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1 Abstract—Short-term congestion forecasting is highly 
important for market participants in wholesale power markets 
that use Locational Marginal Prices (LMPs) to manage 
congestion. Accurate congestion forecasting facilitates market 
traders in bidding and trading activities and assists market 
operators in system planning. This study proposes a new short-
term forecasting algorithm for congestion, LMPs, and other 
power system variables based on the concept of system 
patterns—combinations of status flags for generating units and 
transmission lines. The advantage of this algorithm relative to 
standard statistical forecasting methods is that structural aspects 
underlying power market operations are exploited to reduce 
forecast error. The advantage relative to previously proposed 
structural forecasting methods is that data requirements are 
substantially reduced. Forecasting results based on a NYISO case 
study demonstrate the feasibility and accuracy of the proposed 
algorithm. 

Index Terms—Congestion forecasting, price forecasting, 
wholesale power market, locational marginal price, load 
partitioning, convex hull algorithm, system patterns 

I.  INTRODUCTION 
N many transmission regions, congestion in wholesale 
power markets is managed by Locational Marginal Prices 

(LMPs), the pricing of power in accordance with the location 
and timing of its injection into or withdrawal from the 
transmission grid. Congestion and LMP forecasts are highly 
important for the decision-making of market participants. 
Accurate congestion and LMP forecasts give advantages to 
market traders in bidding and trading activities and to market 
operators for system planning.1 

Many studies have focused on electricity price forecasting 
based on statistical tools [1]-[5] and structural models [6]-[7], 
yet few studies have focused on congestion forecasting. Li [8] 
applies a statistical model to predict line shadow prices. EPRI 
[9] has developed a congestion forecasting model that uses 
sequential Monte Carlo simulation to produce a probabilistic 
load flow. The EPRI model provides congestion probabilities 
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for transmission lines of interests, but it requires intensive data 
input to the load flow model.  

Li and Bo [10]-[11] examine LMP variation in response to 
load variation, and they predict the next binding constraint 
when load is increased. However, the authors also assume that 
a particular system growth pattern exists and that load growth 
at each bus is proportional to this pattern. Most U.S. 
wholesale power markets operating under LMP are 
geographically large; hence, distributed loads do not 
necessarily exhibit proportional growth. Moreover, the 
authors’ approach has not been applied in large-scale power 
systems where practical issues of limited data availability need 
to be considered. 

In our previous study [12], a piecewise linear-affine 
mapping between distributed loads and DC-OPF system 
variable solutions was identified and applied to forecast 
congestion and LMPs  under the maintained assumption that 
complete historical information was available regarding the 
marginality (or not) of generating units and the congestion (or 
not) of transmission lines. This method is able to give an exact 
prediction result since it is derived from the core structure of a 
wholesale power market. However, when applied to the actual 
forecasting of large-scale wholesale power systems, data 
requirements become a problem. The needed historical 
generation capacity data and line flow data are either publicly 
unavailable on market operator websites or only available 
with some delay. Consequently, the correct pattern of binding 
constraints corresponding to any possible future load point is 
difficult to effectively identify, which in turn prevents the 
accurate forecasting of system variables.  

Building on [12], this study develops a new algorithm for 
the short-term forecasting of system variables in wholesale 
power systems with substantially reduced data requirements.  
This algorithm permits the derivation of estimated probability 
distributions for congestion, LMPs, and other DC-OPF system 
variable solutions in real-time markets and in forward markets 
with hour-ahead, day-ahead and week-ahead time horizons, 
conditional on a given commitment-and-line scenario that 
specifies a set of  generating units committed for possible 
dispatch and a set of transmission lines capable of supporting 
power flow. Moreover, given suitable availability of historical 
data, this scenario-conditioned forecasting algorithm can be 
generalized to a cross-scenario forecasting algorithm by the 
assignment of probabilities to different commitment-and-line 
scenarios.   

This new forecasting algorithm makes use of two 
supporting techniques in order to substantially reduce the 
amount of required data relative to [12]. The first technique is 
a method developed by Bemporad et al. [13] and Tøndel et al. 
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[14] for dividing the parameter space of a Quadratic-Linear 
Programming (QLP) problem into convex subsets such that, 
within each convex subset, the optimal solution values can be 
expressed as linear-affine functions of the parameters. A 
similar technique is applied in this study to a QLP DC-OPF 
problem formulation to show that, conditional on any given 
commitment-and-line scenario, the load space can be divided 
into convex subsets within which the optimal DC-OPF system 
variable solutions are linear-affine functions of load. Each 
convex subset corresponds to a unique system pattern, that is, 
a unique array of flags reflecting a particular pattern of 
binding minimum or maximum capacity constraints for the 
committed generating units and available transmission lines 
specified by the commitment-and-line scenario. 

The second technique concerns convex hull determination.  
Given any collection of points, computational geometry [15] 
provides algorithms to compute the corresponding convex hull, 
i.e., the smallest convex set containing these points. Convex 
hull algorithms have been gaining popularity in the areas of 
computer graphics, robotics, geographic information systems 
and so forth. To date, however, they have not been applied in 
electricity market forecasting. A convex hull algorithm is used 
in this study to estimate the convex subsets of load space 
within which DC-OPF solutions are linear-affine functions of 
load when incomplete historical data prevent their exact 
determination.   

 More precisely, our new forecasting algorithm generates 
short-term forecasts for congestion, LMPs, and other power 
system variables as follows. Let L denote a vector of loads at 
some possible future operating point corresponding to a 
particular commitment-and-line scenario S.  A convex hull 
method is first used to estimate the division of load space into 
convex subsets (system pattern regions), each corresponding 
to a distinct historically-observed system pattern of binding 
capacity constraints for the particular committed generating 
units and available transmission lines specified under S.  A 
probabilistic point inclusion test is next used to calculate the 
probability that L is associated with each historical system 
pattern, taking into account the imprecision with which the 
system pattern regions in load space are estimated. The 
congestion conditions at L are then probabilistically forecasted 
using the probability-weighted historical system patterns, and 
forecasts for LMPs and other system variables at L are 
calculated using the linear-affine mapping between load and 
DC-OPF system variable solutions that corresponds to each 
probability-weighted historical system pattern.  

Compared to state-of-the-art forecasting techniques for 
power markets, our new scenario-conditioned forecasting 
algorithm has the following two advantages: 
• First, our algorithm makes novel use of convex hull 

techniques to enable the short-term forecasting of 
congestion conditions, prices, and other system variables 
for large-scale wholesale power systems using only 
publicly available data.  

• Second, our algorithm proposes the novel use of system 
patterns as an effective way to take generation and 

transmission capacity constraints into account when 
forecasting DC-OPF-generated system variable solutions, 
thus permitting more accurate forecasts to be obtained. 

The remainder of this paper is organized as follows. The 
general formulation of our forecasting problem is presented in 
Section II. A detailed description of our basic scenario-
conditioned forecasting algorithm is provided in Section III. 
In Section IV, after some practical data-availability issues are 
addressed, we present a probabilistic extension of our basic 
scenario-conditioned forecasting algorithm that is suitable for 
addressing these data availability issues. In Section V we 
present a NYISO case study that illustrates the effectiveness 
of the probabilistic scenario-conditioned forecasting algorithm 
developed in Section IV. In Section VI we discuss how this 
algorithm can be further generalized to permit cross-scenario 
forecasting. Concluding remarks are provided in Section VII. 

II.   BASIC FORECASTING PROBLEM FORMULATION 

In electricity markets, congestion occurs when the available 
economical electricity has to be delivered to load “out-of-
merit-order” due to transmission limitations. That is, higher-
cost generation needs to be dispatched in place of cheaper 
generation to meet this load in order to avoid overload of 
transmission lines. In this case, the LMP levels at different 
nodes separate from each other and from the unconstrained 
market-clearing price. Therefore, congestion is a critical factor 
determining the formation of LMP levels. 

However, congestion patterns are difficult to anticipate 
since they are related to the network topology of power 
systems. Provided perfect information is available, such as 
network data, load data, and generator bidding data, a market 
clearing model could be utilized to obtain accurate forecasts of 
congestion conditions and prices. Nevertheless, two issues 
arise for this direct forecasting method. First, most market 
traders do not have direct access to the information that is 
needed to implement this method; they would have to depend 
on data published by market operators. Second, the market 
operators, themselves, would need a high degree of 
computational speed to carry out the required computations.  

As a result, statistical tools have been developed that tackle 
these two forecasting issues by modeling the statistical 
correlation between prices and explanatory factors. These 
statistical tools lack explicit consideration for congestion, 
partly because no effective approach has been developed to 
enable these tools to capture and express the effects of 
congestion. Ignoring the effects of congestion makes the 
forecasted prices less reliable and difficult to interpret at 
operating points with abnormal price behaviors. 

Surely it is possible to glean some useful information about 
future possible congestion conditions based on statistically 
forecasted LMPs.  However, these intuitive insights, based on 
forecasters’ experiences, cannot provide reliable congestion 
forecasts.  From a cause-and-effect point of view, congestion 
is the cause while LMP is the effect. One cannot infer the 
cause (congestion) from the effect (LMP) since LMP is not 
solely driven by congestion. In particular, statistical LMP 
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forecasting tools do not take into account the structural 
aspects of power markets that fundamentally drive the 
determination of LMPs: namely, the fact that LMPs are 
derived as solutions to optimal power flow problems subject 
to generation capacity and transmission line constraints.  

As explained more carefully in Section III, the novel 
concept of a “system pattern” is used in this study to 
incorporate the structural generation capacity and transmission 
line aspects that drive congestion outcomes. The forecasting 
of congestion at a possible future operating point is thus 
transformed into a problem of estimating the correct system 
pattern at this operating point.   Moreover, the forecasting of 
prices and other system variables at this operating point can 
subsequently be undertaken using the particular linear-affine 
mapping between load and DC-OPF system variable solutions 
that is associated with this system pattern.  

This basic forecasting approach makes three simplifying 
assumptions. First, it is assumed that the forecasting of system 
variables at possible future operating points can be 
conditioned on a particular commitment-and-line scenario, 
that is, a particular generation commitment (designation of 
generating units available for dispatch) and a particular 
network topology (designation of available transmission lines).  
Second, it is assumed that a lossless DC-OPF problem 
formulation is used for the determination of LMPs and other 
system variables, implying in particular that the loss 
components of LMPs are neglected. Third, it is assumed that 
generator supply-offer behaviors are relatively static in the 
forecasting horizons. 

III.  BASIC FORECASTING ALGORITHM DESCRIPTION 

A.  System Patterns and System Pattern Regions 
At any system operating point, the number of marginal 

generating units and binding transmission constraints tends to 
be small compared to the number of nodes, transmission lines, 
and generating units. For example, in the Midwest 
Independent System Operator (MISO) region with 36,845 
network buses and 5,575 generating units, the number of day-
ahead binding constraints is published daily and is typically 
observed to be less than 20 for an hourly interval [16]. On the 
other hand, high-cost units such as gas and oil units are more 
likely to become marginal units during peak hours, the 
number of which is modest.   

Exploiting this important characteristic of power markets, 
the idea of a system pattern is introduced consisting of a 
vector of flags indicating the marginal status of committed 
generating units and the congestion status of available 
transmission lines at any given system operating point; see 
Table I. As long as the number of marginal generating units 
(labeled 0) and the number of congested transmission lines 
(labeled -1 or 1) are relatively few in number, the number of 
possible system patterns can be easily handled.  

As noted in Section II, the basic congestion forecasting 
problem can then be transformed into a problem of estimating 
the correct system pattern for any given possible future 

operating point. The congestion forecast is directly obtained 
once the system pattern is estimated, since the status of 
transmission lines is part of the system pattern. Moreover, as 
clarified below in Section III.D, short-term forecasts for prices 
and other system variables at the operating point can also be 
obtained making use of this estimated system pattern. 

 
TABLE I 

FLAGS USED FOR SYSTEM PATTERNS 
 

 Generating units Transmission lines 

State Minimum    
capacity 

Marginal 
unit 

Maximum 
capacity 

Neg Con- 
gestion 

No Con- 
gestion 

Pos Con- 
gestion 

Flag -1 0 1 -1 0 1 

 
The proposition below provides the theoretical foundation 

for our proposed forecasting approach. The proposition uses 
the concept of a convex polytope for an n-dimensional 
Euclidean space Rn, i.e., a region in Rn determined as the 
intersection of finitely many half-spaces in Rn. 

Proposition 1: Suppose a standard DC-OPF formulation 
with fixed loads and quadratic generator cost functions is 
used by a market operator to determine system variable 
solutions.  Then, conditional on any given commitment-and-
line scenario S, the load space can be covered by convex 
polytopes such that: (i) the interior of each convex polytope 
corresponds to a unique system pattern; and (ii) within the 
interior of each convex polytope the system variable solutions 
can be expressed as linear-affine functions of the vector of 
distributed loads.  

The proof of Proposition 1, originally derived in [17], is 
outlined in an appendix to this paper. The proof starts with the 
derivation of inequality and equality constraints constructed 
from the first-order KKT conditions for a DC-OPF problem 
conditional on a particular commitment-and-line scenario S. 
The inequality constraints characterize convex polytopes that 
cover the load space, where the interior of each convex 
polytope corresponds to a unique system pattern. The convex 
polytopes constituting the covering of the load space are 
referred to as System Pattern Regions (SPRs) for the fact that 
the interior of each convex polytope is associated with a 
unique system pattern.  

Within each SPR the equality constraints take the form of 
linear-affine equations with constant coefficients that describe 
fixed linear-affine relationships between DC-OPF system 
variable solutions and the vector of loads. The matrix of 
coefficients for these linear-affine functions gives the rates of 
change with regard to real-power dispatch levels for 
generating units and shadow prices for bus balance and line 
constraints when loads are perturbed within the region. This 
matrix is referred to below as the sensitivity matrix for this 
SPR.  

Fig. 1 provides illustrative depictions of two SPRs, R1 and 
R2, together with their associated linear-affine mappings, 
when the load space is composed of two-dimensional load 
vectors L = (L1, L2). The symbol P denotes the vector of unit 
dispatch levels, and the symbol Λ  denotes the vector of dual 
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variables.  The mappings are characterized by sensitivity 
matrices (K1, K2) and ordinate vectors ( 0

1K , 0
2K ) that are 

constant within each SPR, which implies that the DC-OPF 
solutions for P and Λ  can be expressed as fixed linear-affine 
functions of the load vector L within each SPR.  

0
1 1

P
K L K⎡ ⎤

= +⎢ ⎥Λ⎣ ⎦
0

2 2

P
K L K⎡ ⎤

= +⎢ ⎥Λ⎣ ⎦

 
Fig. 1. Illustration of two system pattern regions (SPRs) in load space. 

B.  Convex Hull Estimation of Historical SPRs 
In practice, deriving the exact form of the SPRs is difficult 

due to limited access to most of the required information. This 
required information includes supply offer data, generating 
unit capacity data, and transmission limit data.  

This lack of information can be overcome by applying a 
“convex hull algorithm” to historical load data to estimate 
SPRs. The convex hull of a point set B is the smallest convex 
set that contains all the points of B [18]. A convex hull 
algorithm is a computational method for computing the 
convex hull of a set B.    

As will be concretely illustrated in Section V, each 
historical load point corresponding to a particular 
commitment-and-line scenario S can in principle be associated 
with a distinct system pattern based on corresponding 
historical data regarding the marginal status of the committed 
generating units and the congested status of the available 
transmission lines. The historical SPR corresponding to each 
such historically identified system pattern can then be 
estimated by deriving the convex hull of the collection of all 
historical load points that have been associated with this 
system pattern.    

This study makes use of the “QuickHull algorithm” to 
estimate historical SPRs conditional on a given commitment-
and-line scenario S. The QuickHull algorithm, developed by 
Barber et al. [19], is an iterative procedure for determining all 
of the points constituting the convex hull of a finite set B. At 
each step, points in B that are internal to the convex hull of B, 
and hence not viable as vertices of the convex hull, are 
identified and eliminated from further consideration. This 
process continues until no more such points can be found. 

An illustrative application of the QuickHull algorithm for a 
finite planar set B is presented in Fig. 2.  The set B is first 
partitioned into two subsets B1 and B2 by a line lr connecting 
a left-most upper point l to a right-most lower point r, as 
depicted in in Fig. 2(a). More precisely, the points in B with 
the smallest x value are first selected and, from among these 
points, a point with a largest y value is chosen to be the left-

most upper point l; similarly for the right-most lower point r. 
For each subset B1 and B2, a point z in B that is furthest from 
lr is determined and two additional lines are constructed, lz

ur  
from l to z and zr

uur
from z to r; see Fig. 2(b). By construction, 

points of B that lie strictly inside the resulting triangle lzr are 
strictly interior to the convex hull of B and hence can be 
eliminated from further consideration. The points on the 
triangle itself are possible vertex points for the boundary of 
the convex hull of B.   

 
Fig.  2. Illustration of the QuickHull algorithm. 
 

To continue the recursion, the above procedure is repeated 
for the reduced subset BRed of B resulting from this 
elimination.  Specifically, two subsets and associated triangles 
are formed as before for BRed and the points of BRed lying 
within the interiors of the resulting triangles are eliminated. If 
a triangle ever degenerates to a line, then all the points along 
the line lie on the boundary of the convex hull of B by 
construction. For example, in Fig. 2(c) the endpoints r and m 
of the line rm both lie on the boundary of the convex hull of B.  

 This process of elimination continues until no additional 
points to be eliminated can be found. Since B is finite, the 
process is guaranteed to stop in finitely many steps. All the 
convex hull points for B (boundary and interior) can be 
determined recursively in this manner.  The complete convex 
hull for B is depicted in Fig. 2(d). By construction, this 
convex hull is a planar convex polytope. 

The main advantage of the QuickHull algorithm relative to 
other such algorithms is its ability to efficiently handle high-
dimensional sets B by reducing computational requirements 
[20]. The QuickHull algorithm has been widely used in 
scientific applications and appears to be the algorithm of 
choice for higher-dimensional convex hull computing [21]. 

C.    Basic Point Inclusion Test 
 Suppose the load space has been divided up into estimated 

SPRs whose interiors correspond to distinct system patterns, 
conditional on a given commitment-and-line scenario S.  
Consider, now, the task of forecasting congestion conditions 
at some future operating point a short time into the future for 
which scenario S again obtains. The essence of this 
forecasting problem is the detection of the correct SPR for this 
future operating point. If the correct SPR can be detected, then 
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congested conditions can be inferred directly from the 
corresponding system pattern. 

This detection is undertaken in this study by means of a 
“point inclusion test”. The basic point inclusion test used in 
this study is illustrated in Fig. 3 for an SPR in a load plane. 
Recall from Section III.A that each SPR takes the form of a 
convex polytope, i.e., a region expressable as the intersection 
of half-spaces; hence each SPR has flat faces with straight 
edges. Let the normal vectors pointing towards the interior of 
the SPR be constructed for each edge of the SPR. Now 
consider the depicted point P1, and let 1aP

uuur
 denote the vector 

directed from the vertex a to the point P1. The dot product 
between 1aP

uuur
 and each normal vector of each neighboring edge 

of a is greater than or equal to 0. If this is true for all vertices 
of the SPR, the point P1 is judged to be on or inside the SPR. 
On the other hand, one can see that P2 is outside the SPR since 
the dot product of 2aP

uuur
 and the normal vector for the 

neighboring edge connecting a to b is negative.  

a

b
c

d

e

p1

p2

L1

L2

O  
Fig. 3. Illustration of the basic point inclusion test for an SPR in a load plane. 

 As will be seen in Section IV, practical data-availability 
issues prevent the use of the basic point inclusion test for the 
exact determination of the SPR containing any possible future 
load point L. However, given a suitable probabilistic extension 
of this basic point inclusion test, the probability that any 
particular SPR contains L can be estimated. 

D.  Linear-Affine Mapping Procedure 
Given sufficient generation and transmission information, 

each historical load point can be associated with an SPR 
according to the status of the generating units and 
transmission lines at the historical operating time. More 
precisely, given any commitment-and-line scenario S, 
consider the collection of all historically observed load points 
obtaining under S.  Let this collection of historical load points 
be partitioned into subsets corresponding to distinct system 
patterns for scenario S.   For each load subset, use the 
QuickHull algorithm to calculate its convex hull in load space.  
Each of these convex hulls then constitutes a distinct 
estimated SPR for scenario S. In principal, any future load 
point corresponding to scenario S can then be associated with 
one of these estimated SPRs by means of the basic point 
inclusion test. This association permits the prediction of 
congestion, prices, and other DC-OPF system variable 
solutions at this load point.  

To see this more clearly, let h
iY and h

iL denote matrices 
consisting of all historically observed DC-OPF system 
solution vectors and load vectors corresponding to a particular 
system pattern i for a particular commitment-and-line scenario 
S.  Let the SPR in load space corresponding to this system 
pattern, denoted by Ri, be estimated by the convex hull REi of 
the collection of all of the historically observed load vectors 
included in h

iL .   
By Proposition 1, the mapping between h

iY and h
iL  can be 

expressed in the linear-affine form 
0h h

i i i iK LY K= +                                   (1) 
where Ki denotes the sensitivity matrix corresponding to Ri.  
Normally there will be multiple historical operating points 
corresponding to any one SPR for a given commitment-and-
line scenario S.  In this case Ordinary Least Squares (OLS) 
can be applied to (1) to obtain estimates ˆ

iK and 0ˆ
iK for iK  

and 0
iK , as follows: 

( )
0

1
ˆ )
ˆ( )

(
( )

T

T T hi

iT

i

TK

K

−

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

X X X Y                       (2)   

where )[ ]( h T

i
L=X 1 .   

     Now let f
iL  denote a possible load vector for a future 

operating time that has been found to belong to the estimated 
SPR REi, as determined from a basic point inclusion test 
applied to the collection of all historically estimated SPRs 
corresponding to scenario S.  Then the forecasted vector f

iY of 

DC-OPF system variable solutions corresponding to f
iL  can 

be calculated as 
0ˆ ˆf f

i i i iK LY K= +                             (3) 
The above linear-affine mapping procedure is modified in 

Section IV to accommodate some practical issues arising from 
data incompleteness. 

IV.  EXTENSION TO PROBABILISTIC FORECASTING  
Practical data availability issues arise for the 

implementation of the basic scenario-conditioned forecasting 
algorithm outlined in Section III. This section discusses how 
these issues can be addressed by means of a probabilistic 
extension of this basic algorithm. Throughout this discussion 
the analysis is assumed to be conditioned on a given 
commitment-and-line scenario S. 

A.  Practical Data Availability Issues 
The basic scenario-conditioned forecasting algorithm 

proposed in Section III assumes that historical data are 
available regarding binding constraints for all generating units 
and for transmission lines on an hourly basis. In actuality, 
however, the marginal status of generating units is either 
confidential or published with limitations. Moreover, the 
theoretical load space cannot be fully reflected by the hourly 
historical load data which represent several realizations and 
subsets of the complete load space. 
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Due to these data limitations, in practice the set A  
indexing hourly binding constraints cannot be completely 
determined.  Consequently, estimates obtained for the SPRs 
could be biased.   

The two basic ways in which this bias could arise are 
illustrated in Fig. 4 for a simple two-dimensional load space.  
Suppose the SPR corresponding to the true binding constraint 
set A  is given by RA (area 1) in Fig. 4.   

This true SPR RA can in principle be determined by 
applying the basic point inclusion test to every possible future 
operating point. Suppose, however, that the practically 
estimated binding constraint set AE1 is incomplete; for 
example, suppose AE1 only reflects the status of the most 
frequently congested lines. Given complete historical load 
data, the estimated convex hull RE1 (area 3) would then have 
to be larger than the true RA

 (area 1) because AE1 is smaller 
(less restrictive) than the true A . In fact, however, the actual 
estimated convex hull must be based on available historical 
load data. Since the latter is only a subset of the full load 
space, the result will be an actual estimated convex hull RE 
(area 2) that lies within RE1 (area 3). In short, incompleteness 
of A and incompleteness of the practical load space each 
separately introduce bias in the estimate for RA, but in 
opposing directions.  

 
Fig. 4. Given incomplete constraint information and/or incomplete historical 
data, convex hull estimates for SPRs can be biased. 

What are the practical implications of this bias for our basic 
forecasting algorithm? Two possible cases need to be handled, 
as illustrated in Fig. 5.  

Case A: Point r in Fig. 5 lies in the interior of two different 
estimated SPRs, namely, RE1 and RE2 corresponding to two 
distinct system patterns A1 and A2. The true SPRs 
corresponding to A1 and A2 are denoted by the shaded regions 
RA1 and RA2, respectively. The fact that the interiors of the true 
SPRs do not overlap follows from Proposition 1 established in 
Section III.A. However, as explained above, overlap can 
occur for the interiors of estimated SPRs due to bias. 

Case B: Point t in Fig. 5 is actually in the true SPR RA2.  
However, point t cannot be assigned to either of the estimated 
SPRs because the bias in these estimates has caused point t to 
lie outside of both of them.  

B.  Probabilistic Point Inclusion Test 
To mitigate the issues arising from the two types of bias 

discussed in Section III.A, mean and interval forecasting can 

be performed for the DC-OPF system variable solutions 
corresponding to any forecasted future load point Lf. This 
probabilistic forecasting can be implemented by estimating the 
probability of each SPR conditional on Lf, which can be 
characterized as a probabilistic point inclusion test. 

 

 
Fig. 5. Two possible types of forecast error due to biased SPR estimates. 

More precisely, let Lf denote the forecasted load at a future 
operating point f, and let Ri denote any particular SPR i. Let 
the collection of all historically identified SPRs be denoted by 
Rh, and let CR denote the cardinality of Rh. Suppose the 
probability of occurrence for any SPR not in Rh is zero. Then 
the probability that Ri has occurred, given that Lf has been 
observed, can be expressed as: 

( )
( )

( | )
|

( | ( ))
h

i i

i

f

f

Ri

i
i

f R P R
P R

R P R
P L

L
P L

∈

=
∑

                      (4) 

     In practice, the various terms in (4) have to be estimated.  
In this study it will be assumed that the prior probability 

( )iP R  is an empirical prior estimated by the historical 
frequency of Ri:  namely, the number of times in the past that 
Ri has been observed to occur divided by the total number of 
all past SPR observations.  
     The term ( )|f

iP L R  in (4) represents the probability of 
observing the load point Lf given that the true SPR is Ri.  
Intuitively, this probability should be a decreasing function of 
the distance between Lf and Ri. Therefore, this probability is 
estimated in this study as follows:  

( / )ˆ |
(

1
( )

1 / )
h

f i
i

i
Ri

TD
P R

D T
D

L
D

γ

γ

∈

−
=

−∑
                    (5) 

In (5) the term Di denotes the (Euclidean) distance between Lf 
and Ri, and TD denotes the total distance calculated as the sum 
of the distances between Lf and each SPR in Rh. The 
normalization parameter γ in (5) can be adjusted to obtain an 
appropriate conditional probability measure, possibly by using 
historical data as training cases. A specification 0γ = results 
in a uniform conditional probability (5) for Lf: namely, 1 
divided by the cardinality CR of Rh. In this case (5) is 
independent of the distance measures Di. Alternatively, a 
specification 1γ = implies the conditional probability (5) is 
derived from a linear normalization, while 2γ = corresponds 
to a quadratic normalization. As will be shown below, the 
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quadratic normalization form of the conditional probability (5) 
results in good forecasts for our NYISO case study.   

Mean forecasts for the DC-OPF system variable solutions at 
the operating point f with forecasted load point Lf can then be 
obtained using the estimated form for the conditional 
probability assessments (4), denoted by f

iP for short. Let 
f

iY denote the forecasted DC-OPF system variable solution 
vector corresponding to any historical SPR Ri in Rh. The mean 
forecast fY can then be calculated as  

h

f f f
i i

i R

PY Y
∈

= ∑                               (6) 

 A forecaster might also be interested in calculating upper 
and lower bounds for the DC-OPF system variable solutions 
calculated with respect to the most likely SPRs. Let nmp 
denote the forecaster’s desired cut-off number of most 
probable SPRs, and let MP represent the subset of Rh that 
contains these nmp most probable SPRs. Then the upper 
bound UBf and lower bound LBf for each forecasted DC-OPF 
system variable solution can be determined over the set of 
SPRs in MP. As a measure of dispersion, the forecaster can 
further consider the coverage probability CP, defined to be 
the summation of the probability assessments (4) for the nmp 
most probable SPRs. 

Finally, another alternative might be for the forecaster to 
consider mean forecasts calculated using the nmp most 
probable SPRs, i.e. the subset MP of Rh. For example, a 
forecaster could choose nmp=1, which would result in a point 
forecast for the DC-OPF system variable solutions based on a 
single most likely SPR Ri in Rh as determined from the 
estimated form of the conditional probability assessments (4). 

C.  Probabilistic Forecasting Algorithm 
Taking into account the practical data issues addressed in 

Sections IV.A and IV.B, our proposed probabilistic 
forecasting algorithm proceeds in four steps, as follows: 

Step 1: Perform historical data processing to identify 
historical system patterns. Use the QuickHull algorithm to 
estimate historical SPRs as convex hulls of historically 
observed load points corresponding to distinct historical 
system patterns.   

Step 2: For each historical SPR estimated in Step 1, a 
linear-affine mapping between load vectors and DC-OPF 
system variable solution vectors is derived using historical 
load and system variable data. The system variable solution 
vectors include real-power dispatch levels and dual variables 
for nodal balance and transmission line constraints. The 
linear-affine mapping is characterized by a sensitivity matrix 
and an ordinate vector. 

Step 3: For any possible load point Lf in the near future for 
which system variable forecasts are desired, a probabilistic 
point inclusion test is performed. More precisely, the 
estimated form of the conditional probability distribution (4) 
is used to estimate the probability that Lf lies in each of the 
historical SPRs identified in Step 1.   

Step 4: The results from Steps 1-3 are used to generate 
probabilistic forecasts at the future possible operating point Lf 
for generation capacity and transmission congestion 
conditions (system patterns) as well as for DC-OPF system 
variable solutions for dispatch levels and dual variables 
(including LMPs). For example, these probabilistic forecasts 
could take the form of mean and interval forecasts, or they 
could be point forecasts based on a most probable SPR. 

V.  NYISO CASE STUDY 

A.  Case Study Overview 
A case study using NYISO 2007 data is reported in this 

section for the probabilistic scenario-conditioned forecasting 
algorithm presented in Section IV.C. NYISO has a footprint 
covering 11 load zones [22]. Short-term zonal load forecasting 
data and binding constraints data are available at the NYISO 
website [23].  

This forecasting algorithm is applicable for power markets 
using either nodal or zonal LMP pricing, since Proposition 1 
in Section III.A does not rule out either form of pricing.  
However, NYISO’s website [23] only posts daily zonal load 
data for its 11 load zones, which makes it impossible to 
forecast prices down to each node.  In addition, historical 
NYISO price data reveal the similarity of LMPs within some 
of these 11 load zones, hence the negligibility of inter-zonal 
congestion between these zones.  For this reason, to reduce 
our computational burden without any significant loss of 
information, we chose to reduce the original 11 load zones for 
the NYISO to 8 load zones by combining Zone Millwood with 
Dunwoodie, and Zone West and Genesee with Central.   
   The top 25 most frequently congested high-voltage 
transmission lines during 2007 for the NYSIO day-ahead 
market are studied in [24]. The focus of our case study is on 
the five most frequently congested high-voltage transmission 
lines during 2007, specifically, DUNWODIE 345 SHORE RD 
345 1 (D-S), CENTRAL EAST-VC (C-V), PLSNTVLY 345 
LEEDS 345 1 (P-L), WEST CENTRAL (W-C), SPRNBRK 
345 EGRDNCTR 345 1 (S-E). Since the marginal status of 
generating units is not available from the NYISO, the 
conditioning scenario for this empirical study is taken to be 
the availability of these five lines. System patterns are thus 
equivalent to congestion patterns for these five lines.   

 Regarding time period, we selected 12 test days consisting 
of the last day of each month in 2007. The 24 operating hours 
starting from 0:00 for each test day were treated as future 
operating points. Forecasted load data at these hours were 
used to identify system patterns and to generate system 
variable forecasts. These forecasted results were then 
compared with actual realizations to evaluate the performance 
of our algorithm. Due to space limitations, graphical 
illustrations are presented only for January 31st and February 
28th; numerical results for the last days of other months are 
given in tables.  

All calculations for this case study were implemented using 
Matlab 7.8 on an Intel Core 2 PC with 3.0GHz CPU. The 
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computational time for each daily forecast was about 2 
minutes. 

B.   Implementation of Probabilistic Forecasting 
Historical price and load data were first processed to 

identify historical system patterns and SPRs, which is Step 1 
of our probabilistic forecasting algorithm. Sorted by 
congestion patterns, about 19 to 30 historical system patterns 
(hence SPRs) were found for each forecasted day. For 
example, the four most frequently observed congestion 
patterns for January 31st are shown in Table II. System 
patterns for other days are categorized similarly. 

 
TABLE II 

THE FOUR MOST FREQUENT HISTORICAL  
CONGESTION PATTERNS FOR 01/31/2007 

 
Pattern D-S C-V P-L S-C S-E 

P1 1 0 0 0 0 
P2 0  0 0 0 0 
P3 1 1 0 0 0 
P4 1 1 0 1 0 

 
Step 2 of our algorithm was then carried out. Specifically, 

the sensitivity matrix and ordinate vector for each historical 
SPR were estimated by ordinary least squares, making use of 
the actual system operating points observed for each historical 
system pattern.   
   In Step 3, forecasted load data for the 24 operating hours of 
each test day were then treated as possible future load points. 
For each of the latter points, the probabilistic point inclusion 
test detailed in Section IV.B was used to assign estimated 
conditional probability assessments (4) giving the probability 
that this future load point was contained within each  
historical SPR. In these Step 3 calculations, we first evaluated 
the forecasting performance of three values (0, 1, and 2) for 
the normalization parameter γ  in (5) on the basis of historical 
data. The specification γ  = 2 gave the best forecast results for 
most historical days; hence, this value was chosen to forecast 
system variables for the future load points.  
    Finally, in Step 4 the results of Steps 1-3 above were used 
to generate probabilistic forecasts in the form of mean and 
interval forecasts. For the mean forecasts, nmp was set equal 
to the cardinality CR of Rh.  For the interval forecasts, nmp 
was set equal to 4. 
   For the interval forecasts, the size of nmp (i.e. the cut-off 
number of most probable SPRs) depends on the forecaster’s 
desired trade-off between accuracy and precision. A larger 
nmp tends to increase forecasting accuracy, in the sense that 
there is a better chance the correct SPR will be among the 
considered SPRs. On the other hand, the precision of any 
resulting mean forecast is correspondingly reduced (i.e., the 
variance of the forecasts across the considered SPRs is 
increased). In the current study, the specification nmp=4 is 
used for interval forecasts because it results in good precision 
without significant loss of coverage probability.   

C.  Congestion Pattern Forecasts 
Table III reports the four most probable hourly congestion 

patterns, along with their associated estimated conditional 
probabilities and coverage probability CP (based on nmp=4), 
for every fifth hour of January 31st, 2007, starting from hour 
0:00. Actual congestion patterns corresponding to each 
reported hour are highlighted in gray. As seen, for the 
reported hours the actual congestion pattern is always 
included among the forecasted congestion patterns and has the 
highest estimated conditional probability. For future reference, 
note also that the first entry of the actual congestion pattern, 
corresponding to transmission line D-S, is always 1. This 
indicates that D-S is frequently congested. 

The multiple forecasted congestion patterns associated with 
each reported hour in Table III represent several credible 
congestion scenarios that could occur in the future. If a 
forecaster desires to derive one forecast for the future 
congestion pattern, an intuitively reasonable option would be 
to select a forecasted congestion pattern that has the highest 
associated conditional probability (4). As observed in Table 
III, for the case study at hand this approach would result in the 
correct prediction of the actual congestion pattern for each 
reported hour. In general, however, more reliable forecasts for 
system conditions and DC-OPF system variable solutions 
would be obtained by making fuller use of the conditional 
probability assessments (4) to form mean forecasts and 
interval forecasts. 

 

TABLE III 
FORECASTED CONGESTION PATTERNS VERSUS THE  

ACTUAL CONGESTION PATTERN ON 01/31/2007 
 

Time Forecasted Probabilities CP Actual 

0:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3632 
0.2411 
0.2066 
0.1432 

0.9541 1   0   0   0   0 

5:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3451 
0.2043 
0.2418 
0.1486 

0.9398 1   0   0   0   0 

10:00 

1   0   0   0   0 
0   0  -1   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.4237 
0.0236 
0.3654 
0.1299 

0.9426 1   0   0   0   0 

15:00 

1   0   0   0   0 
0   0  -1   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.3661 
0.0271 
0.4243 
0.1277 

0.9452 1   1   0   0   0 

20:00 

1   0   0   0   0 
0   0   0   0   0 
1   1   0   0   0 
1   1   0   1   0 

0.4247 
0.0244 
0.3612 
0.1332 

0.9435 1   0   0   0   0 

 

D. Mean Forecasts for LMPs 
One of the benefits of congestion forecasting is to enable 

the more precise prediction of LMPs for market operators and 
traders in their short-term decision making. Forecasted and 
actual LMPs for Zone Central on Jan 31st and Feb 28th are 
shown in Figs. 6 and 7. Root Mean Squared Error (RMSE) 
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and Mean Absolute Percentage Error (MAPE) [5] are used as 
measures of forecast accuracy: 

24
2

1

1
RMSE ( )

24
actual forecast

i i
i

LMP LMP
=

= −∑             (7) 

24

1

| |1
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24

acutal forecast
i i
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−
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Fig. 6. Actual versus mean LMP forecasts for Zone Central on 01/31/2007. 
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Fig. 7. Actual versus mean LMP forecasts for Zone Central on 02/28/2007. 

 

TABLE IV 
RMSE AND MAPE VALUES FOR THE TWELVE TEST DAYS 

 

Day RMSE MAPE 

Model Proposed Alg GARCH Proposed Alg GARCH 

01/31/2007 5.026 8.689 0.0525 0.0902 

02/28/2007 3.393 4.465 0.0472 0.0384 

03/31/2007 4.029 7.094 0.0677 0.0727 

04/30/2007 4.853 8.297 0.0535 0.1005 

05/31/2007 7.401 14.741 0.0934 0.1198 

06/30/2007 3.439 13.359 0.0679 0.1485 

07/31/2007 3.941 11.623 0.0530 0.1082 

08/31/2007 4.076 5.913 0.0671 0.0781 

09/30/2007 3.249 6.636 0.0603 0.0862 

10/31/2007 4.135 8.561 0.0638 0.1176 

11/30/2007 6.476 7.208 0.0770 0.0855 

12/31/2007 7.051 14.185 0.0903 0.1435 

Table IV reports the RMSE and MAPE obtained using our 
probabilistic forecasting algorithm for each of our 12 test days.  
Corresponding forecast results obtained using a well-known 
statistical model – the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model [4] – are also shown for 
comparison. As seen, except for the slightly smaller MAPE 
value attained in February using GARCH, our forecasting 
algorithm outperforms GARCH in the sense that smaller 
RMSE and MAPE values are obtained.  

E.  Interval forecasts for line shadow prices and LMPs 
Interval forecasting is recommended over mean forecasting 

for line shadow prices. As clarified below, interval forecasting 
is more informative than mean forecasting for line shadow 
prices because the underlying attribute of interest (negative-
direction, zero, or positive-direction congestion) is measured 
by a discretely-valued indicator (-1, 0, or 1). 

Hourly upper-bound and lower-bound interval forecasts for 
the line shadow prices on line D-S on January 31st and Feb 
28th are shown in Figs. 8 and 9 along with actual line shadow 
prices for comparison.  As seen, the actual line shadow prices 
for most hours fall within the forecasted intervals.  
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Fig.8. Actual versus interval D-S line shadow price forecasts on 01/31/2007. 

0 5 10 15 20 25
0

10

20

30

40

50

Time (h)

S
ha

do
w

 P
ric

e 
($

/M
W

h)

 

 

Actual
Upper Bound
Lower Bound

 
Fig.9. Actual versus interval D-S line shadow price forecasts on 02/28/2007. 

To better interpret these findings, consider the Table III 
results which forecast that line D-S (the first congestion 
pattern entry) will be either congested or not during hour 20 
with varying probabilities.  If congestion is forecasted, it is in 
the positive direction (+1); and, from Fig. 8, the line shadow 
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price is estimated to be about $60/MWh. On the other hand, if 
no congestion is forecasted (0), then from Fig. 8 the line 
shadow price is estimated to be $0/MWh.  

One final point for interval forecasts for line shadow prices 
is important to note.  For lines for which no congestion occurs 
in any of the reported congestion patterns (e.g., line S-E in 
Table III), the corresponding upper and lower bounds for the 
forecasted line shadow price interval will both be zero, 
indicating zero congestion.   

Interval forecasts for Zone Central LMPs on January 31st 
and February 28th are shown in Figs. 10 and 11 along with 
actual LMP values for comparison. For most hours the actual 
LMP values fall within the upper and lower bounds of the 
forecasted intervals.    

The interval forecasting performance for line shadow prices 
and zonal LMPs is measured using the accuracy-
informativeness tradeoff model developed in [25]. The 
statistical loss function LOSS is defined to be 

| | ( )y m ln g
g

LOSS δ−
+=                          (9) 

In (9), y denotes the actual value, m denotes the midpoint of 
the forecasted interval, and ln(g) denotes the natural logarithm 
of the width g of the forecasted interval. Also, δ  determines 
the tradeoff between accuracy (the first term) and 
informativeness (the second term); in this case study δ  is set 
to 1. Note that a smaller LOSS indicates better performance 
for interval forecasting.  
    Table V gives the LOSS values for the interval forecasts 
obtained for line shadow price and zonal LMPs using our 
probabilistic forecasting algorithm versus the forecasts 
obtained using a statistical GARCH model. As seen, our 
probabilistic forecasting algorithm results in uniformly lower 
LOSS values than GARCH, indicating a better forecasting 
performance.   

A possible explanation for this performance difference is 
that GARCH has difficulty handling the volatility of line 
shadow prices, which can abruptly change from 0 to large 
non-zero values. In contrast, our probabilistic forecasting 
algorithm captures the physical meaning of these line shadow 
prices and this facilitates better forecasting. 
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Fig.10. Actual versus interval LMP forecasts for Zone Central on 01/31/2007. 
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Fig.11. Actual versus interval LMP forecasts for Zone Central on 02/28/2007. 

 

TABLE V 
LOSS FUNCTION VALUES AS A MEASURE OF INTERVAL 

FORECASTING PERFORMANCE FOR THE TWELVE TEST DAYS 
 

Day Shadow Price Forecasting LMP Forecasting 

Model Proposed Alg GARCH Proposed Alg GARCH 

01/31/2007 3.824 4.063 2.896 4.196 

02/28/2007 3.729 3.977 2.835 3.649 

03/31/2007 3.236 3.672 2.574 3.633 

04/30/2007 3.398 3.778 3.133 4.164 

05/31/2007 3.493 4.187 3.421 4.032 

06/30/2007 3.838 3.897 3.365 4.425 

07/31/2007 2.726 3.350 2.839 4.892 

08/31/2007 2.916 3.352 2.787 3.624 

09/30/2007 3.140 3.567 2.245 3.965 

10/31/2007 2.825 3.335 2.725 3.799 

11/30/2007 3.256 3.738 3.088 3.537 

12/31/2007 3.481 3.962 3.164 3.919 

In this study we observed that, in some months (January, 
May, November, and December), the peak-hour LMPs and 
line shadow prices were difficult to forecast with precision.  
This phenomenon could possibly be due to changes in the 
generating unit commitment pattern or in the transmission 
network topology over the forecast horizon.  To enhance 
peak-hour forecasting results, more careful collection of 
historical data might be needed to ensure that these historical 
data correspond to the same commitment-and-line scenario as 
the forecasted point. Alternatively, as discussed in the 
following Section VI, an extended cross-scenario forecast 
study could be attempted. 

VI.  EXTENSION TO CROSS-SCENARIO FORECASTING 

To this point, the forecasting algorithm developed in this 
study has been conditioned on a given commitment-and-line 
scenario S specifying a particular generating unit commitment 
pattern and a particular transmission network topology.  One 
interpretation of S is that it represents anticipated conditions at 
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a future operating point for which forecasts are desired.  
Another interpretation of S is that it represents a possible 
future system contingency (e.g., an N-1 outage scenario) 
under consideration in a contingency planning study. 

   A possibly useful extension of this algorithm would be to 
assign probabilities to distinct scenarios, thus permitting the 
probabilistic cross-scenario blending of forecasts. These 
scenarios could be characterized not only on the basis of 
system patterns, i.e., generating unit commitments and 
transmission network topology, but also on the basis of a 
variety of other types of contingencies.  

   As illustrated in Fig. 11, for any future operating point 
whose system conditions need to be forecasted, the 
corresponding generating unit commitment, transmission 
network topology, and other contingencies could be projected 
with some probabilities. In each of these projected scenarios, 
our scenario-conditioned forecasting algorithm could be 
applied to estimate congestion, LMPs, and other system 
variables.  The final forecast for any system variable of 
interest could then be the expected value of this system 
variable calculated across all projected scenarios.  

System 
Pattern 

1
System 
Pattern 

2

Historical operating points

Scenario 1 Scenario 2

New forecasted point

P2P1

 
Fig. 11 Scenario-conditioned and cross-scenario forecasting 

VII.  CONCLUSION 

Short-term congestion forecasting is critical for both market 
traders and market operators. Congestion forecasting helps to 
explain electricity price behaviors and facilitates the decision 
making of power system participants. 

This study first proposes a basic scenario-conditioned 
forecasting algorithm that permits the short-term forecasting 
of congestion, prices, and other power system variables 
conditional on a given generating unit commitment pattern 
and transmission network topology.  This basic algorithm uses 
the novel concept of a “system pattern” to permit structural 

capacity constraints on generation and transmission to be 
properly accounted for in the forecasting procedure.   

To handle practical data-availability concerns, a 
probabilistic extension of this basic algorithm is then proposed 
that can be implemented purely on the basis of publicly 
available information. The accuracy of this probabilistic 
algorithm relative to a more traditional GARCH statistical 
forecasting model is demonstrated for a NYISO case study.  

Finally, a cross-scenario extension of this forecasting 
algorithm is proposed in which probabilities are assigned to 
different scenarios. This would permit forecasters to 
probabilistically average forecasts across distinct scenarios, 
thus potentially permitting longer forecast horizons and/or 
increased availability of pertinent historical data. 

 The proposed algorithm is targeted for energy-only 
markets; future work will consider the incorporation of 
ancillary services. Future work will also explore additional 
factors, such as possible strategic supply offer behaviors by 
generators.  Moreover, alternative forms for the probabilistic 
point inclusion test, a key building block of our algorithm, 
will be systematically studied.  

APPENDIX 

Consider a wholesale power market operating over a 
transmission grid with N buses. Assume for simplicity that 
each bus i has one fixed load denoted by Li and one generator 
with a real power level denoted by Pi.  Suppose, also, that 
each generator i has a quadratic total cost function with 
coefficients ia  and ib . Finally, suppose the objective of the 
market operator in each hour is to minimize the total system 
cost of meeting fixed load subject to an injection-equals-load 
balance constraint, transmission line flow limits, and generator 
operating capacity limits.   

In particular, suppose the market operator attempts to 
achieve its objective in each hour by using the following 
standard DC-OPF formulation that assumes a lossless 
transmission system: 

2

1

min [ ]
N

i i i iP i

a P b P
=

+∑                                    (10) 

1 1
. .  0 :   

N N

i i
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− =∑ ∑                                     (11) 

j
1

[ ] F :   ,   for 1:
N

ij i i j
i

P L j Tβ μ+ +

=

− ≤ =∑              (12)

 
11 1( )TG H G G H W S Lα
−− −⎡ ⎤ ⎡ ⎤Λ = − + +⎣ ⎦ ⎣ ⎦

A A A A A A                                                                   (27) 
11 1 1 1( ) ( )T TP H H G G H G G H W S Lα α
−− − − −⎡ ⎤ ⎡ ⎤= − + + +⎣ ⎦ ⎣ ⎦

A A A A A A                                         (28) 

( )11 10 ( ) ,    /{1}T

i
G H G G H W S L iα

−− −⎡ ⎤ ⎡ ⎤≤ − + + ∀ ∈⎣ ⎦ ⎣ ⎦
A A A A A A/                                           (29) 

11 1 1 1( ) ( ) ,   /{1}T T
i i iW S L G H H G G H G G H W S L iα α

−− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤+ ≥ − + + + ∀ ∈⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
A A A A A A A/              (30) 



 12

j
1
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N
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i

P L j Tβ μ− −

=
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:   ,   for 1:U U
i i iP Cap i Nσ≤ =            (14) 

:   ,   for 1:L L
i i iP Cap i Nσ− ≤ − =            (15) 

In these equations, ijβ denotes the Generation Shift Factor 
(GSF) that measures the impact of 1MW injection by 
generator i on transmission line j.  Equality (11) represents the 
system balance constraint ensuring total generation matches 
total load.  The transmission line flow limit constraints in two 
directions are expressed in (12) and (13). The last two 
inequalities (14) and (15) express each generator’s upper and 
lower operating capacity limits.  

Proposition 1: Consider the standard DC-OPF formulation 
with fixed loads and quadratic generator cost functions 
described in (10) through (15). Suppose this standard 
formulation is used by a market operator to determine system 
variable solutions.  Then,  conditional on any given 
commitment-and-line scenario S, the load space can be 
covered by convex polytopes such that: (i) the interior of each 
convex polytope corresponds to a unique system pattern; and 
(ii) within the interior of each convex polytope the system 
variable solutions can be expressed as linear-affine functions 
of the vector of distributed loads. 

Proof Outline [17]: First note that the DC-OPF 
formulation can equivalently be expressed in the following 
compact form: 

1min
2

T T

P
P HP Pα+                        (16) 

1 1 1 1. .   :   s t G P W S L= + Λ                 (17) 
                              and, for 2 : (1 2 2 ) i N T= + + ,    

 :   i i i iG P W S L≤ + Λ                 (18) 
The notation in this general QP problem is described in [17]. 
The KKT first-order necessary conditions for (16)-(18) can 
then be expressed as follows: 

0THP Gα+ + Λ =                (19) 
1 1 1 0G P W S L− − =                (20) 

and, for 2 : (1 2 2 ),i N T= + +  
( ) 0i i i iG P W S LΛ − − =                (21) 

0iΛ ≥               (22) 
0i i iG P W S L− − ≤               (23) 

Let A  denote the set of indices corresponding to the active 
(binding) equality and inequality constraints for the DC-OPF 
problem. If the number of binding unit capacity constraints 
and line limit constraints are denoted by R and M, respectively, 
then Cardinality( A ) = 1+R+M. Let GA ,W A and S A represent 
the matrices corresponding to A . Then, GA ,W A and S A  have 
row dimension 1+R+M and column dimension N. Let 
ΛA denote the multiplier vector corresponding to A . 
Given A , equations (19)-(21) reduce to 

0G P W S L− − =A A A                      (24) 
( ) 0THP Gα+ + Λ =A A                      (25) 

Tøndel [14] defines the linear independence constraint 
qualification (LICQ) for an active set of constraints to be the 

assumption that these constraints are linearly independent. For 
the problem at hand, LICQ holds if GA  has full row rank. A 
generator that is at its upper capacity limit cannot at the same 
time be at its lower limit, hence [1 0 · · · 0] and [−1 0 · · · 0] 
never co-exist. Moreover, the GSF matrix included in GA  has 
linearly independent rows. Thus, rank(GA) = min[1+R+M, N]. 
It follows that GA has full row rank 1+R+M if 

1 R M N+ + ≤                             (26) 
The regularity condition (26) requires that the number of 

binding constraints [1+R+M] does not exceed the number of 
decision variables N, a necessary condition for the existence 
of the DC-OPF problem solutions assumed to exist in 
Proposition 1. Consequently, (26) automatically holds under 
the assumptions of Proposition 1. 

Given the LICQ (26) and the diagonal form of the matrix H, 
1( )TG H G−A A is invertible. Equations (24) and (25) can then be 

used to derive explicit solutions for ΛA and P as shown in 
equations (27) and (28). Note that these solutions are linear-
affine functions of the load vector L. 

In summary, given a particular load vector L, explicit 
solutions have been derived for P  and ΛA as linear-affine 
functions of L. However, by construction, as long as the set 
A  of active constraints remains unchanged in a neighborhood 
of the load vector L in the load space L, the linear-affine form 
of these solutions remains optimal. Such a neighborhood is 
given by the feasible region determined from (22) and (23). 
Substituting ΛA and P  from equations (27) and (28) into (22) 
and (23), one obtains inequalities (29) and (30). The load 
vectors L satisfying the latter inequalities are the intersection 
of a finite number of half-spaces in the load space, and hence 
they form a convex polytope in this load space.  
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