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Abstract

The definition of emergence remains problematic, particularly for systems
with purposeful human interactions. This study explores the practical import
of this concept within a specific market context: namely, a double-auction
market for wholesale electric power that operates over a transmission grid
with spatially located buyers and sellers. Each profit-seeking seller is a learn-
ing agent that attempts to adjust its daily supply offers to its best advantage.
The sellers are co-learners in the sense that their supply offer adjustments
are in response to past market outcomes that reflect the past supply offer
choices of all sellers. Attention is focused on the emergence of co-learning
patterns, that is, global market patterns that arise and persist over time as
a result of seller co-learning. Examples of co-learning patterns include corre-
lated seller supply offer behaviors and correlated seller net earnings outcomes.
Heat maps are used to display and interpret co-learning pattern findings.
One key finding is that co-learning strongly matters in this auction market
environment. Sellers that behave as Gode-Sunder budget-constrained zero-
intelligence agents, randomly selecting their supply offers subject only to a
break-even constraint, tend to realize substantially lower net earnings than
sellers that tacitly co-learn to correlate their supply offers for market power
advantages.
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1. Introduction

Emergence is an intriguing multi-faceted concept whose meaning remains
controversial, particularly for systems involving purposeful human interac-
tions. Consequently, it is of interest to study the practical import of this
concept for economics by examining its role in specific realistically-rendered
economic contexts.

This study examines emergence in an empirically-based model of a double-
auction market for wholesale electric power. The market operates over a 5-
bus transmission grid with spatially located buyers and sellers. Each profit-
seeking seller is a learning agent that attempts to adjust its daily supply offers
to its best advantage. The sellers are individual learners in the sense that the
learning method of each seller is calibrated (pre-tuned) to the attributes of
the seller’s specific decision environment to capture learning-to-learn effects.
However, the sellers are also co-learners in the sense that the adjustments of
their daily supply offers are in response to past market outcomes that reflect
the past supply offer choices of all sellers.

Each seller in our model can engage in two forms of strategic capacity
withholding in an attempt to influence market prices to its own advantage,
i.e., in an attempt to exercise market power . The seller can engage in eco-
nomic capacity withholding (reporting supply offers with higher-than-true
marginal costs), and/or it can engage in physical capacity withholding (re-
porting supply offers with lower-than-true maximum generation capacities).
Economic and physical capacity withholding are the two main ways in which
real-world energy sellers can exercise market power. Consequently, it is of in-
terest to energy market operators, for market power mitigation purposes, to
understand which form of market power affords greatest advantage to energy
sellers. Economic capacity withholding is relatively easy to monitor, to the
extent that a seller’s fuel type gives a strong indication of its true marginal
costs. Strategic physical capacity withholding can be difficult to distinguish
from outages and other events that cause unintentional reductions in avail-
able generation capacity.

Systematic computational experiments are then conducted to explore the
emergence of co-learning patterns , that is, global market patterns that arise
and persist over time as a result of seller co-learning. The specific co-learning
patterns of interest here are correlated seller supply offer behaviors and cor-
related seller net earnings outcomes.

One key finding is that learning strongly matters in our double-auction
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environment. Sellers that behave as Gode and Sunder (1993,1997) budget-
constrained zero-intelligence agents, randomly selecting their supply offers
subject only to a break-even constraint, tend to realize substantially lower
net earnings than sellers that tacitly co-learn to correlate their supply of-
fers for market power advantages. A second key finding is that learning-to-
learn strongly matters. The co-learning sellers perform much better when
the parameters of their learning methods are calibrated to sweet-spot values
reflecting the attributes of their particular decision environment, including
both own attributes (e.g., size, cost function, and location) and rival seller
attributes. A third key finding is that the pure exercise of economic capac-
ity withholding is typically much more profitable for sellers than any use of
physical capacity withholding.

A number of previous electricity researchers have separately explored ei-
ther economic capacity withholding or physical capacity withholding exer-
cised by learning traders, including the current authors. For example, Li
and Tesfatsion (2009a) conduct preliminary learning experiments focusing
on seller physical capacity withholding. Li, Sun, and Tesfatsion (2008,2009)
explore the emergence of spatially correlated price patterns supported by
seller co-learning when sellers can learn to exercise economic capacity with-
holding. Li and Tesfatsion (2011) explore the effects of seller co-learning on
total net surplus (efficiency) and the distribution of surplus among sellers,
buyers, and the ISO when sellers can learn to exercise economic capacity
withholding.

The only previous work we are aware of that permits learning traders to
engage simultaneously in both economic and physical capacity withholding
is Tellidou and Bakirtzis (2007). The latter authors analyze an electricity
market operating over a 2-bus transmission grid in which seller supply of-
fers take the form of an offered quantity and an offered price. The offered
quantity can be less than or equal to the seller’s true maximum generation
capacity, and the offered price can be greater than or equal to the seller’s true
reservation price. However, the authors do not undertake any comparative
analysis to determine the relative advantages to sellers of the two forms of
market power exercise. Moreover, all sellers are assumed to use the same
identically parameterized learning method.

With regard to the general economics literature, it is rare to see physi-
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cal capacity withholding treated at all.1 This could be due, in part, to the
analytical complications that arise when physical capacity withholding leads
to binding capacity constraints. It could also be due to the folk belief that,
when it comes to the exercise of market power, economic and physical ca-
pacity withholding are essentially equivalent means. When physical capacity
withholding is considered, it is typically within game contexts in which the
focus is on the existence of Nash equilibria without consideration of learning
capabilities [e.g., Dechenaux and Kovenock (2007)].

We begin our study in Section 2 with a summary discussion of emergence
as it has previously been defined and used for economic systems. A key con-
clusion from this section is that the concept of weak emergence developed
by Bedau (1997) is particularly relevant for the study of real-world economic
systems – such as electric power markets – whose complex interweaving of
physical constraints, institutional rules, and strategic human behaviors ren-
ders them analytically intractable. Roughly, Bedau defines a property P of
a system to be weakly emergent if P can be systematically generated for the
system through a finite simulation, but through no other means.

Section 3 presents our wholesale electric power market model. This model
is implemented by means of the AMES Wholesale Power Market Testbed [Li
and Tesfatsion (2009b,c), Tesfatsion (2010)], an agent-based computational
laboratory that incorporates institutional and structural features character-
izing actual U.S. wholesale electric power markets. In keeping with actual
practice, AMES implements a two-settlement system consisting of a forward
day-ahead market and a real-time balancing market that operate over a high-
voltage alternating current (HVAC) transmission grid. The day-ahead mar-
ket is organized as a double auction in which wholesale buyers submit daily
demand bids to buy energy, wholesale sellers submit daily supply offers to sell
energy, and “locational marginal prices” are determined locally (for each hour
at each grid bus) to maximize total net surplus subject to transmission and
generation constraints. Traders in AMES can be modeled as learning agents
who adjust their demand bids and supply offers over time in an attempt to
exercise market power.

In Section 4 we explain the experimental design used to test for the (weak)

1For example, firm behavior with potentially binding production capacity constraints
is only considered within one relatively small section (pp. 211-234) of the well-known 479-
page industrial organization textbook by Tirole (2003) used in graduate and advanced
undergraduate economics courses.
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emergence of two types of co-learning patterns in our market model: namely,
correlated seller supply offer behaviors, and correlated seller net earnings
outcomes. In particular, we develop a series of test cases for a 5-bus wholesale
electric power market in which the exercise of seller market power takes one of
three forms: economic capacity withholding; physical capacity withholding;
or some combination of the two.

Section 5 explains steps taken prior to our test-case experimentation to
calibrate each seller’s learning parameters to sweet-spot values attuned to
each seller’s actual decision environment. For example, each seller’s initial
aspiration level for net earnings is calibrated to its actual net earnings op-
portunities as structurally determined by its feasible supply offers in relation
to its true marginal cost function. Heat maps are used to display and inter-
pret these sweet-spot patterns. A heat map is a two-dimensional graphical
depiction of data in which groups of associated data values are distinguished
from one another by distinct colorings.

Sections 6-8 report our test-case experimental findings regarding the emer-
gence of two types of co-learning patterns: correlated seller supply offer be-
haviors, and correlated seller net earnings outcomes. Heat maps are used
to display and interpret these correlations. These heat map depictions can
be viewed as extensions of traditional industrial organization measures for
(strategic) substitution and complementarity defined in terms of the signs of
(cross) partial derivatives evaluated at a point in time [Bulow et al. (1985)].2

In the present context, which involves repeated stochastic choice by learning
profit-seeking traders embedded in an interaction network operating over a
physical network, more comprehensive ways are needed to measure the effects
of one trader’s actions on the actions and outcomes of other traders.

The key findings from the test-case experiments reported in Sections 6-8
are summarized and compared in Section 9. Concluding remarks are given in
Section 10. For improved expositional clarity, technical materials regarding
seller cost and net earnings functions, seller learning methods, and sweet-
spot learning parameter calibrations are gathered together in appendices to
this study.

2More precisely, a firm A’s product is said to be a substitute (or complement) for firm B
if more “aggressive” action by firm A, measured by an increase in some variable SA, results
in a decrease (increase) in the profits πB of firm B. Strategic substitutes (complements)
are defined in terms of the effects of a change in SA on the marginal profitability of firm
B, that is, in terms of the sign of ∂2πB/∂SB∂SA.
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2. Emergence in Economic Systems

This section briefly reviews how emergence has previously been defined
and used for the study of economic systems.3 Of special interest are the
complications caused by the presence of one or more agents with learning
capabilities.

Kuperberg (2006) provides an historical overview of emergence concep-
tions in the economics literature. He begins in 1976 with the “invisible hand”
of Adam Smith (1937). He then proceeds to a discussion of the “micromo-
tives of macrobehavior” ideas of Schelling (1978) and the work of modern-day
economists such as Alan Kirman (1993) espousing “a new kind of economics”
now known as agent-based computational economics [Tesfatsion and Judd
(2006)].4 Kuperberg concludes there is no universally agreed upon definition
of emergence, yet three core characteristics can be identified. First, there
must be at least two distinct levels of organization. Second, at the lower
level of organization, a multitude of individual agents operate in accordance
with rules. Third, aggregate outcomes occur at the higher level of organiza-
tion that result from the interactions of these individual agents but that are
not easily derivable from the rules followed by the individual agents.

Harper and Endres (2010) focus on conceptions of emergence in the mod-
ern economics literature. They conclude (page 3) that this literature reveals
“an incomplete patchwork of fragmented and contradictory notions of emer-
gence.” Table 1 (page 6) of their study homes in on differences in usage be-
tween evolutionary-institutional economists and complexity economists who
view economies as dynamic systems of interacting components (agents, units,
entities, ...). Each specific usage captures a potentially important facet of
messy economic reality: for example, novelty, non-reducibility of wholes to
their parts, downward causation, self-organization (bottom-up growth), re-
currence of regular patterns, and unpredictability.

3Detailed discussions examining historical and current controversies surrounding the
concept of emergence as used in a variety of disciplines can be found in Anderson (1972),
Auyang (1998), Stephan (1999), Corning (2002), O’Connor and Wong (2006), and
Dessalles et al. (2008). Discussions of emergence for general social science systems can
be found in Gilbert (1995), Hodgson (2000), and Squazzoni (2006).

4Somewhat surprisingly, Kuperberg makes no mention of Hayek (1948), whose recogni-
tion that markets can be “spontaneously ordered” through the coordination capabilities of
price mechanisms surely represents a relatively early identification of an emergent property
for economic systems [Lewis (2011)].
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Referring to works by Stephan (1998) and Corning (2002), among oth-
ers, Harper and Endres identify core features commonly seen in delineations
of emergence for economic systems which they suggest should be viewed as
minimally necessary for emergence. Briefly, in order for a pattern, prop-
erty, or relation to be emergent for an economic system, it must arise from
material components and depend upon the organization (connections and
interactions) of these components, not simply upon individual component
properties. Harper and Endres then identify additional features particularly
relevant to evolutionary economics which, together with the core features,
constitute a stronger form of emergence: namely, genuine novelty; unpre-
dictability in principle; and irreducibility to system component properties
either in isolation or in other simpler systems.

What are the implications for emergence when one of more “constitutent
parts” of a system are agents with learning capabilities? The general dis-
cussions of potential downward causation (from macroscopic to microscopic
levels) appearing in some articles [e.g., Section 5 of Lewis (2011)] clearly
relate to this issue. However, the issue is more directly addressed in the
literature surveyed by Dessalles et al. (2008) on emergence in multi-agent
systems. This literature explicitly recognizes that cognitive agents can be
constrained “by the whole” because perceived social phenomena can affect
their behaviors and decisions. Dessalles et al. (2008) also provide their own
thoughtful discussion of implications for emergence when agents are cognitive
observers of the world within which they interact and understand to various
extents their collective ability to affect social outcomes.5

As elaborated in Borrill and Tesfatsion (2011), real people combine con-
structive and non-constructive aspects; they can only acquire new data about
the world constructively, through interactions, but they can have possibly un-
computable beliefs about the world that influence their interactions. These
beliefs about the world can arise from inborn attributes, from communica-
tions received from other agents, or from the use of non-constructive methods

5There is a strand of research not covered by Dessalles et al. (2008) that focuses on the
emergence of social conventions in multi-agent systems with co-learning agents; see, for
example, Shoham and Tennenholtz (1994), Kittock (1995), Delgago (2002), and Urbano et
al. (2009) However, the focus of this literature is on network topology: specifically, how do
different interaction networks (e.g., scale-free versus small-world networks) affect the speed
with which conventions emerge. The relationship between co-learning and emergence is
not specifically addressed.

7



(e.g., proof by contradiction) to interpret acquired data. To the extent that
these beliefs involve perceptions of systemic properties, they provide a chan-
nel through which systemic properties can act back upon microscopic states.
Interestingly, agent-based modeling permits decision-making agents to be
learners who form both constructive and non-constructive beliefs about their
virtual computational world as guides for their interactions, and whose in-
teractions in turn inform their beliefs. These powerful modeling capabilities
should greatly facilitate the study of emergence in real-world social systems.

In all of the emergence studies mentioned above, the focus is on the emer-
gence of some pattern, property, or relation within a structurally given dy-
namic system. As will be concretely demonstrated in the remaining sections
of this study, emergence in dynamic systems can also usefully be studied at
a higher level using structural perturbation methods.

Specifically, structural perturbation methods similar to those used to
study chaotic processes and fractal systems [Devaney and Keen, 1989] can
by used to generate an ensemble of possible dynamic system trajectories in
trajectory space. By an appropriate coloring of these trajectories (or of their
pre-images in a parameter domain), interesting patterns can sometimes be
revealed that provide a unique and informative “fingerprint” for the dynamic
system.6

As a simple economic illustration, consider a discrete-time dynamic sys-
tem that generates a unique net earnings level for each of N market traders
over time, starting from an exogenously given system state z1 in time period
1. Suppose the system structure depends on a parameter α. The distribution
of net earnings for the N traders at any given time t ≥ 1 would typically be
represented by some form of histogram that associates each possible net earn-
ings level with a frequency of occurrence in the population. Alternatively,
however, this distribution can be represented as a single point pt(z1, α) in an
N -dimensional space, where each coordinate of pt(z1, α) gives the net earn-
ings level of a particular trader in period t, conditional on z1 and α. One

6A famous example of this is the Mandelbrot set; see Branner (1998). The Mandelbrot
set M is the set of all points c in the complex plane C for which the sequence (zt(c)) in
C does not diverge to ∞ as t tends to ∞, where z1(c) = 0 and zt+1(c) = [zt(c)]2 + c for
t ≥ 1. The intricately beautiful irregular regularity of M is revealed by (i) coloring black
all c-points lying in M , (ii) roughly partitioning the c-points in C lying outside M into
finitely many subsets in accordance with the differential divergence rates of zt(c), and (iii)
using (non-black) colors to differentially visualize the c-points lying in these subsets.
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can then consider the loci of points traced out by pt(z1, α) in N -space as α is
systematically varied over a feasible range of α-values, or the trajectory (or-
bit) traced out by pt(z1, α) in N -space as t is varied from 1 to ∞, or various
other tracings resulting from individual or combined changes in t, z1, and α.

In what sense do the patterns revealed by differential colorings of these
tracings represent emergent patterns? Here we make recourse to Bedau
(1997) to argue that these patterns can be emergent in a weak sense for
dynamic models attempting to capture the salient characteristics of compli-
cated real-world systems.

The concept of weak emergence was introduced by Bedau (1997) in an at-
tempt to obtain a well-defined, practical, and scientifically relevant definition
of emergence that sidesteps difficult philosophical and practical issues asso-
ciated with definitions involving stronger requirements. Specifically, Bedau
defines a macrostate P of a system S with a microdynamic D, initial condi-
tions C, and possibly additional external conditions E to be weakly emergent
for S if and only if P can be derived from {D,C,E}, but only by means of
a finite simulation.

Bedau further notes that this core concept of weak emergence, restricted
to a given system macrostate P, can be extended in a natural way to char-
acterize the weak emergence of system patterns , i.e., collections of suitably
related system macrostates. As stressed by Laughlin et al. (2000) and Laugh-
lin (2000), even when the underlying microscopic properties and relationships
for a dynamic system are not fully understood, the hope would be to find
higher-level organizational principles that reliably associate collections of re-
lated microscopic states to collections of related macroscopic states, thus
allowing some form of quantitative analysis to proceed.

Relating this back to earlier discussion, one way to visually differen-
tiate among Bedau’s distinct system patterns would be through the use
of distinct colorings for the collections of system macrostates constituting
these patterns. Heat maps could then be obtained by projecting the colored
macrostates into various two-dimensional subspaces of interest. These heat
maps could help to elucidate complex relationships between structural, in-
stitutional, and behavioral conditions and the appearance and persistence of
system patterns. In the remaining sections of this study we illustrate how
heat-maps can be used to visualize the weak emergence of system patterns
for the concrete case of a wholesale electric power market.
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Figure 1: Key Features of the AMES Wholesale Power Market Testbed.

3. AMES Wholesale Power Market Testbed: Overview

The wholesale electric power market model used in this study is imple-
mented using the AMES software platform. AMES (Agent-based M odeling
of E lectricity Systems) is an open-source wholesale power market testbed
developed entirely in Java by researchers at Iowa State University. The lat-
est version of AMES can be freely downloaded either at the AMES homepage
[Tesfatsion (2010)] or through the IEEE Task Force on Open Source Software
[IEEE (2011)].

This section describes the key features of Version 2.05 of AMES, used in
this study.7 These key features reflect, in simplified form, actual U.S. whole-
sale electric power market operations in the Midwest (MISO), New England
(ISO-NE), New York (NYISO), the mid-Atlantic states (PJM), California
(CAISO), Texas (ERCOT), and the Southwest (SPP). A summary listing of
these key features is provided in Fig. 1.

The AMES(V2.05) wholesale power market operates over a high-voltage
alternating current (HVAC) transmission grid starting with hour 00 of day
1 and continuing through hour 23 of a user-specified maximum day. AMES
includes an Independent System Operator (ISO) that manages market op-

7Technical details are relegated to appendices. Appendix A provides quantitative de-
scriptions for seller cost and net earnings functions, and Appendix B presents the precise
quantitative form of the learning method used by the sellers to update their daily supply
offers.
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erations and a collection of energy traders distributed across the grid who
buy or sell power at wholesale. The wholesale buyers service the energy de-
mands (load) of retail consumers and are referred to as Load-Serving Entities
(LSEs). The wholesale sellers are energy producers referred to as Generation
Companies (GenCos).

The objective of the not-for-profit ISO is the maximization of Total Net
Surplus (TNS) subject to branch capacity limits, GenCo generation capacity
limits, and balance constraints.8 As detailed in Li and Tesfatsion (2011),
TNS is the sum of GenCo net surplus, LSE net surplus, and ISO net surplus.
In an attempt to attain this objective, the ISO operates a day-ahead energy
market settled by means of Locational Marginal Prices (LMPs), the pricing
of electric power in accordance with the timing and location of its injection
into, or withdrawal from, the transmission grid.9

The welfare of each LSE is measured by the net earnings it secures for
itself through the purchase of power in the day-ahead market and the resale
of this power to its retail customers. During the morning of each day D, each
LSE reports a demand bid to the ISO for the day-ahead market for day D+1.
Each demand bid consists of two parts: fixed demand (i.e., a 24-hour load
profile) to be sold downstream at a regulated price r to its retail customers
with fixed-price contracts; and 24 price-sensitive inverse demand functions,
one for each hour, reflecting the price-sensitive demand (willingness to pay)
of its retail customers with dynamic-price contracts.10

The objective of each GenCo is to secure for itself the highest possible
net earnings each day through the sale of power in the day-ahead market.
During the morning of each day D, each GenCo i uses its current action choice
probabilities to choose a supply offer sRi from its action domain ADi to report
to the ISO for use in all 24 hours of the day-ahead market for day D+1.11

8For technical reasons, power injections into a grid (supply) must at all times be in
balance with power withdrawals (demands plus losses) to maintain grid stability.

9The price LMPkt at bus k for time t is determined as the shadow price of the balance
constraint at bus k for time t.

10The LSEs in AMES(V2.05) have no learning capabilities; LSE demand bids are user-
specified at the beginning of each simulation run. However, as explained more carefully
in Li and Tesfatsion (2009b,c), AMES(V2.05) includes a learning module, JReLM, that
can be used to implement a wide variety of stochastic reinforcement learning methods for
decision-making agents. Extension to include LSE learning is planned for future AMES
releases.

11Whether GenCos are permitted to report only one supply offer or 24 supply offers
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Each supply offer sRi in ADi takes the form of a reported linear marginal cost
function (characterized by a reported ordinate aRi and a reported slope 2bRi )
defined over a production capacity interval spanning the range from 0 to a
reported maximum generation capacity CapRUi . GenCo i’s ability to vary its
choice of a supply offer sRi from ADi permits it to adjust the ordinate/slope
of its reported marginal cost function and/or the upper limit of its reported
generation capacity interval in an attempt to increase its daily net earnings.

After receiving demand bids from LSEs and supply offers from GenCos
during the morning of day D, the ISO determines and publicly posts hourly
bus LMP levels as well as LSE cleared demands and GenCo dispatch levels
for the day-ahead market for day D+1. These hourly outcomes are deter-
mined via Security-Constrained Economic Dispatch (SCED) formulated as
bid/offer-based DC Optimal Power Flow (DC-OPF) problems with approx-
imated TNS objective functions based on reported rather than true GenCo
costs.12

At the end of each day D the ISO settles the day-ahead market for day
D+1 by receiving all purchase payments from LSEs and making all sale pay-
ments to GenCos based on the LMPs for the day-ahead market for day D+1,
collecting any difference as ISO net surplus . As explained and demonstrated
in Li and Tesfatsion (2011), this ISO net surplus is guaranteed to be nonneg-
ative and, under congested grid conditions, will typically be strictly positive
due to the separation of bus LMPs.

As detailed in Appendix B, each GenCo i at the end of each day D uses
a variant of a well-known “stochastic reinforcement learning” method due
to Roth and Erev (1995) to update the action choice probabilities currently
assigned to the supply offers in its action domain ADi, taking into account
its day-D settlement payment (“reward”). Roughly described, if GenCo i’s
supply offer on day D results in a relatively good reward, GenCo i increases

for use in the day-ahead energy market varies from one energy region to another. For
example, the ISO-NE permits only one supply offer whereas MISO permits 24 separate
supply offers. Baldick and Hogan (2002) suggest that imposing limits on the ability of
GenCos to report distinct hourly supply offers could reduce their ability to exercise market
power, a conjecture that would be interesting to put to a test.

12A technical presentation of the bid/offer-based DC-OPF problem formulation for the
ISO in AMES(V2.05) is provided in Li and Tesfatsion (2011). When demand is 100%
fixed (price insensitive), the objective of maximizing TNS is equivalent to the objective
of minimizing total GenCo avoidable costs of operation; 100% fixed demand is the case
treated in all experiments reported in this study.
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the probability it will choose to report this same supply offer on day D+1,
and conversely. Hereafter this learning method is referred to as the Variant
Roth-Erev (VRE) learning method .

There are no system disturbances (e.g., weather changes) or shocks (e.g.,
line outages). Consequently, the dispatch levels determined on each day D
for the day-ahead energy market for day D+1 are carried out as planned
without need for settlement of differences in the real-time energy market for
day D+1.

4. Experimental Design

All of the experiments reported in this study were conducted using a
5-bus wholesale electric power market model based on a transmission grid
configuration developed by Lally [2002] that is now commonly used in many
ISO-managed U.S. energy regions for training purposes. Our main goal is to
implement an experimental design within this 5-bus framework that permits
us to explore how systematic variations in the ability of the GenCos to exer-
cise market power result in systematic variations in GenCo reported supply
offers and GenCo net earnings outcomes that, when visualized through heat
maps, reveal interesting correlation patterns.

Seller market power is exercised in wholesale electric power markets in
two possible ways: economic capacity withholding (offering energy at higher-
than-true marginal cost); and physical capacity withholding (offering lower-
than-true maximum generation capacity). Consequently, our experimental
design encompasses four types of test cases: (i) a benchmark test case in
which the GenCos have no learning capabilities and always report their true
cost and capacity attributes to the ISO; (ii) test cases in which the GenCos
use VRE learning to strategically report higher-than-true marginal costs to
the ISO but always report their true maximum generation capacities to the
ISO; (iii) test cases in which the GenCos use VRE learning to report lower-
than-true maximum generation capacities to the ISO but always report their
true marginal costs to the ISO; and (iv) test cases in which the GenCos use
VRE learning to report higher-than-true marginal costs and/or lower-then-
true maximum generation capacities to the ISO.

A more detailed description of these test cases is provided below.
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4.1. Benchmark Five-Bus Test Case: No Learning
Complete input data for our benchmark 5-bus test case are provided in

the input data file for the 5-bus test case included in the data directory
of the AMES(V2.05) download available at the AMES homepage [Tesfat-
sion (2010)]. Briefly summarized, this benchmark case has the the following
structural, institutional, and behavioral features.

The wholesale electric power market for our benchmark case operates
over a 5-bus transmission grid as depicted in Fig. 2, with branch attributes
(e.g., thermal limits), locations of LSEs and GenCos, and initial hour-0 LSE
demands adopted from Lally (2002). The Lally grid configuration has proved
to be highly useful in practice for ISO training purposes because it is small
enough to be manageable while still retaining many important real-world
features. For example, the Lally grid is connected yet not completely con-
nected (i.e., not every pair of grid busses is connected by a branch), which
has important ramifications for the physical flow of power across the grid.
The branch 1-2 connecting Bus 1 to Bus 2 has a thermal limit and hence is
vulnerable to overload (congestion). The LSE demands (loads) are concen-
trated in a load pocket at Busses 2, 3, and 4, which gives GenCo 3 located
at Bus 3 market power advantages for the servicing of this load whenever
branch 1-2 is congested. Finally, LSE demands are 100% fixed (no price
sensitivity), an empirically accurate reflection of the highly inelastic demand
currently characterizing U.S. wholesale electric power markets.

The Lally configuration was primarily designed for point-in-time reliabil-
ity studies, not for dynamic economic studies. Hence, GenCo marginal costs
(assumed constant) and LSE demands (loads) are given for one point in time,
and strategic learning behaviors are not considered.

Our benchmark case extends the Lally configuration by specifying GenCo
marginal cost functions as depicted in Fig. 3. The GenCos range from GenCo
5, a relatively large coal-fired baseload unit with low marginal operating
costs, to GenCo 4, a relatively small gas-fired peaking unit with relatively
high marginal operating costs. Moreover, our daily LSE 24-hour fixed de-
mand profiles are adopted from a case study presented on pages 296–297 in
Shahidehpour et al. (2002). Hourly fixed demand varies between low (hour
4:00) and peak (hour 17:00) each day.

However, for our benchmark case we retain the Lally (2002) presumption
that GenCos are non-learners. Specifically, we assume the GenCos report
supply offers to the ISO for the day-ahead energy market that convey their
true marginal cost functions and true maximum generation capacities.

14



Figure 2: Transmission grid for the benchmark 5-bus test case.

Figure 3: GenCo true marginal cost functions and true capacity attributes for the bench-
mark 5-bus test case.

As it turns out, during a typical day D for our benchmark 5-bus test case
the branch 1-2 connecting Bus 1 to Bus 2 is persistently congested. As a
result, in each hour there is complete LMP separation across the grid. As
depicted in Table 1, GenCos 1 and 2 have relatively small net earnings in
all hours and particularly in the peak-demand hour 17. This occurs for two
reasons. First, as depicted in Fig. 2, these two GenCos are located at Bus 1,
hence they are semi-islanded away from the load pocket at Buses 2 through
4 due to the persistent congestion on branch 1-2. Second, as seen in Fig. 3,
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Table 1: Hourly GenCo net earnings during a typical 24-hour day D for the benchmark
5-bus test case.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5

00 67.81 1.15 1,105.79 0.00 1,377.42
01 67.24 1.08 725.83 0.00 1,340.07
02 66.87 1.04 518.48 0.00 1,315.68
03 66.68 1.02 427.08 0.00 1,303.45
04 66.49 0.99 345.93 0.00 1,291.50
05 66.59 1.01 385.44 0.00 1,297.48
06 66.68 1.02 427.08 0.00 1,303.45
07 67.06 1.06 618.74 0.00 1,327.95
08 68.00 1.18 1,247.51 0.00 1,389.76
09 68.75 1.28 1,909.70 0.00 1,440.36
10 68.94 1.30 2,097.94 0.00 1,453.20
11 69.03 1.31 2,193.68 0.00 1,459.54
12 68.94 1.30 2,097.94 0.00 1,453.20
13 68.75 1.28 1,909.70 0.00 1,440.36
14 68.66 1.26 1,820.44 0.00 1,434.06
15 68.66 1.26 1,820.44 0.00 1,434.06
16 69.03 1.31 2,193.68 0.00 1,459.54
17 0.02 0.00 18,654.46 142.27 1,912.03
18 57.62 0.22 4,980.40 0.00 1,573.60
19 69.41 1.37 2,601.82 0.00 1,485.24
20 69.31 1.35 2,497.56 0.00 1,478.84
21 69.13 1.33 2,291.68 0.00 1,465.89
22 68.66 1.26 1,820.44 0.00 1,434.06
23 68.09 1.19 1,324.32 0.00 1,396.18

Total 1,556.41 26.58 56,016.09 142.27 34,266.94

these two GenCos have relatively small generation capacities.
In contrast, GenCo 3 located at the load-pocket Bus 3 has relatively large

net earnings in every hour, particularly in the peak-demand hour 17. This
occurs because GenCo 3 is a pivotal supplier in most hours, meaning its
relatively large capacity is needed to meet fixed demand. Moreover, during
hour 17, GenCo 3 is dispatched at its maximum capacity and GenCo 5 is
semi-islanded from Bus 3 due to the congestion on branch 1-2. Consequently,
to meet demand at Bus 3 during hour 17, the ISO needs to call upon the
expensive peaker unit, GenCo 4. This substantially spikes the LMP at Bus 3
in hour 17, and hence the net earnings of GenCo 3.

4.2. Five-Bus Test Cases with GenCo Learning

Each of the test cases with GenCo learning extends the benchmark 5-
bus test case described in Section 4.1 by permitting one or more GenCos
to use VRE learning to exercise either economic capacity withholding, or
physical capacity withholding, or combinations of the two. Complete input
data for these test cases (including initial random seed values) are provided
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in the input data file for the 5-bus test case included in the data directory
of the AMES(V2.05) download available at the AMES homepage [Tesfatsion
(2010)].

All other aspects of these learning test cases are the same as for the
benchmark 5-bus test case. In particular, GenCo net earnings are used to
evaluate GenCo welfare, and the hourly energy demand bids of the LSEs are
fixed quantities that are insensitive to price.

The treatment factor for economic capacity withholding experiments is
whether or not each GenCo can learn to exercise economic capacity with-
holding by reporting higher-than-true marginal costs in its supply offers. The
treatment factor for physical capacity withholding experiments is whether or
not each GenCo can learn to exercise physical capacity withholding by re-
porting lower-than-true maximum generating capacities in its supply offers.
For combined economic and physical capacity withholding experiments, the
treatment factor is whether or not each GenCo can learn to report higher-
than-true marginal costs and/or lower-than-true maximum generating capac-
ities in its supply offers.

When GenCos have learning capabilities, random effects are present in
their supply offer selections. To control for these random effects, thirty seed
values were generated using the standard Java class “random”. For each
learning treatment these thirty seed values are used to implement thirty
distinct runs, each 1000 simulated days in length.

5. Sweet-Spot Calibration of GenCo Learning Parameters

5.1. Motivation for VRE Learning Calibration

In actual U.S. wholesale electric power markets, relatively small numbers
of profit-seeking GenCos repeatedly make supply offers in an attempt to
secure good net earnings. It seems reasonable to assume that these GenCos
are able to adjust their learning methods over time to their particular decision
environments, that is, that they are able to learn-to-learn.

Consequently, prior to conducting our capacity withholding experiments
with learning GenCos, we first undertook intensive parameter sensitivity
studies in an attempt to determine sweet-spot values for each GenCo’s VRE
learning parameters. Specifically, we attempted to determine values for these
learning parameters capable of yielding relatively high GenCo net earnings
in our 5-bus test case experiments by selecting values that in fact yielded
relatively high GenCo net earnings in our calibration experiments.

17



In this section we briefly report on these calibration experiments, rele-
gating technical details to Appendix C. In particular, we highlight several
interesting implications regarding the importance of learning and learning-
to-learn in complicated decision environments as exemplified by our current
wholesale electric power market setting.

5.2. Calibration of VRE Learning Parameters

As detailed in Appendix B, the VRE learning method used to implement
learning for each GenCo i depends on four key parameters: (qi(1), Ti, ri, ei).
We first briefly summarize the role of each parameter in the learning process.

The initial propensity level qi(1) is a measure of GenCo i’s net earn-
ings aspirations at the beginning of the initial day 1, which the VRE learn-
ing method then successively updates in an action-conditioned manner as
GenCo i successively selects new actions (supply offers) and new rewards
(own-net earnings outcomes) are realized. After each updating, these action-
conditioned propensities are transformed into action-conditioned probability
assessments which GenCo i uses to select its next supply offer to report to
the ISO. The temperature parameter Ti (which has nothing to do with ac-
tual weather) enters into the mapping from propensities to probabilities in
a manner that affects the extent to which GenCo i experiments with new
actions, particularly in early learning stages. Larger (“hotter”) values of Ti

encourage increased experimentation.
The recency parameter ri enters into the propensity updating relationship;

higher values of ri dampen the rate at which GenCo i’s action-conditioned
propensities change over time. The experimentation parameter ei also enters
into the propensity updating relationship; higher values of ei permit the
reinforcement effects of rewards to spill over in greater proportion from chosen
to non-chosen actions, thus encouraging GenCo i to experiment across a
broader range of actions.

For the calibration of the recency and experimentation parameters (ri,ei),
we relied on the sensitivity findings reported by Pentapalli (2008) for 3-bus
and 5-bus wholesale electric power market experiments. For the calibration
of the initial propensity and temperature parameters (qi(1),Ti), we used 5-
bus experiments to determine GenCo net earnings for a range of positive
values for αi and βi, defined as follows:

• αi = qi(1)/MaxDNEi, where MaxDNEi denotes GenCo i’s (positive)
estimated maximum possible daily net earnings as determined struc-
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turally from its action domain of feasible supply offers and its true
marginal cost function;

• βi = qi(1)/Ti.

5.3. Illustrative Calibration Findings

Figure 4: Economic capacity withholding calibrations: A 2D heat-map depiction of mean
outcomes for total GenCo daily net earnings on day 1000 for the 5-bus test case extended
to permit all five GenCos to use VRE learning to exercise economic capacity withholding.
Outcomes are depicted for a range of settings for the two key VRE learning parameters α
and β set commonly across all five GenCos.

The specific sweet-spot settings for (qi(1), Ti, ri, ei) selected for each
GenCo i for use in each of our 5-bus test case experiments are explained in
Appendix C. In this section we report and interpret illustrative findings for
some of our calibration experiments, using heat maps to visualize the map-
ping between learning parameter settings and GenCo net earnings outcomes.
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Figure 4 depicts calibration-experiment findings for mean total GenCo
daily net earnings attained for a 5-bus case in which each GenCo is a VRE
learner able to exercise pure economic capacity withholding. The findings
are generated for a range of values for α and β, commonly set across all
GenCos. An interesting pattern is immediately evident: namely, the (α,β)
combinations associated with the highest mean net earnings outcomes lie
along a nonlinear ridge line that traverses from (1, 100) in the northwest
corner to (1/24, 2) in the south-central region. What causes this nonlinear
coupled dependence of mean net earnings outcomes on α and β?

The settings for α and β have distinct but correlated effects on the degree
to which each GenCo experiments with different actions, i.e., with different
supply offers (reported marginal cost functions). All else equal, high α values
reflecting optimistically high initial net earnings expectations tend to induce
experimentation with many different actions due to “disappointment” with
the net earnings outcomes that result from each choice. Conversely, low α
values reflecting pessimistically low initial net earnings expectations tend to
induce premature fixation on an early chosen action due to the “surprisingly
high” net earnings that result from this choice.

High β values reflecting high cooling levels (low temperature parameter
settings) amplify the tendency to premature fixation in the case of low α
values by amplifying differences in propensity levels across action choices.
Moderately low β values can prevent premature fixation by dampening the
effects of propensity differences on action choice probabilities.

However, extremely low β values result in action choice probability dis-
tributions that are essentially uniform across each GenCo’s action domain,
negating all GenCo efforts to learn which actions result in the highest daily
net earnings. In this case the behavior of the GenCos corresponds to Gode-
Sunder (1993,1997) budget-constrained zero-intelligence (ZI-B) market sell-
ers who randomly select supply offers subject only to a budget constraint.
That is, each GenCo randomly chooses supply offers from its action domain,
which by construction only includes possible reported marginal cost functions
that lie on or above the GenCo’s true marginal cost function (thus enforcing
a break-even constraint). The deleterious effect of this ZI-B GenCo behavior
is seen in the uniformly low mean net earnings outcomes achieved in Fig. 4
for the lowest tested β levels 1/2 and 1.

The bottom line following from the calibration-experiment findings re-
ported in Fig. 4 is that the learning representation for the GenCos definitely
matters. GenCos achieve their highest mean net earnings along a nonlinear
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ridge-line of sweet-spot (α, β) values traversing from (1, 100) to (1/24, 2),
and their lowest mean net earnings for extremely low β values that induce
the GenCos to behave like Gode-Sunder ZI-B market sellers.

Figure 5: Physical capacity withholding calibration results for GenCo 3: A 2D heat-
map depiction of mean outcomes on day 1000 for GenCo 3’s daily net earnings for the
benchmark 5-bus test case extended to permit GenCos 1, 3, and 5 to use VRE learning
to exercise physical capacity withholding. Results are shown for a range of values for the
VRE learning parameters (α, β), commonly set for GenCos 1, 3, and 5.

Figure 5 depicts calibration-experiment findings for mean GenCo 3 net
earnings on day 1000 attained for a 5-bus case in which GenCos 1, 3, and 5
are VRE learners able to exercise pure physical capacity withholding. The
findings are generated for a range of values for α and β, commonly set for
GenCos 1, 3, and 5. The net earnings of GenCo 3 are chosen as the criterion
for the calibration of (α, β) for our pure physical capacity withholding ex-
periments because in most hours this large supplier turns out to be a pivotal
supplier, i.e., its generation capacity is essential for meeting fixed demand.
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Three interesting observations can be made about the results reported in
Fig. 5. First, learning matters: the setting for (α, β) substantially affects
mean GenCo 3 net earnings. Second, the sweet-spot (α, β) combinations
associated with the highest mean GenCo 3 net earnings roughly lie along a
vertical ridge line ranging from (1/24, 50) to (1/24, 100). Third, comparing
the pure physical capacity withholding outcomes in Figure 5 with the pure
economic capacity withholding outcomes in Figure 4, it is seen that the sweet-
spot region for GenCo 3’s (α, β) learning parameters strongly depends on
the particular learning environment.

This third finding indicates the importance of learning-to-learn. No one
setting for the parameters of a learning method can be expected to do well
across all possible decision environments in which the learning method might
be applied.

6. Test-Case Findings for Pure Economic Capacity Withholding

This section reports findings for two types of 5-bus test case experiments.
The first type of experiment tests the extent to which a single GenCo can
learn to achieve higher net earnings through economic capacity withholding
when all other GenCos report their true cost and capacity attributes to the
ISO. The second type of experiment tests the extent to which two GenCos
can co-learn over time to achieve higher net earnings through economic ca-
pacity withholding when all other GenCos report their true cost and capacity
attributes to the ISO.

Of particular interest is the extent to which the second type of experi-
ment results in correlated supply offer selections and correlated net earnings
outcomes for the two learning GenCos.

6.1. Economic Capacity Withholding by One Learning GenCo

GenCo 3 is selected as the sole learner for this first type of experiment
because of the critical role it plays in the determination of locational marginal
prices (LMPs). This critical role results for three reasons: (a) GenCo 3 has a
relatively large generation capacity; (b) GenCo 3 is a pivotal supplier during
peak (high) demand hours, meaning that its capacity is needed to meet
LSE fixed demand; and (c) GenCo 3’s true marginal costs of production are
relatively high.

As carefully explained in Appendix A, each supply offer reported to the
ISO by a learning GenCo takes the form of a reported linear marginal cost
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function with ordinate aR and slope 2bR. This function is defined over a
reported generation capacity interval ranging from 0 to a reported maximum
generation capacity CapRU .

For the economic capacity withholding experiment at hand, GenCo 3 al-
ways reports its true maximum generation capacity. Consequently, GenCo 3’s
action domain AD3 is specified to consist of 100 possible marginal cost func-
tions corresponding to 100 different specifications for the ordinate and slope
values (aR,bR), where each of these functions is defined over GenCo 3’s true
generation capacity interval. All other GenCos are assumed to be non-
learners that report their true cost and capacity attributes to the ISO. The
action domain for each of these other GenCos thus contains only one ele-
ment: namely, this GenCo’s true marginal cost function defined over its true
generation capacity interval.

Table 2: Mean outcomes (with standard deviations) on day 1000 for GenCo daily net
earnings (DNE) and GenCo 3’s reported supply offers (aR,bR) when GenCo 3 uses VRE
learning to exercise economic capacity withholding.

No GenCo Learning With GenCo 3 Learning

GenCo 1 DNE 1,556.41 0.00
(0.00)

GenCo 2 DNE 26.58 0.00
(0.00)

GenCo 3 DNE 56,016.09 1,699,368.20
(400,430.50)

GenCo 4 DNE 142.27 253,468.03
(72,720.50)

GenCo 5 DNE 34,266.94 33,097.68
(0.00)

GenCo 3 aR 25.0000 91.0000
(true value) (14.5270)

GenCo 3 bR 0.0100 0.2334
(true value) (0.0644)

Table 2 reports experimental findings both for the benchmark no-learning
case and for the case in which GenCo 3 uses VRE learning to exercise eco-
nomic capacity withholding. Clearly, under learning, GenCo 3 learns to
report a much higher-than-true marginal cost function that results in a sub-
stantial increase in its net earnings. Interestingly, the mean net earnings
for GenCo 4 also substantially increase (complementarity effect) whereas the
mean net earnings of GenCo 1 and GenCo 2 are reduced to zero (substitution
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effect), even though GenCos 4, 1, and 2 are not learning agents and hence
always report their true cost and capacity attributes to the ISO.

The reason for these findings is as follows. The branch from Bus 1 to Bus 2
is persistently congested whether or not GenCo 3 has learning capabilities.
However, under learning, GenCo 3’s high reported marginal costs during
the peak-demand hour 17 results in the higher dispatch of GenCo 4 (to max
capacity) and also in the higher dispatch of GenCo 5 in order to meet demand
in the load pocket surrounding GenCo 3 at Bus 3. GenCo 1 and GenCo 2
have to be backed down to 0 in order to permit GenCo 5 to be called up to
service this demand without overloading the branch from Bus 1 to Bus 2.

As noted in the introduction, these complicated substitution and comple-
mentarity effects arising through network interactions are not well captured
using traditional derivative measures [Bulow et al. (1985)].

6.2. Economic Capacity Withholding by Two Co-Learning GenCos

Two different pairs of co-learning GenCos are examined for this second
type of experiment: Case (1) GenCo 1 and GenCo 3; and Case (2) GenCo 3
and GenCo 5. The reason for these choices is as follows.

For Case (1), GenCo 1 is a small GenCo with relatively low true marginal
cost whereas GenCo 3 is a pivotal supplier during peak-demand hours with
relatively high true marginal costs. Can GenCo 1 learn to “free ride” on the
market power exercised by GenCo 3 in order to improve its net earnings?
For Case (2), GenCo 3 and GenCo 5 both have relatively large maximum
generation capacities, but GenCo 5 has relatively lower marginal costs. Can
GenCo 5 learn to undercut GenCo 3’s supply offers when GenCo 3 reports
aggressively high supply offers, thus raising its net earnings?

Table 3 reports mean outcomes for Case (1), in which GenCo 1 and
GenCo 3 are the only learners. As indicated, GenCo 3 learns to report much
higher-than-true marginal cost functions and attains much higher daily net
earnings compared to the benchmark no-learning case. GenCo 1 also learns
to report higher-than-true marginal cost functions, yet the net earnings of
GenCo 1 decline to zero (substitution effect).

Interestingly, the net earnings and reported marginal cost results pre-
sented in Table 3 for the case in which GenCo 1 and GenCo 3 are co-learners
are similar to the corresponding results reported in Table 2 for the case in
which GenCo 3 is the sole learner. The reason for this is partly explained
by the findings earlier discussed in Section 4.1 and Section 6.1. Due to the
persistent congestion on the branch from Bus 1 to Bus 2, and to GenCo 3’s
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relatively large generation capacity, GenCo 3 is a pivotal supplier in most
hours, meaning that its capacity is needed to meet fixed demand. On the
other hand, GenCo 1 is a relatively small unit located on the “wrong” side of
the congested branch 1-2 and it typically fails to be dispatched at any posi-
tive level. The result is that GenCo 3’s reported supply offers have a much
greater effect on dispatch results. GenCo 3 learns to take advantage of this
situation by raising its reported marginal costs, resulting in an increase in the
LMP at its Bus 3. In contrast, despite its learning capabilities, GenCo 1’s
supply offers are essentially irrelevant for the determination of price levels,
as well as for the determination of GenCo 3’s reported supply offers.

Table 3: Mean outcomes (with standard deviations) on day 1000 for GenCo daily net
earnings (DNE), and for reported supply offers (aR,bR) for GenCo 1 and GenCo 3, when
both GenCo 1 and GenCo 3 use VRE learning to exercise economic capacity withholding.

No GenCo Learning With GenCo 1, 3 Learning

GenCo 1 DNE 1,556.41 0.00
(0.00)

GenCo 2 DNE 26.58 0.00
(0.00)

GenCo 3 DNE 56,016.09 1,699,368.20
(400,430.50)

GenCo 4 DNE 142.27 253,468.03
(72,720.50)

GenCo 5 DNE 34,266.94 33,097.68
(0.00)

GenCo 1 aR 14.0000 26.7006
(true value) (12.8204)

GenCo 1 bR 0.0050 0.1363
(true value) (0.2016)

GenCo 3 aR 25.0000 91.0000
(true value) (14.5270)

GenCo 3 bR 0.0100 0.2334
(true value) (0.0644)

Table 4 depicts mean outcomes for Case (2), in which GenCo 3 and
GenCo 5 are the only learners. As indicated, both GenCo 3 and GenCo 5
learn to report much higher-than-true marginal costs and both attain sub-
stantially higher daily net earnings (complementarity effect) compared to the
benchmark no-learning case. GenCo 3’s net earnings, in particular, dramat-
ically increase.

The explanation for these findings is as follows. GenCo 5 is essentially a
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Table 4: Mean outcomes (with standard deviations) on day 1000 for GenCo daily net
earnings (DNE), and for reported supply offers (aR,bR) for GenCo 3 and GenCo 5, when
both GenCo 3 and GenCo 5 use VRE learning to exercise economic capacity withholding.

No GenCo Learning With GenCo 3, 5 Learning

GenCo 1 DNE 1,556.41 20,552.07
(47,427.81)

GenCo 2 DNE 26.58 17,516.78
(42,538.13)

GenCo 3 DNE 56,016.09 1,689,877.00
(388,472.72 )

GenCo 4 DNE 142.27 299,156.86
(93,287.70)

GenCo 5 DNE 34,266.94 129,744.81
(96,084.46)

GenCo 3 aR 25.0000 92.8333
(true value) (12.3654)

GenCo 3 bR 0.0100 0.2202
(true value) (0.0671)

GenCo 5 aR 10.0000 18.6560
(true value) (10.3939)

GenCo 5 bR 0.0070 0.0238
(true value) (0.0286)

base-load generator with large capacity and low true marginal cost. When
both GenCo 3 and GenCo 5 report higher-than-true marginal costs, the
branch connecting Bus 1 to Bus 2 becomes persistently congested, constrain-
ing the use of the relatively cheaper generation from GenCo 1 and GenCo 2
at Bus 1. GenCo 4, a relatively small unit, is then dispatched at its maxi-
mum capacity because its reported marginal costs are actually lower than the
reported marginal costs of GenCo 3 and GenCo 5. This leaves GenCo 3 and
GenCo 5 as pivotal suppliers. The dispatch of GenCo 5 is constrained by con-
gestion considerations, which acts as a brake on its net earnings. GenCo 3,
however, induces no such network constraint in terms of its pivotal status
for the load at its own Bus 3. This permits GenCo 3 to raise its reported
marginal costs to very high levels without concern for a cut-back in its dis-
patch, which in turn results in a very high LMP at its load-pocket Bus 3 and
in correspondingly high daily net earnings for GenCo 3.

Comparing the Case (2) findings presented in Table 4 to the Case (1)
findings presented in Table 3, it is seen that GenCo 3’s daily net earnings
are about the same. The implication is that GenCo 3 is not strategically
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interacting with GenCo 5 in Case (2); it behaves essentially the same way
whether or not GenCo 5 has learning capabilities. On the other hand, in
Case (2) GenCo 5 is able to take advantage of GenCo 3’s economic capacity
withholding to raise its own reported marginal costs without risking a cut-
back in its dispatch, which substantially increases its daily net earnings.

Case (2) also differs from Case (1) in another interesting way. In Case (2),
GenCo 5 ends up reporting marginal costs that are higher than the marginal
costs of the non-learning GenCos 1 and 2. As a result, GenCo 1 and GenCo 2
located at Bus 1 are now dispatched at positive levels even though the branch
connecting Bus 1 to Bus 2 is persistently congested. Consequently, these non-
learning GenCos are better off in Case (2) than in Case (1).

7. Test-Case Findings for Pure Physical Capacity Withholding

In parallel with Section 6, this section considers two types of experiments.
The first type of experiment tests the extent to which a single GenCo can
learn to achieve higher net earnings through physical capacity withholding
when all other GenCos report their true cost and capacity attributes to the
ISO. The second type of experiment tests the extent to which two GenCos
can co-learn over time to achieve higher net earnings through physical capac-
ity withholding when all other GenCos report their true cost and capacity
attributes to the ISO. Of particular interest is the extent to which the second
type of experiment results in correlated supply offer selections and correlated
net earnings outcomes for the two learning GenCos.

The treatment factor for these experiments is the maximum possible
shrinkage for reported maximum generation capacity that a learning GenCo
can submit to the ISO, the interpretation being that any larger shrinkage
would risk detection by the ISO. The tested ranges for this treatment factor
are chosen to avoid supply inadequacy, i.e., the reporting of capacities that
are insufficient to meet total fixed demand.

7.1. Physical Capacity Withholding by One Learning GenCo

In the experiments presented in this section, as in Section 6.1, only
GenCo 3 has learning capabilities. Here, however, GenCo 3’s learning is
restricted to the ability to exercise physical capacity withholding. The only
treatment factor is GenCo 3’s shrinkage value MPRMCap3, i.e., the setting
for GenCo 3’s minimum possible reported maximum capacity that determines
the lowest possible maximum generation capacity that GenCo 3 is able to
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report to the ISO. For example, given MPRMCap3 = 0.99, GenCo 3’s re-
ported maximum generation capacity CapRU3 must be at least 99% of its true
maximum generation capacity CapU3 In the experiments presented below,
MPRMCap3 is varied between 0.95 and 0.99. All other GenCos are assumed
to report their true costs and capacities to the ISO.

Table 5: Mean outcomes (with standard deviations) on day 500 for GenCo daily net
earnings (DNE), and for GenCo 3’s reported maximum generation capacity values CapRU ,
when GenCo 3 uses VRE learning to exercise physical capacity withholding. Results are
shown for a range of MPRMCap3 shrinkage values for GenCo 3.

MPRMCap for GenCo 3 99% 98% 97% 96% 95%

GenCo 1 DNE 1,519.60 1,515.29 1,461.74 1,451.66 1,397.42
(2.34) (6.82) (7.91) (8.30) (10.55)

GenCo 2 DNE 26.36 26.21 24.99 24.72 23.69
(0.00) (0.33) (0.00) (0.45) (0.25)

GenCo 3 DNE 65,532.62 66,389.84 78,855.13 80,724.79 92,830.96
(655.02) (1,534.96) (1,884.59) (1,517.63) (2,368.11)

GenCo 4 DNE 176.51 209.16 300.41 353.49 471.42
(7.27) (25.67) (13.97) (38.51) (19.94)

GenCo 5 DNE 34,576.94 34,530.62 34,839.52 34,815.19 35,121.16
(15.94) (27.02) (52.91) (20.97) (67.58)

GenCo 3 CapRU 515.99 512.86 505.42 502.02 495.49
(TrueMaxCap=520) (0.77) (2.44) (1.01) (2.40) (1.04)

GenCo 3 99.23% 98.63% 97.20% 96.54% 95.29%

CapRU/TrueMaxCap (0.15%) (0.47%) (0.19%) (0.46%) (0.20%)

The findings presented in Table 5 show that GenCo 3 is able to subtan-
tially increase its mean daily net earnings through physical capacity with-
holding. Indeed, GenCo 3’s daily net earnings steadily increase as it increases
its physical capacity withholding from 1% to 5% of its true maximum gen-
eration capacity. These increases in daily net earnings are at the expense
of GenCo 1 and GenCo 2, whose daily net earnings decline as GenCo 3’s
withholding increases (substitution effect). On the other hand, GenCo 4
and GenCo 5 experience modest gains in daily net earnings from GenCo 3’s
withholding (complementarity effect).

Figure 6 depicts GenCo 3’s actual reported maximum generation capac-
ity CapRU3 versus the optimal value for its reported maximum generation
capacity under a range of different MPRMCap3 shrinkage values. More pre-
cisely, for each given MPRMCap3 setting, the optimal reported value gives
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the best possible maximum generation capacity value that GenCo 3 could
report to the ISO, in the sense that this reporting leads to the highest mean
daily net earnings for GenCo 3; these optimal settings were determined by
direct off-line search. Figure 6 shows that the mean maximum generation
capacity value that GenCo 3 learns to report to the ISO by day 500 is close
to optimal for each MPRMCap3 setting.

Figure 6: Mean outcomes on day 500 for learned versus optimal values for GenCo 3’s re-
ported maximum generation capacity values when GenCo 3 uses VRE learning to exercise
physical capacity withholding. Results are shown for a range of MPRMCap3 shrinkage
values for GenCo 3.

7.2. Physical Capacity Withholding by Two Co-Learning GenCos

As in Section 6.2, learning experiments are conducted for pairs of learning
GenCos as follows: Case (3) GenCo 1 and GenCo 3; and Case (4) GenCo 3
and GenCo 5. Here, however, learning is restricted to physical capacity with-
holding. Choosing the same pairings as in Section 6.2 permits meaningful
comparisons between learning experiments for economic versus physical ca-
pacity withholding.

The treatment factors for the Case (3) experiments are the MPRMCap
shrinkage values for GenCo 1 and GenCo 3. The MPRMCap1 setting for
GenCo 1 is varied from 0.75 to 0.95, and the MPRMCap3 setting for GenCo 3
is varied from 0.95 to 0.99. All non-learning GenCos report their true cost
and capacity attributes to the ISO.
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Figure 7: Daily net earnings (DNE) for GenCo 1 and GenCo 3 for the benchmark 5-
bus test case extended to permit varied true maximum generation capacity values for
GenCo 1 and GenCo 3. The latter values are depicted in percentage form (relative to
original benchmark values).

Figure 8: Mean daily net earnings (DNE) on day 500 for GenCo 1 and GenCo 3 when
both GenCos use VRE learning to exercise physical capacity withholding. Mean DNE
results for each GenCo are shown for various combinations of MPRMCap shrinkage values
for the two GenCos.

Figure 9: Mean reported maximum generation capacities (as a percentage of true maxi-
mum generation capacities) on day 500 for GenCo 1 and GenCo 3 when both GenCos use
VRE learning to exercise physical capacity withholding. Mean reported maximum capac-
ity results for each GenCo are shown for various combinations of MPRMCap shrinkage
values for the two GenCos.
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As a benchmark of comparison for Case (3), Figure 7 presents typical daily
net earnings for GenCo 1 and GenCo 3 for the benchmark 5-bus test case
(no learning) extended to permit a range of settings for the true maximum
generation capacities of GenCo 1 and GenCo 3. From these findings it can
be seen that GenCo 1, a relatively small unit, does best when its maximum
generation capacity is 75% of its benchmark maximum generation capacity
and the maximum generation capacity of the relatively large GenCo 3 is
99% of its benchmark maximum generation capacity. In contrast, GenCo 3
does best when its maximum generation capacity is 95% of its benchmark
maximum generation capacity no matter what value is set for GenCo 1’s
maximum generation capacity.

Figure 8 presents mean daily net earnings for GenCo 1 and GenCo 3 on
day 5000 when both GenCos use VRE learning to exercise physical capacity
withholding. From the left-hand side of this figure, it is seen that GenCo 1
attains its highest mean daily net earnings when its MPRMCap1 shrinkage
value is set at its lowest tested level (0.75) and the MPRMCap3 shrinkage
value for GenCo 3 is set at its highest tested level (0.99). Comparing the
left-hand side of Figure 8 to the left-hand side of Figure 7, it is also seen
that the MPRMCap1 region over which GenCo 1 attains its highest mean
daily net earnings under learning is smaller than the maximum generation
capacity region over which it attains its highest daily net earnings in the
benchmark no-learning case.

Interestingly, in parallel with the no-learning findings reported in Fig-
ure 7, it is seen in the right-hand side of Figure 8 that GenCo 3 attains
its highest mean daily net earnings when its MPRMCap3 shrinkage value is
set at its lowest tested level (0.95). Also, the vertically-striped pattern for
GenCo 3’s mean daily net earnings indicates that GenCo 1’s MPRMCap1 set-
tings have essentially no effect on the daily net earnings attained by GenCo 3.

Figure 9 displays mean reported maximum generation capacities (as a
percentage of benchmark true maximum generation capacities) for GenCo 1
and GenCo 3 on day 500 when both these GenCos use VRE learning to ex-
ercise physical capacity withholding. From the left-hand side of the figure,
it is seen that GenCo 1’s mean reported maximum generation capacity is
somewhat higher than its MPRMCap1 shrinkage value for each tested pair
of MPRMCap settings for GenCo 1 and GenCo 3. Moreover, as indicated
by the horizontally-striped pattern in GenCo 1’s reported maximum capacity
results, GenCo 3’s reported maximum generation capacity choices have essen-
tially no effect on the reported maximum generation capacity choices made by
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GenCo 1. As indicated in the right-hand side of the figure, GenCo 3’s mean
reported maximum generation capacity is close to its MPRMCap3 shrinkage
value for each tested pair of MPRMCap settings for GenCo 1 and 3. More-
over, as indicated by the vertically-striped pattern in GenCo 3’s reported
maximum generation capacity results, GenCo 1’s reported maximum gener-
ation capacity choices have essentially no effect on the reported maximum
generation capacity choices made by GenCo 3.

In summary, in the Case (3) physical capacity withholding experiments in
which only GenCo 1 and GenCo 3 are learners, the smaller GenCo 1 is able
to attain higher net earnings by essentially free riding on the strategic phys-
ical capacity reporting of the larger GenCo 3 (complementarity effect). In
contrast, GenCo 3’s reported maximum generation capacity choices are essen-
tially uncorrelated with the reported maximum generation capacity choices
of GenCo 1.

For the Case (4) physical capacity withholding experiments in which only
GenCo 3 and GenCo 5 are learners, the treatment factors are the MPRMCap
shrinkage values for GenCo 3 and GenCo 5. The MPRMCap3 shrinkage value
for GenCo 3 is varied from 0.95 to 0.99, and the MPRMCap5 shrinkage value
for GenCo 5 is varied from 0.70 to 0.95. All non-learning GenCos report
their true cost and capacity attributes to the ISO.

Figure 10 shows typical daily net earnings for GenCo 3 and GenCo 5 for
the benchmark no-learning case under a range of different settings for their
maximum generation capacities expressed as a percentage of their bench-
mark true maximum generation capacities. From the left-hand side of the
figure it is seen that GenCo 3 attains its highest daily net earnings at its
lowest tested maximum generation capacity setting (0.95), regardless of the
maximum generation capacity setting for GenCo 5. On the other hand, from
the right-hand side of the figure it is seen that GenCo 5 attains its highest
daily net earnings when its maximum generation capacity is set at its lowest
tested level (0.70) while at the same time the maximum generation capacity
for GenCo 3 is set at its lowest tested level (0.95). Thus, GenCo 5’s daily
net earnings are affected by the maximum generation capacity setting for
GenCo 3.

Figure 11 shows GenCo 3 and GenCo 5 mean daily net earnings on day
500 when both GenCos use VRE learning to exercise physical capacity with-
holding. Results for each GenCo are shown for various combinations of
MPRMCap shinkage values for the two GenCos. From the left-hand side
of the figure it is seen that GenCo 3 attains its highest daily net earnings
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Figure 10: Daily net earnings (DNE) for GenCo 3 and GenCo 5 for the benchmark 5-bus
test case modified to permit varied true maximum generation capacity values for GenCo 3
and GenCo 5. The latter values are depicted in percentage form (relative to original
benchmark values).

Figure 11: Mean daily net earnings (DNE) on day 500 for GenCo 3 and GenCo 5 when
both GenCos use VRE learning to exercise physical capacity withholding. Mean DNE
results for each GenCo are shown for various combinations of MPRMCap shrinkage values
for the two GenCos.

Figure 12: Mean reported maximum generation capacities (as a percentage of true maxi-
mum generation capacities) on day 500 for GenCo 3 and GenCo 5 when both GenCos use
VRE learning to exercise physical capacity withholding. Mean reported maximum capac-
ity results for each GenCo are shown for various combinations of MPRMCap shrinkage
values for the two GenCos.
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when its MPRMCap3 value is set to its lowest tested level (0.95), regardless
of the MPRMCap5 shrinkage value for GenCo 5. In contrast, from the right-
hand side of the figure it is seen that GenCo 5 attains its highest daily net
earnings when its MPRMCap5 shrinkage value is set to its lowest tested level
(0.70) while at the same time the MPRMCap3 shrinkage value for GenCo 3
is set at its lowest tested level (0.95). Consequently, in similarity to the no-
learning case, GenCo 5’s daily net earnings under learning are affected by
the MPRMCap3 shrinkage value set for GenCo 3.

Figure 12 shows GenCo 3 and GenCo 5 mean reported maximum gener-
ation capacities as a percentage of their true maximum generation capacities
when both GenCos use VRE learning to exercise physical capacity with-
holding. Results for each GenCo are shown for various combinations of
MPRMCap shinkage values for the two GenCos. From the left-hand side
of the figure it is seen that GenCo 3’s mean reported maximum generation
capacity is close to its MPRMCap3 shrinkage value for each tested combi-
nation of MPRMCap shrinkage values for GenCo 3 and GenCo 5. Also, the
horizonally-striped pattern of the results indicates that GenCo 5’s reported
maximum capacities have very little effect on GenCo 3’s reported maximum
capacities. The right-hand side of the figure shows that GenCo 5’s mean re-
ported maximum generation capacity is higher than its MPRMCap5 shrink-
age value for each tested combination of MPRMCap shrinkage values for
GenCo 3 and GenCo 5. Also, GenCo 5’s reported maximum generation ca-
pacities are weakly positively correlated with GenCo 3’s reported maximum
generation capacities (weak complementarity effect).

8. Test-Case Findings for Experiments with Combined Economic
and Physical Capacity Withholding

In this section, two types of experiments are studied. The first type of
experiment tests the extent to which a single GenCo can learn to achieve
higher net earnings through economic and/or physical capacity withholding
when all other GenCos report their true cost and capacity attributes to the
ISO. The second type of experiment tests the extent to which two GenCos can
co-learn over time to achieve higher net earnings through economic and/or
physical capacity withholding when all other GenCos report their true cost
and capacity attributes to the ISO.
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8.1. Combined Economic and Physical Capacity Withholding by One GenCo

For reasons elaborated in earlier sections, GenCo 3 is selected as the one
learning GenCo able to learn to exercise either economic or physical capacity
withholding. Of particular interest will be whether one type of withholding
dominates the other for GenCo 3 in the sense that it yields consistently higher
mean daily net earnings for GenCo 3.

Table 6 presents mean outcomes (with standard deviations) on day 1000
for GenCo net earnings, and for GenCo 3’s reported supply offers, for a
range of MPRMCap3 shrinkage value settings for GenCo 3. It is seen that
GenCo 3 attains much higher mean daily net earnings than in the benchmark
no-learning case. Moreover, the mean daily net earnings for GenCo 3 mono-
tonically increase with increases in the MPRMCap3 setting for GenCo 3.

However, comparing the findings in Table 6 with the benchmark (no learn-
ing) and pure economic capacity withholding findings in Table 2, it is seen
that the increase in GenCo 3’s mean net earnings through economic capacity
withholding are substantially greater than the increases in its mean net earn-
ings from successively higher physical capacity withholding. Thus, although
both forms of capacity withholding add to GenCo 3’s net earnings, economic
capacity withholding is the primary channel through which GenCo 3 increases
its net earnings.

8.2. Combined Economic and Physical Capacity Withholding by Two GenCos

As in Section 6.2 and Section 7.2, learning experiments are conducted for
two co-learning GenCos: namely, GenCo 3 and GenCo 5. Here, however,
the two co-learning GenCos are permitted to engage in both economic and
physical capacity withholding. All other GenCos are assumed to report their
true cost and capacity attributes to the ISO.

Table 7 shows mean outcomes (with standard deviations) on day 1000 for
GenCo net earnings, and for GenCo 3 and GenCo 5 reported supply offers,
when GenCo 3 and GenCo 5 use VRE learning to exercise both economic
and physical capacity withholding. Comparing these results to the results
presented in Table 2 for the benchmark (no-learning) and pure economic ca-
pacity withholding cases, it is seen that GenCo 3 and GenCo 5 both attain
much higher mean net earnings under learning. However, these higher mean
net earnings are primarily due to economic capacity withholding, in the form
of substantially higher reported ordinate and slope values aR,bR for the Gen-
Cos’ reported marginal cost functions (1). For example, GenCo 3 raises its
reported ordinate value aR dramatically, to almost four times its true value,
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Table 6: Mean outcomes (with standard deviations) on day 1000 for GenCo net earnings,
and for GenCo 3’s reported supply offers (aR,bR,CapRU ), when GenCo 3 uses VRE learn-
ing to exercise both economic and physical capacity withholding. Results are reported for
a range of different MPRMCap3 shrinkage values for GenCo 3.

MPRMCap for GenCo 3 99% 98% 97% 96% 95%

GenCo 1 DNE 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 2 DNE 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 3 DNE 1,973,577.19 1,980,160.94 1,986,854.87 1,993,661.93 2,000,585.19
(277,338.27) (278,227.89) (279,273.41) (280,482.08) (281,861.29)

GenCo 4 DNE 303,449.92 304,616.65 305,802.88 307,009.16 308,236.04
(50,027.46) (50,186.55) (50,372.87) (50,587.68) (50,832.28)

GenCo 5 DNE 33,097.68 33,097.68 33,097.68 33,097.68 33,097.68
(0.00) (0.00) (0.00) (0.00) (0.00)

GenCo 3 aR 98.57 98.57 98.57 98.57 98.57
(true a=25.00) (7.82) (7.82) (7.82) (7.82) (7.82)

GenCo 3 bR 0.27 0.27 0.27 0.27 0.27
(true b=0.01) (0.05) (0.05) (0.05) (0.05) (0.05)

GenCo 3

CapRU 517.62 515.23 512.85 510.47 508.08
(TrueMaxCap=520) (2.13) (4.27) (6.40) (8.54) (10.67)

GenCo 3

CapRU/TrueMaxCap 99.54% 99.08% 98.63% 98.17% 97.71%
(0.41%) (0.82%) (1.23%) (1.64%) (2.05%)

while GenCo 5 raises its reported ordinate value aR to over double its true
value.

Both GenCos also attain successively higher mean net earnings as the
MPRMCap3 shrinkage value for GenCo 3 is decreased, permitting GenCo 3
to exercise greater physical capacity withholding. However, these increases
in mean net earnings are much smaller in percentage terms than the sharp
increases resulting from economic capacity withholding.

In summary, while both economic and physical capacity holding add to
the mean net earnings of GenCo 3 and GenCo 5, economic capacity with-
holding is the primary means through which they attain higher mean net
earnings. From Table 7, it is also seen that GenCo 3 attains much higher
mean net earnings than GenCo 5. The reasons for this are similar to the
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Table 7: Mean outcomes (with standard deviations) on day 1000 for GenCo daily net
earnings (DNE), and for GenCo 3 and GenCo 5’s reported supply offers (aR,bRCapRU ),
when GenCo 3 and GenCo 5 use VRE learning to exercise both economic and physical
capacity withholding. Results are reported for a fixed MPRMCap5 shrinkage value of 0.70
for GenCo 5 and for a range of possible MPRMCap3 shrinkage values for GenCo 3.

MPRMCap for GenCo 3 99% 98% 97% 96% 95%

GenCo 1 DNE 52,462.61 51,744.44 52,380.00 62,356.15 74,969.74
(75,157.13) (75,285.93) (74,686.83) (78,612.73) (80,573.60)

GenCo 2 DNE 46,174.07 45,521.31 46,099.53 55,078.56 66,413.40
(67,610.86) (67,739.12) (67,179.75) (70,738.39) (72,545.32)

GenCo 3 DNE 2,030,943.15 2,068,246.24 2,083,177.71 2,139,915.52 2,244,762.61
(345,177.83) (315,194.58) (339,489.78) (452,137.70) (440,142.52)

GenCo 4 DNE 402,351.76 408,758.31 411,039.92 429,387.00 461,214.44
(133,209.50) (130,103.54) (130,289.40) (155,201.83) (148,768.56)

GenCo 5 DNE 192,264.38 192,291.10 192,642.57 215,248.40 246,805.08
(153,958.15) (153,948.98) (153,918.35) (165,392.36) (169,829.01)

GenCo 3 aR 98.57 98.57 100.00 97.14 98.57
(true a=25.00) (7.82) (7.82) (0.00) (10.87) (7.82)

GenCo 3 bR 0.27 0.28 0.27 0.27 0.27
(true b=0.01) (0.05) (0.05) (0.06) (0.06) (0.06)

GenCo 5 aR 22.90 22.90 22.90 24.47 26.07
(true a=10.00) (12.92) (12.92) (12.92) (13.37) (13.70)

GenCo 5 bR 0.05 0.05 0.05 0.05 0.06
(true b=0.007) (0.05) (0.05) (0.05) (0.05) (0.05)

GenCo 3

CapRU 517.66 515.58 512.72 509.25 505.92
(TrueMaxCap=520) (2.03) (4.22) (6.70) (8.07) (10.67)

GenCo 5

CapRU 507.00 508.50 508.50 511.50 508.50
(TrueMaxCap=600) (60.18) (59.66) (59.66) (60.82) (61.95)

GenCo 3

CapRU/TrueMaxCap 99.55% 99.15% 98.60% 97.93% 97.29%
(0.39%) (0.81%) (1.29%) (1.55%) (2.05%)

GenCo 5

CapRU/TrueMaxCap 84.50% 84.75% 84.75% 85.25% 84.75%
(10.03%) (9.94%) (9.94%) (10.14%) (10.33%)

reasons discussed in Section 6.2.
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9. Comparisons of Experimental Findings

This section summarizes the detailed experimental findings for economic
and physical capacity withholding reported in Sections 6 through 8.

9.1. Comparison of Cases with One GenCo Learner

From Table 2, Table 5 and Table 6, it is seen that the relatively large
and expensive GenCo 3 (located at the load-pocket Bus 3) attains much
higher mean net earnings relative to the benchmark no-learning case when it
is able to exercise economic capacity withholding, whether or not it engages
in physical capacity withholding. Conversely, although GenCo 3’s mean net
earnings increase when it exercises only physical capacity withholding, in-
creasingly so for successively smaller settings for its MPRMCap3 shrinkage
value, these gains are substantially smaller.

9.2. Comparison of Cases with Two GenCo Learners

Co-learning findings for GenCo 3 and the relatively small and inexpensive
GenCo 1 are reported in Table 3 and Figures 7-9. It is seen that GenCo 3
attains much higher mean net earnings relative to the benchmark no-learning
case when using economic capacity withholding, whether or not it engages in
physical capacity withholding. Moreover, GenCo 3 has more market power
than GenCo 1 because of its pivotal suppler status. GenCo 1 suffers a loss in
mean net earnings relative to the benchmark no-learning case when GenCo 3
exercises physical capacity withholding, due to network effects; and GenCo 1
loses out completely (zero dispatch level) when GenCo 3 engages in eco-
nomic capacity withholding. Conversely, GenCo 3 is largely unaffected by
the capacity withholding choices of GenCo 1.

Co-learning experimental findings for GenCo 3 and the relatively large but
inexpensive baseload GenCo 5 are presented in Tables 4-7 and Figures 10-12.
It is seen that both GenCos attain much higher mean net earnings relative to
the benchmark no-learning case when they exercise economic capacity with-
holding alone or in combination with physical capacity withholding. Con-
versely, GenCo 3 and GenCo 5 achieve much smaller gains in mean net earn-
ings when they only exercise physical capacity withholding. Also, GenCo 3’s
favorable load-pocket location gives it more market power than GenCo 5 be-
cause it is a pivotal supplier in almost every hour of every run. GenCo 5’s
best capacity withholding choices are affected by GenCo 3’s choices, but
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GenCo 3’s best capacity withholding choices are largely unaffected by the
choices of GenCo 5.

Comparing these two co-learning experiments, it is seen that GenCo 5 is
in a much better position than GenCo 1 to take advantage of the capacity
withholding choices of GenCo 3 to increase its own mean net earnings. Three
factors work against GenCo 1 here: (i) The persistent congestion on branch
1-2 connecting Bus 1 to Bus 2; (ii) the location of GenCo 1 at bus 1, semi-
islanded away from the load pocket Bus 3; and (iii) the relatively small
capacity of GenCo 1.

9.3. Overall Summary of Experimental Findings

The experiments reported in this study indicate that economic capacity
withholding is much more advantageous for GenCos than physical capacity
withholding in terms of raising their mean net earnings. However, in these
experiments the ISO does not mitigate the exercise of market power by the
GenCos in any way. Effective market power mitigation requires monitoring
of GenCo reported costs and capacities relative to true. It could be the case
that economic capacity withholding is more easily monitored and controlled
for than physical capacity withholding, because true operating costs can be
estimated rather well from publicly available information such as fuel type
and fuel prices. Conversely, it could be more difficult to check whether forced
outages of generation units are accurately being reported.

Finally, in all experiments reported in this study, the inexpensive but
small GenCo 1 located at Bus 1 is persistently non-marginal. Consequently,
its capacity withholding actions have little effect on the mean net earnings of
other GenCos. Conversely, when the relatively big GenCos 3 and 5 exercise
capacity withholding, GenCo 1 can either win or lose. Specifically, relative to
the benchmark no-learning case, GenCo 1: (a) loses big (zero dispatch) when
either GenCo 3 alone engages in economic capacity withholding, GenCo 3
and GenCo 1 both engage in economic capacity withholding, or GenCo 3
engages in combined economic and physical capacity withholding; (b) loses
modestly when GenCo 3 alone engages in physical capacity withholding; and
(c) gains big when GenCo 3 and GenCo 5 both engage in economic capacity
withholding, with or without physical capacity withholding.

The key for GenCo 1 is the economic capacity withholding of GenCo 5
located at the neighboring Bus 5. If GenCo 5 aggressively reports higher-
than-true marginal costs, GenCo 1 can appear to be the cheaper GenCo. In
this case GenCo 1 is dispatched to full capacity in advance of GenCo 5 and
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thus manages to sell its generation at the very high price determined by the
reported supply offers of the marginal GenCos 3 and/or 5.

10. Concluding Remarks

The wholesale electric power market experiments conducted in this study
provide relatively simple but empirically relevant test cases for examining
claims about weak emergence, both positive and negative.

One issued noted by Bedau (1997) is whether weak emergence has any
practical usefulness. The co-learning patterns stressed in this study — cor-
related GenCo supply offer behaviors and correlated GenCo net earnings
outcomes – are weakly emergent in the sense of Bedau (1997). These co-
learning patterns could provide useful information for real-world operators
and regulators interested in understanding the myriad complicated ways in
which market power can be directly and indirectly exercised in wholesale
electric power markets.

For example, they reveal the existence of complementarity effects in which
capacity withholding exercised by a relatively large and favorably located
GenCo, such as GenCo 3, induces capacity withholding by other relatively
large GenCos, such as GenCo 5. The resulting impacts on the net earnings of
smaller GenCos, such as GenCo 1, can then be positive (a complementarity
effect) or negative (a substitution effect) depending on how aggressively the
larger GenCos exercise capacity withholding and the extent to which this
withholding results in branch congestion affecting power flow on the grid.

Another issue noted by Bedau (1997) is predictability. By definition, the
weakly emergent macrostates of a system S are fully determined given the
microdynamics of S together with all impinging external conditions, includ-
ing initial conditions. In what sense, then, are simulations really needed to
understand these macrostates?

The 5-bus test cases computationally implemented in this study are de-
terministic systems. By construction, the co-learning patterns that emerge
during the implementation for any one of these systems are entirely deter-
mined by the specification of the initial system microstate. This specification
includes: the methods and attributes of the GenCos, the LSEs, and the ISO
(decision-making agents); the methods and attributes of the day-ahead mar-
ket (institutional agent); the methods and attributes of the transmission
grid (physical agent); and initial seed values for all pseudo-random number
generators included among these agents’ methods.
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The co-learning patterns arising in these test case implementations are
“explained” ex post in this study by close examination of the underlying
transmission grid configuration, market rules, GenCo true cost and capacity
attributes, and GenCo learning capabilities that appear to advantage some
GenCos over others. In addition, some use is made of synchronic explanation,
i.e., current co-learning patterns are “explained” in terms of the current
(synchronic) interactions among the rivalrous co-learning GenCos.

However, the actual causal linkages between the initial system microstates
and the resulting co-learning patterns in these 5-bus test cases are so exceed-
ingly complex it appears impossible that anyone could succeed in accurately
predicting them in advance of experimentation. Moreover, the intensive na-
ture of the experiments that would be needed to understand these linkages
with confidence is daunting; the experiments conducted in the current study
are suggestive but by no means definitive.

The saving grace here is that the 5-bus test cases, while highly simplified,
capture important features of real-world wholesale electric power systems.
As detailed in Weidlich and Veit (2008), agent-based researchers around the
world are building empirically-grounded testbeds for the study of such sys-
tems, sharing the computational burden and speeding the real-world benefits.
It seems likely that the concept of weakly emergent patterns will play an in-
creasingly important role in conveying our hard-won understanding of these
and other complex real-world systems critical for both social welfare and
national security.

APPENDICES: TECHNICAL MATERIALS

A. GenCo Cost and Net Earnings Functions: Technical Details

For each day D, the supply offer sRi chosen by GenCo i to report to the
ISO for use in each hour H of the day-ahead market for day D+1 consists of
a linear reported marginal cost function

MCR
i (pGi) = aRi + 2bRi · pGi ($/MWh) (1)

defined over a reported generation capacity interval

0 ≤ pGi ≤ CapRUi (MW ) (2)

for the generation of real power pGi. The expression MCR
i (pGi) in (1) denotes

GenCo i’s reported sale reservation value for energy evaluated at pGi, i.e.,
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the minimum dollar amount it reports it is willing to accept per MWh. The
reported marginal cost functions (1) must lie either on or above GenCo i’s
true marginal cost function

MCi(pGi) = ai + 2bi · pGi ($/MWh) , (3)

where ai > 0 and bi > 0. Also, GenCo i’s reported maximum generation
capacity CapRUi in (2) must lie within its true generation capacity interval:

0 ≤ CapRUi ≤ CapUi (MW ) , (4)

where CapUi > 0.
Thus, for the study at hand, a reported supply offer sRi for any GenCo i

takes the form of a reported marginal cost function (1) that can be summa-
rized by a vector (aRi ,bRi ) determining its ordinate aRi and slope 2bRi , together
with a reported value CapRUi for its maximum generation capacity. Hence-
forth such supply offers will be abbreviated in the form sRi = (aRi ,bRi ,CapRUi ).

At the beginning of any planning period, a GenCo’s avoidable costs con-
sist of the operational costs that it can avoid by shutting down production
together with the portion of its fixed (non-operational) costs that it can avoid
by taking appropriate additional actions such as asset re-use or re-sale. In
order for production to proceed, revenues from production should at least
cover avoidable costs. In the present study the GenCos do not incur start-
up/shut-down or no-load costs, and all of their fixed costs are assumed to be
sunk , i.e., non-avoidable. Consequently, the avoidable cost function Ca

i (pGi)
for each GenCo i for any hour H is given by the integral of its true hourly
marginal cost function:

Ca
i (pGi) =

∫ pGi

0

MCi(p)dp = aipGi + bi[pGi]
2 ($/h) (5)

where pGi lies between 0 and CapUi .
Suppose GenCo i, located at bus k(i), is dispatched at level pGi(H,D) at

price LMPk(i)(H,D) for hour H of the day-ahead market for day D+1. The
revenues due to GenCo i for all 24 hours of day D+1, settled at the end of
day D, are

Revi(D) =
23∑

H=00

LMPk(i)(H,D) · pGi(H,D) ($) (6)
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Net earnings are defined as revenues minus avoidable costs. Let the avoidable
costs incurred by GenCo i on day D for any hour H of day D+1 based on its
day-D dispatch pGi(H,D) be denoted by Ca

i (H,D). Then the net earnings of
GenCo i for all 24 hours of day D+1, realized on day D, are

NEi(D) = Revi(D)−
23∑

H=00

Ca
i (H,D) ($) (7)

Finally, as will be seen in Section C, we make use of estimates MaxDNEi

for each GenCo i’s maximum possible daily net earnings derived from its
action domain ADi assuming “competitive” marginal-cost pricing (sales price
= reported marginal cost). Specifically,

MaxDNEi = 24h ∗
(

max
sR
i ∈ADi

[
HNE(sRi )

])
($), (8)

where the hourly net earnings function HNE(sRi ) ($/h) is given by

HNE(sRi ) = [MCR
i (CapRUi ) ∗ CapRUi ]− Ca

i (CapRUi ) . (9)

Note that MaxDNEi > 0 if strue
i ≡ (ai,bi,CapUi ) is included in GenCo i’s

action domain ADi, a requirement imposed in the following subsection.

B. GenCo Learning: Technical Details

GenCo learning is implemented using a variant of a stochastic reinforce-
ment learning method developed by Roth and Erev (1995) based on human-
subject experiments, hereafter referred to as the Variant Roth-Erev (VRE)
learning method . The essential idea of stochastic reinforcement learning is
that the probability of choosing an action should be increased (reinforced) if
the corresponding reward is relatively good and decreased if the correspond-
ing reward is relatively poor.

Each GenCo i has available an action domain ADi consisting of a finite
number of possible reported supply offers sRi = (aRi ,bRi ,CapRUi ), hereafter re-
ferred to as actions . The action domain ADi is tailored to GenCo i’s own
particular true cost and capacity attributes as follows: (a) it only contains re-
ported marginal cost functions (1) lying on or above GenCo i’s true marginal
cost function (3); and (b) it contains GenCo i’s true marginal cost function

defined over GenCo i’s true generation capacity interval, i.e., it contains strue
i
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≡ (ai,bi,CapUi ). However, the action domains are constructed so as to ensure
equal cardinalities and similar densities across all GenCos to avoid favoring
some GenCos over others purely through action domain construction.13

The remainder of this section describes how an arbitrary GenCo i goes
about using the VRE learning method to select actions sRi from its action
domain ADi to submit to the ISO for the day-ahead energy market on suc-
cessive days D, starting from an initial day D=1. As will be seen below, the
only relevant attribute of ADi for implementation of VRE learning is that it
has finite cardinality. Consequently, letting Mi ≥ 1 denote the cardinality of
ADi, it suffices to index the actions in ADi by m = 1,...,Mi.

The initial propensity of GenCo i to choose action m ∈ ADi is given by
qim(1) for m = 1,...,Mi. AMES(V2.05) permits the user to set these initial
propensity levels to any real numbers. However, the assumption used in this
study is that GenCo i’s initial propensity levels are all set equal to some
common value qi(1), as follows:

qim(1) = qi(1) for all actions m ∈ ADi (10)

Now consider the beginning of any day D ≥ 1, and suppose the current
propensity of GenCo i to choose action m in ADi is given by qim(D). The
choice probabilities that GenCo i uses to select an action for day D are
then constructed from these propensities using the following commonly used
Gibbs-Boltzmann transformation:

pim(D) =
exp(qim(D)/Ti)∑Mi

j=1 exp(qij(D)/Ti)
, m ∈ ADi (11)

In (11), Ti is a temperature parameter that affects the degree to which GenCo
i makes use of propensity values in determining its choice probabilities. As
Ti→∞, then pim(D)→ 1/Mi, so that in the limit GenCo i pays no attention
to propensity values in forming its choice probabilities. On the other hand,
as Ti → 0, the choice probabilities (11) become increasingly peaked over the
particular actions m having the highest propensity values qim(D), thereby
increasing the probability that these actions will be chosen.

At the end of day D, the current propensity qim(D) that GenCo i asso-
ciates with each action m in ADi is updated in accordance with the following

13A complete technical explanation of this important action domain construction can
be found in Appendix B of Li et al. (2009).
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rule. Let m′ denote the action actually selected and reported into the day-
ahead market by GenCo i in day D. Also, let NEim′(D) denote the actual
daily net earnings (7) attained by GenCo i at the end of day D as its settle-
ment payment for all 24 hours of the day-ahead market for day D+1. Then,
for each action m in ADi,

qim(D + 1) = [1− ri]qim(D) + Responseim(D) , (12)

Responseim(D) =


[1− ei] ·NEim′(D) if m = m′

ei · qim(D)/[Mi − 1] if m 6= m′,
(13)

where14 ri ∈ [0, 1], ei ∈ [0, 1), and m 6= m′ implies Mi ≥ 2. The introduction
of the recency parameter ri in (12) acts as a damper on the growth of the
propensities over time. The experimentation parameter ei in (13) permits
reinforcement to spill over to some extent from a chosen action to other
actions to encourage continued experimentation with various actions in the
early stages of the learning process.

C. Calibration of GenCo Learning: Technical Details

This appendix section provides technical details in support of the dis-
cussion in Section 5 regarding the sweet-spot calibration of VRE learning
parameters for each learning GenCo.

C.1. Learning Calibration for Pure Economic Capacity Withholding Experi-
ments

In the pure economic capacity withholding experiments reported in Sec-
tion 6, each learning GenCo i makes daily use of the VRE learning method
to adjust the ordinate and slope parameters aRi ,bRi of its reported marginal

14In the original Roth-Erev method, the term qim(D) in (13) is instead given by
NEim′(D). However, as explained in Nicolaisen et al. (2001), in this case there is no
updating of propensities when net earnings outcomes are zero, e.g., due to a failure to be
dispatched. This can result in prolonged mushing around in the early stages of learning
when GenCos are trying to learn appropriate supply offers, with subsequent losses of net
earnings and reductions in market efficiency. The substitution of qim(D) for NEim′(D) in
equation (13), introduced in Nicolaisen et al. (2001) to avoid this zero-updating problem,
resulted in dramatic improvements in both GenCo net earnings and in market efficiency.
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cost function (1) in pursuit of increased net earnings. The action domain
ADi for each learning GenCo i includes 100 possible reported supply offers
of the form sRi = (aRi ,bRi ,CapUi ), constructed by crossing 10 distinct values
for aRi with ten distinct values for bRi .

The VRE recency and experimentation learning parameters ri and ei for
each learning GenCo i are fixed at common levels r = 0.04 and e = 0.96.
These values for ri and ei have yielded relatively high mean net earnings for
the GenCos in intensive sensitivity experiments conducted by ISU researchers
for a variety of market contexts with VRE-learning traders, including 3-bus
and 5-bus wholesale power market experiments with pure economic capacity
holding conditional on various settings for the initial propensity levels qi(1)
and temperature levels Ti for each GenCo i [cf. Pentapalli (2008)].

Given these sweet-spot values for ri and ei, we then conducted intensive
parameter sweeps to determine sweet-spot settings for qi(1) and Ti for each
GenCo i for the 5-bus test case with each GenCo able to learn to exercise pure
economic capacity withholding. More precisely, we systematically tested a
range of positive values for αi and βi, defined as follows:

• αi = qi(1)/MaxDNEi, where qi(1) is the initial propensity level for
GenCo i appearing in (10), a measure of GenCo i’s net earnings as-
pirations at the beginning of the initial day 1, and MaxDNEi denotes
GenCo i’s (positive) estimated maximum possible daily net earnings as
determined in (8);

• βi = qi(1)/Ti, where Ti is the temperature parameter for GenCo i
appearing in (11).

As detailed in Appendix A, the (positive) estimate MaxDNEi is exogenously
determined from the structural aspects of GenCo i’s action domain ADi.
Consequently, any specification of positive αi and βi values for GenCo i
determines unique positive qi(1) and Ti values for GenCo i.15

Figure 4 depicts experimental findings for mean total GenCo daily net
earnings attained for the 5-bus case with pure economic capacity holding

15In our earlier study Li et al. (2008), identical initial propensity and temperature
levels were set for all learning GenCos: namely, q(1) = 6000 and T = 1000. This was
unsatisfactory since the “prior anticipated net earnings” q(1) were then set commonly
across GenCos with different costs and locations without regard for their different net
earnings opportunities.
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under various positive commonly-set values for

α =
qi(1)

MaxDNEi

, β =
qi(1)

Ti
, i = 1, . . . , 5 . (14)

An interesting pattern is immediately evident in Fig. 4. The (α,β) combi-
nations associated with the highest mean net earnings outcomes lie along a
nonlinear ridge line that traverses from (1, 100) in the northwest corner to
(1/24, 2) in the south-central region.

In all of the pure economic capacity withholding experiments reported in
Section 6, the values (α, β) = (1, 100) found to achieve the relatively highest
mean total GenCo daily net earnings for pure economic capacity withholding
are used as sweet-spot settings for the VRE α and β parameters in (14) for
each learning GenCo i. This, in turn, determines sweet-spot settings for the
VRE initial propensity and temperature parameters qi(1) and Ti for each
learning GenCo i.

C.2. Learning Calibration for Pure Physical Capacity Withholding Experi-
ments

In the pure physical capacity withholding experiments reported in Sec-
tion 7, the following value ranges are used for the GenCos’ Minimum Possible
Reported Max Capacity (MPRMCap) fractions (i.e., their shrinkage values):

• 0.75 to 0.95 for GenCo 1;

• 1.00 for GenCo 2;

• 0.95 to 0.99 for GenCo 3;

• 1.00 for GenCo 4;

• 0.70 to 0.95 for GenCo 5.

If MPRMCapi < 1.00 for GenCo i, its action domain ADi includes 30
possible reported supply offers of the form sRi = (ai,bi,CapRUi ) for thirty
distinct possible reported maximimum generation capacity settings CapRUi .
The 30 settings for CapRUi are equally spaced across the interval ranging
from the lower bound MPRMCapi · CapUi to the upper bound CapUi , where
CapUi denotes GenCo i’s true maximum generation capacity. Alternatively,
if MPRMCapi = 1.00 for GenCo i, its action domain ADi includes only one
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possible reported supply offer, strue
i = (ai,bi,CapUi ). That is, ADi includes

only GenCo i’s true marginal cost function (3) defined over its true generation
capacity interval (4), implying GenCo i does not have learning capabilities.

It follows from this action domain construction that our pure physical
capacity withholding experiments involve at most three learners: GenCo 1,
GenCo 3, and GenCo 5. For each of these potential learners the VRE recency
and experimentation learning parameters ri and ei are fixed at the common
values r = 0.04 and e = 0.96, as in Appendix C.1. However, as indicated
in Table 8, preliminary pure physical capacity withholding experiments were
conducted to determine sweet-spot values for the VRE α and β parameters
in (14) for these three potential learners.16

Table 8: GenCo action domain and learning parameter settings for pure physical capacity
withholding experiments with three potential learners: GenCos 1, 3, and 5.

Action Domain Parameters

GenCo i M1i M2i M3i RIMaxL
i RIMaxU

i RIMinC
i SSi

1 1 1 (1, 30) 0.75 0.75 (0.75, 0.80, 0.85, 0.90, 0.95) 0.001
2 1 1 1 0.75 0.75 1.00 0.001
3 1 1 (1, 30) 0.75 0.75 (0.95, 0.96, 0.97, 0.98, 0.99) 0.001
4 1 1 1 0.75 0.75 1.00 0.001
5 1 1 (1, 30) 0.75 0.75 (0.70, 0.75, 0.80, 0.85, 0.90, 0.95) 0.001

Learning Parameters

GenCo i ri ei MaxDNEi α = [qi(1)/MaxDNEi] β = [qi(1)/Ti]

1 0.04 0.96 6,485.29 (1, 1/2, 1/4, 1/10, 1/24, 1/50, 1/100) (100, 50, 10, 2, 1, 1/2)
2 0.04 0.96 110.79 (1, 1/2, 1/4, 1/10, 1/24, 1/50, 1/100) (100, 50, 10, 2, 1, 1/2)
3 0.04 0.96 233,428.08 (1, 1/2, 1/4, 1/10, 1/24, 1/50, 1/100) (100, 50, 10, 2, 1, 1/2)
4 0.04 0.96 592.79 (1, 1/2, 1/4, 1/10, 1/24, 1/50, 1/100) (100, 50, 10, 2, 1, 1/2)
5 0.04 0.96 142,781.67 (1, 1/2, 1/4, 1/10, 1/24, 1/50, 1/100) (100, 50, 10, 2, 1, 1/2)

Figure 5 depicts pure physical capacity withholding experimental findings
for mean GenCo 3 net earnings on day 1000 under alternative (α, β) spec-
ifications set commonly for GenCos 1, 3, and 5 with MPRMCap=0.95 for
all three GenCos. The net earnings of GenCo 3 are chosen as the criterion
for the calibration of (α, β) for our pure physical capacity withholding ex-
periments because in most hours this large supplier turns out to be a pivotal

16For a full explanation of the action domain parameters appearing in Table 8 that deter-
mine the construction of the GenCos’ action domains, see Appendix B of Li et al. (2009).

48



supplier, i.e., its generation capacity is essential for meeting fixed demand.
In all of the pure physical capacity withholding experiments reported

in Section 7, the values (α, β) = (1/24, 100) found above to achieve the
relatively highest mean daily net earnings for GenCo 3 are used as sweet-spot
settings for the VRE α and β parameters in (14) for each learning GenCo i.
This, in turn, determines sweet-spot settings for the VRE initial propensity
and temperature parameters qi(1) and Ti for each learning GenCo i.

C.3. Learning Calibration for Combined Capacity Withholding Experiments

In the combined economic and physical capacity withholding experiments
reported in Section 8, only two types of learning are considered. Either
GenCo 3 is the only learning GenCo (capable of both economic and phys-
ical capacity withholding), or GenCo 3 and GenCo 5 are the only learning
GenCos (each capable of both economic and physical capacity withholding).
Consequently, the action domains ADi are constructed as follows.

The action domain AD3 for GenCo 3, always a learner, includes 3000 =
10×10×30 possible reported supply offers of the form sR3 = (aR3 ,bR3 ,CapRU3 ).
This action domain is constructed as the cross-product of ten values for the
reported ordinate parameter aR3 , ten values for the reported slope parameter
bR3 , and 30 values for the reported maximum generation capacity CapRU3 . The
reported ordinate/slope values for GenCo 3 are the same as used for GenCo
3 in the pure economic withholding experiments (see Appendix C.1) and the
reported maximum generation capacity values for GenCo 3 are the same as
used for GenCo 3 in the pure physical capacity withholding experiments (see
Appendix C.2).

The action domain AD5 for GenCo 5 in experiments for which GenCo 5 is
a learner (hence MPRMCap5 < 1.00) includes 3000 possible reported supply
offers, constructed similarly to AD3. The action domain ADi for each non-
learning GenCo i consists of only one possible reported supply offer, strue

i =
(ai, bi, CapUi ). That is, ADi consists of GenCo i’s true marginal cost function
(3) defined over its true generating capacity interval (4).

For each combined economic and physical capacity withholding experi-
ment, the VRE learning parameters (r, e, α β) are set commonly across all
learning GenCos at the particular values (0.04, 0.96, 1, 100) determined in
Appendix C.1. Ideally, a separate calibration exercise for these four VRE
learning parameters should be undertaken for the combined case to see how
the sweet-spot region for the combined case geometrically relates to the
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sweet-spot regions for each of the pure cases; this is a topic for future re-
search.
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