cp*) cp(X)=a+bx- 5 ckemdk”, b,ck,dkZO. 
k=l 

Aside from the (p* specification for cp( .), Mode1 (S) is the portfolio mode1 
used by Mossin (1968), which in turn is a dynamic generalization of the 
static portfolio mode1 used by Arrow (1971). (See Example 2.1 in section 2.) 
Mossin investigates his portfolio mode1 using constant risk aversion utility 
functions. In contrast, using Lemma 3.1, it is readily checked that each 
element rp:R+R belonging to the (p* class of utility functions is a concave 
monotone increasing function satisfying RbsO, with R6 ~0 if and only if 
there exist integers i and j such that di #dj and cidicjdj> 0. In fact, the q* 
functions form a proper subset of the set of concave monotone increasing 
infinitely differentiable functions Y :R-+R with completely monotonic first 
derivative (i.e., [ - llk!Pk+ ‘) 2 0, k = 0 , , . . .), all of which satisfy R& 6 0. See 1 
Widder (1941, thm. 16, p. 167). 

To test the monotonicity conjecture (39) for Mode1 (S), comparative 
simulation studies were carried out on an IBM 370/Model 158. To obtain a 
genera1 foresight sensitivity overview, tests were first undertaken for the 
following range of parameter values: 

Initial Wealth State X0 E [0,9]. 

Time Horizon N = 2,3. 

Probability p =0.6667, 0.7500. 
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Disturbance Terms s, = -0.5, - 1.0, 

s2 = 1.0. 

Utility Coefficients a = 1.0, 

b = 0.0, 0.5, 

c,=O.5, 1.0, 2.0, k=1,2,3, 

dk=0.5, 1.0, 2.0, k=l,2,3, 

ck = dk = 0.0, kZ4. 

The indirect utility functions F,(x) were linearly interpolated using a grid 
step size of 0.50 for x. The optimal investments u:(x) were found by direct 
search over [0,x] using a search step size of 0.05. 

Surprisingly, in all cases it was found that the monotonicity conjecture (39) 
was satisfied for ‘almost every’ initial wealth state x ~2, in the following 
strengthened form: 

Go(u::+,(x))=G,(u::(x)), OSnSN-2, Wa) 

i.e., given an initial wealth state x in period 0, the maximum final-period 
expected utility achieved by using M-period foresight in period 0, 2 s M $ N, 
precisely coincided with the maximum final-period expected utility achieved 
by using complete (N + 1 )-period foresight in period 0. The completely 
myopic case of l-period foresight [use of I&(X)] in period 0 was generally 
suboptimal, although even here optimality held for some parameter 
configurations. The exceptional initial wealth states x where (40) failed to 
hold were isolated and scattered, suggested that round-off error may have 
been the cause. 

A more intensive investigation of both (39) and (40) was then undertaken. 
Since a cross-comparison of the previous results revealed no. apparent 
sensitivity of either myopic-global equivalence or exceptional point behavior 
to the time horizon N, probability p, disturbance values sr and sl, and utility 
coefficients c3 and d,, these parameters were held fixed at N =2, p=O.7500, 
sr = - 1.0, s2 = 1.0, and cj =d, =O.O. The grid step size for x was decreased to 
0.25 to reduce round-off error. 
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.Finally, to allow more meaningful comparison of numbers, a base (p* 
utility function was selected, 

q(x)= 1 +0.5x-e-0.5”, (ala) 

rp(O) = 0, (41b) 

cp’(O) = 1, (4lc) 

for which it was determined, numerically, that M-period foresight was 
globally optimal, 1 s M SN, with uo(x) = ui (x)- u~(x)EEx.~’ Small variations 
were then made in the parameters (b,cI,d,,c2,d2), away from their values in 
(41), while retaining the normalizations q(O)=0 and p’(O) = 1; i.e., a set of (p* 
utility functions was tested of the form 

(424 

~(0)=1-c,-c,=0, Wb) 

q’(O)=b+c,d,+c,d,=l.O, (42~) 

(b,c,,d,,c,,d,)r(0.5,1.0,0.5,0.0,0.0). (‘Qd) 

In all cases the monotonicity conjecture (39) was upheld to at least four 
decimal places. For the 2-period foresight conjecture (40), the pivotal 
parameter turned out to be the linear coefficient b. For each b value, as b 
was varied by 0.1 from 0.5 to 0.0, a number of runs were made for various ck 
and dk values consistent with the normalizations (42b) and (42~). Investment 
functions, indirect utility functions, and final-period expected utilities were 
evaluated to four decimal places. Representative runs are depicted in figs. 1 
through 4 for b taking on the values 0.5, 0.3, 0.1, and 0.0. 

For b=0.5, both l-period and 2-period foresight yielded optimal linal- 
period expected utility; i.e. strict equalities held in conjecture (40), regardless 
of the ck and dk values. The normalization conditions (42b) and (42~) 
guaranteed that the linear part a+ bx of q(x) would be dominant. A 
representative run is depicted in fig. 1. 

As b was decreased from 0.5 to 0.3, l-period foresight became suboptimal 
for sufficiently large initial wealth states x, but 2-period foresight remained 
optimal; i.e., conjecture (40) held, but not with strict equality in (40b). A 
representative run is depicted in fig. 2. Note the increased concavity of the 

“Although myopic-global equivalence is to be expected for the base cp (41) on the basis of 
Corollary 3.2 and Theorem 4.1, the interiority regularity condition (A.4) used in these two 
propositions prevents a claim of analytical proof. 
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indirect utility functions F,(x) and the departure of the l-period foresight 
investment function u;(x) from linearity. 

As b was decreased still further, from 0.3 to 0.1, final-period expected 
utility became a strictly monotone increasing function of the foresight range 
M; i.e., strict inequalities held in conjecture (39), and conjecture (40) failed to 
hold. A representative run is depicted in fig. 3. Note that all three investment 
functions are now nonlinear, and have a cross-point. 

Finally, for b =O.O, 2-period foresight once again yielded optimal final- 
period expected utility; i.e., conjecture (40) held, but not with strict equality 
in (40b). A representative run is depicted in fig. 4. Comparing fig. 2 and fig. 4, 
note that the investment functions take on a reverse order although 
conjecture (40) holds in both cases. Also, the qualitative behavior of the 
indirect utility functions is markedly different. 

For any initial wealth state x E X, the final-period expected utility function 
G,(u) defined by G,(u)rE,[F, of( o, u,x)] is concave in u, and takes on a 
maximum at u”,(x). An analytical proof of the monotonicity conjecture (39) 
would therefore follow immediately if it could be shown that the investment 
functions u,(x) are monotone in n in the sense that, for each n E { 1,. . ., N - 1) 
and x E X, either 

(434 

or 

Wb) 

Although (43) held in all simulation runs, as indicated in figs. 1 through 4, 
the possible presence of cross-points for the investment functions seemingly 
makes an analytical proof of (43) difftcult. 

5. Discussion 

The dynamic characteristics- of a generalized Arrow-Hildreth investment 
model have been investigated, with special attention paid to risk aversion 
and foresight sensitivity. Three basic questions are posed: 

(i) Under what conditions are the monotonicity, concavity, differentiability, 
and absolute risk aversion properties of the final-period utility of wealth 
function q(x) inherited by the dynamic programming indirect utility 
functions F,(x)? 

(ii) Under what conditions does an optimal investment strategy u” 
=(uo,(x),..., u;(x)) exist, and when is it possible to sign the component 
functions u:(x) and their derivatives &$(x)/ax? 
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(iii) What are the roles played by absolute risk aversion and uncertainty in 
determining the sensitivity of final-period expected utility to the foresight 
range M incorporated into intermediate-period investments? 

Questions (i) and (ii) are addressed in section 3. Relatively weak conditions 
are found sufficient to guarantee the existence of an optimal investment 
strategy u“ and the inherited monotonicity and concavity of the indirect 
utility functions F,(x). However, an interiority assumption is resorted to in 
order to rigorously establish inherited differentiability and decreasing 
absolute risk aversion properties for the functions F,(u), and various linearity 
restrictions are imposed on the dynamic wealth constraint state functions 
f,(. ) in order to sign the investment functions u:(x) and their derivatives. 

Question (iii) is addressed in section 4. An upper bound provided for the 
loss in final-period expected utility resulting from myopic intermediate-period 
investments is shown to vary directly with the variance of myopically 
achievable utility, the ratio of global to myopic marginal utility, and the 
absolute difference between global and myopic absolute risk aversion. The 
interdependent roles played by the curvature of the utility function q(x) and 
the dispersion of the probability distributions p,,(co) in determining foresight 
sensitivity are thus clarified. 

Finally, the results of a foresight sensitivity study for a special 3-period 
basic investment mode1 (S) are summarized in section 4. Final-period 
expected utility was found to be a monotone increasing function of the M- 
period foresight range incorporated into initial period investment, 15 M 2 3. 
This result was expected, since period-by-period returns in the basic 
investment model are positively correlated, given any monotone increasing 
specifications for the myopic intermediate-period utility functions U,(x). See 
Tesfatsion (1980a). 

Nevertheless, it was also found that a 2-period foresight range for initial 
period investment yielded optimal final-period expected utility to at least four 
decimal places for final-period ‘p* utility of wealth functions of the form q(x) 
=a - ci exp (-d, x) -c2 exp (- d,x). This result was not expected in view of 
the shortness of the time horizon. It is interesting to note that the utility of 
wealth function fitted by Hildreth (1979) to the responses of Minnesota 
farmers facing hypothetical risk situations took precisely this form, i.e., q(x) 
= - exp ( -0.00006x) - 0.018 exp ( -0.0002x). 

Similar simulation results, not reported, were obtained for a 4-period 
special basic investment model. The q* class of utility functions q(x)=a+ b.u 
-xckexp (I&x) thus seems to have special and interesting foresight 
sensitivity properties. A more extensive investigation of the q* class of utility 
functions is currently being undertaken, and comparative foresight sensitivity 
studies of alternative classes of decreasingly risk averse utility functions are 
planned. 
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Appendix: Proof outlines 

A.1. Proof‘ of Theorem 3.1 

By definition, FN(x)=EN[q -&(w. u”,(x),x)]. By compactness of a and 
twice continuous differentiability of cp( .) and fj(o,. ), it follows by a 
Lebesque dominated convergence argument that expectation and 
differentiation operations can be interchanged for (pofN, thus condition (9a) 
and the negative definiteness of DN(.x) in (8~) hold by assumption (A.4). It 
follows by an implicit function argument that u;(x) is continuously 
differentiable at x, and satisfies (8). The derivatives (9b) and (SC) then follow 
by direct calculation. The analogous results for n < N are similarly obtained. 
Given (AS), the thrice continuous differentiability of each F,( . ) follows by 
induction from (8) and (SC). Q.E.D. 

A.2. Proof of Theorem 3.2 

Given (A.3) and (A.6) , it follows by Tesfatsion (1980a, thm. 3.6) that each 
indirect utility function F,( . ) for the basic model is strictly increasing. 

To establish concavity, let TV [0, l] and x*,x’ EX be given. Let u1 and u2 
attain F,(s’) and F,(x2), respectively, and define x’=tx’ +[l- t]x2 and 
I:’ s ttr’ + [ 1 - t]02. Using assumptions (A.7) and (A.8), 

F, (x-’ 12 Ei4-P (.fN (w, 1!‘, x’ ) 1 

=tF,(xL)+[l -t]FJx2), (a.1) 

hence FN(. ) is concave. It follows by induction that FN(. ) is concave for 
each IKE (0,. . ., N). Moreover, it is clear from (a.1) that strict concavity will 
hold for each F,,( . ) if cp( .) is strictly concave. Continuity of the function 
F,( . ) over X then follows from the assumed openness of X. Q.E.D. 

A.3. Proof of Lemma 3.1 

Letting primes denote differentiation with respect to x, h’(x) 
=.k’(wxMW, ~“(x)=jng”( to,x)p(dx), and ~“‘(x)=~~~“‘(w,x)~(~w). For 
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any XEX, R;(x)sO if and only if h’(x)h”‘(x)l (h”(x))‘. However, 

R;(x,~)sOp-a.e.o=-g’(w,x)g”‘(o,x)~ (g”(o,x))‘p-a.e.o. 

*Jg’(o, x)g”‘(o, x) 2 lg”(to, s)l jr - a.e.o. 

= [h”(X)]‘, (a.3 

and, by Holder’s Inequality, 

h’(x)h”‘(x))= (SnJg~(w,x)g’“(o,x)~(do))‘, (0 

strict inequality holding in (a.3) unless (12) holds in the statement of Lemma 
3.1. Q.E.D. 

A.4. Proof of Lemma 3.2 

To establish the desired conclusion, it s&ices to prove that s(x) is a thrice 
differentiable strictly increasing function satisfying s”‘(x)s’(x) 2 [s”(x)]~ for 
each xeX, strict inequality holding if R,(u,x) is a strictly decreasing function 
of x. 

By assumption (14), h~,(u(x),x)=h,,(o(x),x)=h,,,,(u(x),x)=O for all VEX. 
Since h( .) is thrice continuously differentiable, all partials up to the third 
order are interchangeable. By assumption, u(x) is continuous and piecewise 
differentiable. Thus s’(X)=~~,(u(x),x),s”(X)=h,,(L’(X),X), and s”‘(X) 
=&(u(x),x); and the desired conclusion follows immediately from the 
assumptions on R, (u, x). Q.E.D. 

A.5. Proof of Theorem 3.3 

By Theorem 3.1 and Theorem 3.2, FL > 0 and FL 5 0, and hence RFn 2 0 for 
each n E (0,. . ., N}. It remains to show that R;” SO. 

Define a thrice continuously differentiable function h: V x X+R, strictly 
increasing in x, by h(u,x)rE,[q* fN(w,u,x)]; and, for each UE V, define a 
function gv:CJ x X-tR, continuous over Sz for each XGX and thrice 
continuously differentiable and strictly increasing over X for each WE 0, by 
g~(~,x)=cp~fN(~,~,x). 

Define R,.N = - (d2fN/?x2)/dfN/O?x and RiN = i?RJN/dx. Note that R;, SO if 
and only if condition (15) in Theorem 3.3 holds. Thus, defining the usual 
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absolute risk aversion measure for gu(o,x) considered as a function of x, 

it follows by condition (15) and the concavity and monotonicity restrictions 
on cp, R,, and fN that 

R$,(w,x)=R; 2 [ 1 2 d2fN 
+RqdxZ+R;,40, (a.3 

for all (w,x)~ax X. Hence, by Lemma 3.1, R,(u,x)= -h,,(u,x)/h,(u,x) is a 
non-increasing function of x. It follows by (A.4), Theorem 3.1, and Lemma 
3.2, that RFN(x)= -Fk(x)/Fh(x) is a non-increasing function of x, where 

F&t(x)- sup h(u,x)= sup &,x)=m”,(x),x) (a.61 
1’6 V(N.XJ ~~lnt(V(N.x)l 

is a strictly increasing, concave, thrice continuously differentiable function of 
x. The remainder of the proof for n<N follows by induction on 
n. Q.E.D. 

A.6. Proof of Corollary 3.1 

In the induction proof for Theorem 3.3, concavity of the indirect utility 
function F,, i ( . ) is used to ensure RF,+, 2 0, hence 

df” 2 R$,(o,x)=R;~+, z +RF,+, g+R;“50, [ 1 
in the nth induction step, given R;.+, = CO, R; 5 0, and f.( . ) concave in x. If 
d2f,/dx2 -0, then the final two terms in (a.7) janish, and concavity of F,, i is 
not needed to ensure this inequality. Q.E.D. 

A.7. Proof of Corollary 3.2 

Under the assumptions of Corollary 3.2, it follows from Theorem 3.1 that 
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F;(x)=E,cp”b;=E,[-Rqq’]b;= -cb;E,cp’. 

F;(x)= b,E,cp’. 

It follows that 

RFN(x)= -[-cb;E,q’]/bNE,q’=cbN=cN. 

The remainder of the proof follows by induction on H. Q.E.D. 

A.8. Proof of Theorem 3.4 

For any XEX and nE{O,...,N}, define B:V+R by 

Bb)=E,F,+, ~f,Cw,u,x,. b.8) 

By Theorem 3.1 and Theorem 3.2, B( . ) is a strictly concave function 
satisfying 

(71 B’(u)=E,F:,+,(f,(w,u,x))~(o,u,x), (a.91 

B’(L(gx)=O. 

Thus, by assumption (18), 

(a.lO) 

? 
B’(O)=F:,+,(H,(x,O))E, G,(q,,O,x)+$$ (x,0) 1 . (a.1 1) 

Since FA+ 1 >O, it follows that 

u,(x)~OOO=B’(u~(x))~B’(0) 

G.(w.,O,x)+~(x,O) 1 . (a.12) 

Suppose in addition (AS) holds, RbSO, and conditions (20) and (21) in the 
statement of Theorem 3.4 are satisfied. Then it follows from Theorem 3.3 
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that Rkn+, = < 0. By monotonicity off,( . ) with respect to x, HA >O. Thus, using 
Theorem 3.1 and (a.12), and letting d = (o,,u~(x),x), E,(~~J~u)(w,O,X) 
=&G,(q)>0 implies v:(x)>0 and 

au:(x) 
p= -D,(x)-‘& 

dX 
F:+,(J,(d))$d)$(d) 1 

’ af af. (f,(d))F,+,(f,(d))x(d)du(d) 1 
=D.(x)-‘~:,(~)E,CRF,+,(G,(~,)~::(X)+H,(~)) 

x C,+ , U,kO)G&,)l 

L~,(x)-~H:,(x)RF,+,(H,(~))E,CF:,+I(~,(~))G,(W,)I 

=D,(x)-‘H~(x)R,~+,(H,(x))~‘(u~(x))=O, (a.13) 

and conversely if E,G,(o,)<O. Finally, it follows immediately from (a.12) 
that E,G,(w,)=O=>du~(x)/c’.\-0. Q.E.D. 

A.9. Proof of Theorem 3.5 

Let B( . ) be defined by (a.8). As in Theorem 3.4, one obtains 

(a.14) 

However, by independence of WA and wi, 

B’(O)=E,F:,+,(H,(O,x)+I,(w’,x)) C.(w:,O,x)+~(O,x) [ 1 
=CE,F:,+,(H,(O,x)+I,(o',x))l E.GJ&W+$” (0,x) 1 . 

(a.15) 

The desired result (24) then follows from (a.14) and (a.15), since F:, 1 >O. 
IEDC- D 
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To establish (27) first define an auxiliary function Y :R+R by 

(a.16) 

where superscripts 1 and 2 on E,[ .] will be used to denote expectation with 
respect to the marginal distributions of w,’ and 0,2, respectively. Then 

B(u)=E,2Y(Gn(w2)u+H,(x)), (a.17) 

and 

(a.18) 

By Theorem 3.3, Rk”+, = (0. It follows by Lemma 3.1 that R&SO. By 
monotonicity off,( . ) with respect to x, Hk > 0. Thus, using Theorem 3.1 and 
(24), and letting d = (o,, uz(x),x) and e= G,(o~)u~(x)+ H,(x), E,ZG,(qf)>O 
implies u:(x)>0 and 

%xX) -=-D”(x)-‘E, ax F:+,il.(d))$$d)$d) 1 
= -D,(x)-%~;+~(G,(~,2)u::(x)+H,(x)+I,(w,f)) 

xH:,(x)G,(d) 

= -D,(x)-‘Hb(x)E,2Y”(G,(o,2)u:(x)+H,(x))G,(w,Z) 

=D,(x)-‘H:(x)R,(H,(x))B’(u;(x))=O, 

and conversely if E,2G,(&) CO. Finally, it follows immediately from (24) that 
E,2G,,(&)=O implies au:(x)/dx=O. Q.E.D. 

A.lO. Proof of Theorem 3.6 

Theorem 3.6 follows immediately from Theorem 17.12 in Hinderer (1970, 
p. 116), once the basic model (4) is identified as a special case of Hinderer’s 
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model. The principal correspondences are S = e, A = V, 

r,(h,u)= 
0 if n#N, 

E~cpof~(w~,u,f,~(h)) if n=N, 

and 

ll,(h, 0)- 
1 if o=u,(t,(h)), OsnSN, 
0 otherwise, 

for all (h, u, w)EH, x V x 52, where I-I, is defined by (28) and t,(h) is defined 
by (30). See Hinderer (1970, p. 12, remark 6, pp. 78-81, p. 118). Q.E.D. 

A.ll. Proof of Theorem 4.1 

The proof of Theorem 4.1 follows from Theorem 3.1 and Tesfatsion 
(1980a, thm. 4.2) by defining Hn+I=F,+lOU-l and Wn(w,u,x) 
E U ofn(o, u, x), and noting that 

H n+~~K=Fn+Iof nr 

H;+,(x)=F;+,(U-“(x))U-“(x)>O, XEX, 

and 

H:+,W(Y))=~~,(~),~ Fi+1(y) CR,(Y)-&+,(Y)l, YEY, XEX. 

Q.E.D. 
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