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Abstract—This study uses a dynamic 5-bus test case imple-

mented via the AMES Wholesale Power Market Test Bed to
investigate strategic capacity withholding by generation compa-
nies (GenCos) in restructured wholesale power markets under
systematically varied demand conditions. The strategic behaviors

of the GenCos are simulated by means of a stochastic reinforce-

ment learning algorithm motivated by human-subject laboratory
experiments. The learning GenCos attempt to improve their
earnings over time by strategic selection of their reported supply
offers. This strategic selection can involve bothphysical capacity
withholding (reporting of lower-than-true maximum operating
capacity) and economic capacity withholding (reporting of higher-
than-true marginal costs). We explore the ability of demand
conditions to mitigate incentives for capacity withholding by
letting demand bids vary from 100% fixed demand to 100%
price-sensitive demand.

Index Terms—Capacity withholding, demand-bid price sensiti-
tivy, restructured wholesale power markets, locational marginal
pricing, multi-agent stochastic reinforcement learning, dynamic
5-bus test case, AMES Wholesale Power Market Test Bed

|. INTRODUCTION

properties using standard analytical and statistical modeling
tools. A key unresolved issue is the extent to which the

complicated rules and regulations governing market operations
under the design might encourage strategic bid/offer behaviors
on the part of market participants that reduce overall market
performance over time. A related issue is the extent to which
grid congestion and load-pocket formation can be strategically
manipulated to benefit certain market participants at the ex-
pense of others.

Fortunately, powerful new agent-based modeling tools are
now available that can handle this degree of complexity. As
detailed at [3], these tools are already fruitfully being applied
to the study of restructured wholesale power markets.

For example, in a series of studies ([4], [5], [6]) we
study economic capacity withholdingreporting of higher-
than-true marginal costs) by profit-seeking generation compa-
nies (GenCos) participating in a 5-bus wholesale power market
operating under FERC’s market design. The GenCos strate-
gically determine their supply offers over time using VRE
reinforcement learning, a variant of a stochastic reinforcement

He U.S. Federal Energy Regulatory Commission (FER@arning algorithm developed by Alvin Roth and Ido Erev ([7],
in an April 2003 white paper [1] proposed a markel8]) on the basis of human-subject laboratory studies. These

design for common adoption by U.S. wholesale power maconomic capacity-withholding experiments were conducted
kets. Core features of this market design include: centi$ing the AMES Wholesale Power Market Test Bed, an open-
management and oversight by an independent market operasetirce computational laboratory specifically designed for the
a two-settiement system consisting of a bid/offer-based dgystematic experimental study of FERC’s market design.
ahead market supported by a parallel real-time market toAlso, Tellidou and Bakirtzis [10] studyhysical capacity
ensure continual balancing of supply and demand for powa&vithholding(reporting of lower-than-true maximum operating
and management of transmission grid congestion by meansapacity) as well as economic capacity withholding within
locational marginal pricing. an agent-based computational modeling of an energy auction
Joskow [2] estimates that over 50% of generating capacityarket operating over a two-bus transmission grid with a fixed
in the U.S. is now operating under some variant of FERCtgaily demand (load) profile. Their simulated GenCos have
market design. Energy regions that have adopted (or pla@nstant marginal costs and decide on hourly point quantity-
to adopt) this design include the midwest (MISO), Newprice supply offers via SA-Q learning, a modified version of
England (ISO-NE), New York (NYISO), the mid-atlantic state§-learning. Each GenCo has the same learning parameters.
(PJM), California (CAISO), the southwest (SPP), and Texddie authors find that the GenCos are able to learn over time
(ERCOT). to exercise capacity withholding even if the only information
The complexity of FERC’s market design — together witavailable to them is public price data.
the relative recency of its adoption (implying short data series) In this study we extend this earlier work. We use the AMES
— makes it extremely difficult to study its dynamic performanctest bed to conduct systematic physical and economic capacity-
withholding experiments for a dynamic 5-bus test case under

Latest revision: 19 October 2008. This work is scheduled to appear in thgtarnative demand-bid price Sensitivity conditions ranging
Proceedingsof the 2009 IEEE Power Systems Conference and Exposition
(PSCE), Seattle, WA. It has been supported in part by the National Science
Foundation under Grant NSF-0527460 and by a grant from the ISU Electric! AMES is an acronym fo\gent-basedMiodeling of Electricity Systems.
Power Research Center. The first version of AMES was formally released by the developers (H. Li,
Hongyan Li (corresponding author: lihy@iastate.edu), Electrical and Cord- Sun, and L. Tesfatsion) as open-source software at the 2007 IEEE Power
puter Engineering Department, lowa State University, Ames, |IA 50011 USAnd Energy Society General Meeting. Downloads, manuals, and tutorial
and Leigh Tesfatsion (tesfatsi@iastate.edu), Economics Department, lanfarmation for all AMES version releases to date can be accessed at the
State University, Ames, |A 50011 USA. AMES homepage [9].



from 100% fixed demand (no price sensitivity) to 100% -
price sensitivity. GenCos and Load-Serving Entities (LSEs
participate in a day-ahead energy market operating over a
bus transmission grid with congestion managed by location:
marginal pricing. As in actual 1ISO-managed energy market
such as the MISO [11], the supply offers of the GenCos-
consist of reported marginal cost functions over reporte:
operating capacity intervals and the demand bids of the LSE
are combinations of fixed demand bids and price-sensitiv”
demand bid functions. The GenCos rely on VRE reinforcemer
learning to determine their reported supply offers over time.
Real-world restructured wholesale power markets are sc
guential open-ended games in that multiple participant tradq._l;a
must decide on bids/offers for electric power on a daily basis,

Traders ~ Independent System Operator (ISO)
+ LSEs (bulk-power « Day-ahead hourly scheduling
buyers) via bid/offer-based DC optimal
» GenCos (bulk-power power flow (OPF)
sellers with learning + System reliability assessments
capabilities)

Two-settlement process
» Day-ahead market (double auction, financial contracts)

+ Real-time market (settlement of differences)

AC transmission grid
» LSEs and GenCos located at user-specified busses
across the transmission grid

= Congestion managed via locational marginal pricing

1. AMES test bed architecture

with no fixed horizon. Presumably, then, the traders will

attempt to optimize their learning methods over time as they Public Access:
gain market experience. //" Public Methods

In recognition of this learning-to-learn issue, we take pre-
liminary steps in this study to help ensure that the GenCos
learning methods are calibrated to their decision environmen

getWorldEventSchedule(clock time);

getMarketProtocols( supply offer reporting, settlement,...);
getMarketProtocols( 1SO market power mitigation);
Methods for receiving data;

Methods for retrieving stored GenCo data.

We conduct initial experiments for the dynamic 5-bus test
case with 100% fixed demand involving extensive paramete
sweeps for key VRE learning parameters. We use these initi
learning experiments to determine GenCo-individuasteget

spot VRE learning parameter values resulting in the highes
daily net earnings for the GenCos. We then set each GenCa
VRE learning parameters to its sweet-spot values for al

Private Access:
// Private Methods

// Private Data

Methods for gathering, storing, and sending data;
Methods for calculating my expected/actual net earnings;
Method for updating my supply offers (LEARNING).

My grid location, cost function, capacity, current wealth... ;
Historical data (cleared supply offers, LMPs, ...);
Address book (communication links).

subsequent experiments.

Section Il outlines the main features of the AMES test
bed. Section Il explains the experimental design used &
explore GenCo capacity withholding under systematically
varied settings for demand-bid price-sensitivity when Gen-
Cos have sweet-spot VRE learning capabilities. Section IV
explains more carefully how we determined these sweet-spot
VRE learning capabilities. Experimental findings for GenCo
capacity withholding are reported in Section V. Concluding
remarks are given in Section VI.

[I. THE AMES TESTBED (VERSION2.01)
A. Overview

This study uses Version 2.01 of the AMES Wholesale
Power Market Test Bed to conduct all reported experiments.*®
AMES(V2.01) incorporates core features of the wholesale
power market design proposed by the U.S. FERC [1]; see
Fig. 1. A detailed description of these features can be found
in materials provided at the AMES homepage [9].

Below is a summary description of the logical flow of events
in the AMES(V2.01) wholesale power market: *

« The AMES wholesale power market operates over an

2. AMES GenCo: A cognitive agent with learning capabilities

Generation Companies (GenCod)stributed across the
busses of the transmission grid. Each of these entities is
implemented as a software program encapsulating both
methods and data; see, e.g., the schematic depiction of a
GenCo in Fig. 2

The objective of the I1SO is the reliable attainment of
appropriately constrainedperational efficiencyfor the
wholesale power market, i.e., the maximization of total
net benefits subject to generation and transmission con-
straints.

In an attempt to attain this objective, the ISO undertakes
the daily operation of aday-ahead markesettled by
means oflocational marginal pricing (LMP) Roughly
stated, alocational marginal price at any particular
transmission grid bus is the least cost of servicing demand
for one additional megawatt (MW) of power at that Bus.
The objective of each LSE is to secure power for its
downstream (retail) customers. During the morning of

AC transmission gr'_d_Startmg_O” day 1and contlnu_lng 2In reality, LMPs are shadow prices for “nodal balance constraints”
through a user-specified maximum day (unless terminateaghstituting part of the constraint set of optimal power flow problems and are

earlier in accordance with a user-specified stopping ruléierived as derivatives of the optimized power flow objective function with

Each day D consists of 24 successive hours H = 00,({

spect to particular types of perturbations of these constraints. Moreover,
se nodal balance constraints are imposed at “pricing nodes” that might

...,23. not correspond to actual physical bus locations on the grid. For expositional

« The AMES wholesale power market includesladepen- simplicity, throughout this study we use the standard engineering short-hand
description for LMPs as valuations for single-unit increases in demand and

dent SyStem_ O_perator (ISQa)nd_ a coIIe_gtion of energy we treat pricing nodes as coincident with transmission grid busses. For a more
traders consisting of.oad-Serving Entities (LSESAnd rigorous explanation and derivation of LMPs, see [6].



Fig. 3.
the supply offers they report to the ISO for the day-ahead market.

choose update normalize

Action Choice a, P ‘Choice Propensity g, ‘

‘Action Choice a, ‘ II- ‘ Choice Propensity g, ‘-‘Chcice Probability Probz‘

‘Chcice Probability Prob1‘

‘Action Choice aa‘ ‘Choice Propensity qa‘ ‘Chcice Probability Probs‘

o Each GenCo maintains action choice propensities g,
normalized to action choice probabilities Prob, to choose
actions (supply offers). A good (bad) reward r, for action a,
results in an increase (decrease) in both ¢, and Prob,.

AMES GenCos use stochastic reinforcement learning to determine

each day D, each LSE reports a demand bid to the ISO

00:00
Day-ahead market
for day D+1
(ISO collects bids/offers
Real- from LSEs and GenCos)
time
(spot) 11:00
market 1SO evaluates demand
for bids and supply offers
day D
18:00
ISO solves D+1 DC OPF
and posts D+1 commitment
and LMP schedule
Real-time || 23:00
settlement Day-ahead settlement

for the day-ahead market for day D+1. Each demand bit§- 4. AMES ISO activities during a typical day D
consists of two parts: fixed demand bidi.e., a 24-hour - i

load profile); and 24rice-sensitive demand bigene for — L u
each hour), each consisting of a linear demand function [Earnings Bids] [Earnings Offers]
defined over a purchase capacity interval. LSEs have no Buyers Sellers
learning capabilities; LSE demand bids are user-specified . m::B;ids LM‘::"C:F;
at the beginning of each simulation run. GUI

The objective of each GenCo is to secure for itself P Rt ]
the highest possible net earnings each day. During the

morning of each day D, each GenGaises its current <" DCoOPF solutionModule |
action choice probabilities to choosesapply offerfrom

its action domain AR to report to the 1SO for use in all [_mputpsts  ouputpss |
24 hours of the day-ahead market for day D+1. gy LSE 3
Each supply offer in AD consists of a linear marginal = :'@,
cost function defined over an operating capacity interval.

GenCoyi's ability to vary its choice of a supply offer

from its action domain AD permits it to adjust the or- .

dinate/slope of its reported marginal cost function and/or ©e LSE2
the upper limit of its reported operating capacity interval

in an attempt to increase its daily net earnings. Fig. 5. lllustration of AMES dynamics on a typical day D in the absence

After receiving demand bids from LSEs and supply offerd
from GenCos during the morning of day D, the 1SO
determines and publicly reports hourly power supply
commitments and LMPs for the day-ahead market for
day D+1 as the solution to hourly bid/offer-basedC
optimal power flow (DC-OPF)problems.Transmission
grid congestioris managed by the inclusion of congestion
cost components in LMPs. .
At the end of each day D, the ISO settles all commitments
for the day-ahead market for day D+1 on the basis of the
LMPs for the day-ahead market for day D+1.

At the end of each day D, each GenCuasesstochastic
reinforcement learningo update the action choice proba-

system disturbances or shocks for the special case of a 5-bus grid

and traders have no need to engage in real-time (spot)
market trading.

Each LSE and GenCo has an initial holding of money
that changes over time as it accumulates earnings and
losses.

There is no entry of traders into, or exit of traders
from, the wholesale power market. LSEs and GenCos
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

The activities of the ISO on a typical day D are depicted
in Fig. 4. The overall dynamical flow of activities in the

bilities_ currently a_lssig_ned to the supply offers in its actioygjesale power market on a typical day D in the absence
domain AD, taking into account its day-D settlemeniys oy stem disturbances or shocks is depicted in Fig. 5.

payment (“reward”). In particular, as depicted in Fig. 3, if

the supply offer reported by GenGon day D resultsina g pemand Bids and Supply Offers

relatively good reward, GenCioincreases the probability
of choosing this supply offer on day D+1, and <:onverse|¥h

There are no system disturbances (e.g., weather Chan%ﬁs:i:and bid for hour H consists offaxed demand biqbfj(H)

MWs) and aprice-sensitive demand bid function

or shocks (e.g., forced generation outages or line o 5
ages). Consequently, the binding financial contracts deter-
mined in the day-ahead market are carried out as planned

On each day D, each LSEreports 24 demand bids for use

e 24 hours of the day-ahead market for day D+1. The

Diu(pi;(H)) = c¢;(H) — 2d;(H)-p7,(H) (1)



defined over drue purchase capacity interval where p;; denotes any real-power generation level in (4). By
g definition, then, thefixed costfor GenCoi in each hour H
0 < pr;(H) < SLMaz;(H), (@) takes the form T@0) = FCost .
where [ ;(H) is real electric power (in MWs). The expression Net earningsare defined as revenues minus true total
D, (pg,(H)) denotes LSE's true purchase reservation value Variable cost. Suppose, in particular, that GenCis located
for p7,;(H), i.e., the maximum dollar payment it is truly willing at busk(i) and is committed at a generation leve);mt price
to make (per MWh) for ﬁj(H)- LMPy;) for hour H of the day-ahead market for day D+1.
On each day D, each Gen@s true marginal cost function 11€n the the net earnings of GenCér hour H of day D+1
for each hour H of the day-ahead market for day D+1 tak&&€ given by

the form of a linear function NEi(H,D) = LMPy)*pai —TVCi(pgi) . (9)
MCi(pai(H)) = ai + 2b;-pai(H) (3)  The net earnings of GenCioover all 24 hours of day D+1,

received in settlement from the ISO at the end of day D, are

defined over drue operating capacity interval .
then given by

Capj < pai(H) < Cap] , (4) s
where p;;(H) is real electric power (in MWs). The expression NEi(D) = NE,(H,D). (10)
MC;(pgi(H)) denotes GenCa's true sale reservation value H=00
for pg:(H), i.e., the minimum dollar payment it is truly willing o )
to accept (per MWh) for p;(H). D. Determination of LMPs and Power Commitments

On each day D, each GenGCaubmits ongeported supply  The AMES ISO computes hourly LMPs and power com-
offer to the 1SO for use in each hour H of the day-aheathitments for the day-ahead market by solving bid/offer-based
market for day D+1. This reported supply offer consists of RC Optimal Power Flow (OPF) problems that approximate
reported marginal cost function underlying AC-OPF problems. To handle these computations
the AMES ISO makes repeated callsD€OPFJ an accurate

R N — R R ) -
MC(pai) = a;" + 2b7" - pai (%) and efficient Java DC-OPF solver developed as open-source
defined over aeported operating capacity interval software by Sun and Tesfatsion ([5], [6)DCOPFJ consists
. RO of a strictly convex quadratic programming solver wrapped in
Cap; < pci < Cap;” (6) an outer Sl-pu data conversion shell.
where p;; is real electric power (in MWSs). The expression
MC%(p¢;) denotes GenCds reported sale reservation value I1l. EXPERIMENTAL DESIGN
for pg, i.e., the minimum dollar payment ieports it is All market performance experiments reported in this study
willing to accept (per MWh) for g.. are based on dynamic 5-bus test caseharacterized by the

To avoid operating at a point where the true margindbllowing structural, institutional, and behavioral conditions:

cost of its last supplied MW of power exceeds the marginal, The 5-bus transmission grid configuration is as depicted
benefit (received payment), Gen@se reported marginal cost in Fig. 6, with transmission grid, LSE, and GenCo
functions (5) lie on or above its true marginal cost function  stryctural attributes as presented in Li et al. [12].

(3). In addition, to avoid infeasible commitments, Gen® | The five GenCos in Fig. 6 are individual plant owners
reported maximum operating capaci@ag*” in (6) never with distinct maximum operating capacities as follows:
exceeds its true maximum operating capacity Cap (4). 110MW for GenCo 1 (G1); 100MW for GenCo 2 (G2);

Note from the above discussion that each reported supply s520MW for GenCo 3 (G3); 200MW for GenCo 4 (G4);
offer for GenCoi can be summarized in the form of a vector  and 600 MW for GenCo 5 (G5). Note that the next-to-

(a*.bf*,Cagf™). largest GenCo 3 is favorably situated in a potential “load
pocket” with respect to the three LSEs.
C. GenCo Costs and Net Earnings o GenCo 4 (a “peaking unit” ) has the most costly gen-

eration. Next in line is GenCo 3. The three remaining

GenCos 1, 2, and 5 have moderate costs.

The daily fixed demand (load) profiles for the three LSEs
are the same from one day to the next. As depicted in
Fig. 7, each daily fixed demand profile peaks at hou? 17.

Total variable costefers to the costs sustained by a supplier
that vary with the level of its operations, wheref@ased cost
refers to the costs sustained by a supplier independently of its
level of operationsTotal costrefers to the sum of the two.

For the specific context at hand, ttree total variable cost
functionfor GenCo: for each hour H takes the form 3A stand-alone version of DCOPFJ can be obtained at the software site for

DG the IEEE Taskforce on Open-Source Software for Power Systems [13].
TVCi(pgi) = MC;(p)dp = ai'pGi+bi'[pGi]2 , (7) 4The 5-bus transmission grid depicted in Fig. 6 is due to Lally [14]. This
0 grid configuration is now used extensively in ISO-NE/PJM training manuals

. . to derive quantity and price solutions at a given point in time assuming ISOs
and thetrue total cost functiorfor GenCo: for each hour H have complete and correct information about grid, LSE, and GenCo structural

takes the form attributes.

5These profile shapes are adopted from a case study presented in Shahideh-
TC;(pci) = [TVCi(pai)+ FCost;) (8) pour et al. [15, p. 296-297].



MPTD;(H) = Maximum Potential Total

MPTD;(H i

i(H) Demand in hour H for LSE j, fixed across
all R test cases

400MWs
Bus 5 Bus 4

I = Fixed Load pF(H) in MWs

LSE3
-
[ : 260 MWs = Maximum Potential Price-Sensitive

Demand SLMax;(H) in MWs

R = SLMax;(H)/MPTD,(H) = 0.50,
for H = 00,...,23

Hours H

l Bus 3

Bus 1 Bus 2
é) g) LSE1 \93)1sE2

Fig. 6. 5-bus transmission grid for the dynamic 5-bus test case

Fig. 8. lllustration of the construction of the R ratio for measuring relative
demand-bid price sensitivity for the special case R=0.5

the upper bound of its purchase capacity interval (2), and

450

ﬁ . ' _\ MPTD;(H) = [p;,(H)+ SLMax;(H)] (12)

= 0@

S = denotes LSEj’s maximum potential total demandh hour
H as the sum of its fixed demaniﬂH) and its maximum

potential price-sensitive demand SLM&) in hour H. The

construction of the R ratio is illustrated in Fig. 8.

s : . . For our price-sensitive demand experiments we start by
0 1 2 3 4 5 & 7 8 9 10111213 14 15 16 17 18 18 20 21 22 23 .
Hour setting all of the R values (11) for each LSEand each
RN (e e T B G| hour H equal to R=0.0 (the pure fixed-demand case). We then

_ _ _ _ _ systematically increase R by tenths, ending with the value
E;gs.e? Daily LSE fixed demand (load) profiles for the dynamic 5-bus tegh—1 0 (the pure price-sensitive demand case). A positive R
value indicates that the LSEs are able to exercise at least some
degree of price resistance.
« The VRE learning parameters for each of the five GenCosThe maximum potential price-sensitive hourly demands
are set at “sweet spot” values for which the GenCos & Max;(H) for each LSE; are thus systematically increased
a whole earn the highest average daily net earrfings. across experiments. However, we control for confounding
To control for purely random effects, we conducted thirtgffects arising from changes in overall demand capacity as
runs for each treatment using thirty distinct random sed@llows: For each LSE; and each hour H, the denominator
values; see Li et al. [12] for the precise numerical values usé@lue MPTD (H) in (12) is held constant across experiments
Also, unless otherwise indicated, experiments were conduct®d appropriate reductions in the fixed demand, () as
with all five AMES stopping rules flagged “on.” The stoppingSLMax;(H) is increased. Specifically, MPT(H) is set equal
day for each run is referred to as tfieal dayfor that run.  across all experiments to BRH), the hour-H fixed-demand
Our primary treatment factor is the extent to which eadgvel BPY(H) for LSE ;j specified in Li et al. [12] for their
GenCo can exercise physical capacity withholding by réenchmark dynamic 5-bus test case. Consequently, for each
porting lower-than-true maximum operating capacities. Ag¢sted R value,
clarified more carefully in Section V, we investigate two

F _ _ ) .

shrinkage rates for reported maximum operating capacities: Pr;(H) = [-RIx BPEJ (H) ; (13)
5% shrinkage (relative to true maximum operating capacity); SLMax;(H) = Rx*BP[;(H). (14)
and 10% shrinkage (relative to true maximum operating ca-

Moreover, as R is incrementally increased from R=0.0

pacity). o . to R=1.0, we control for confounding effects arising from
Another treatment factor we consider is relative demand-b(l:%(,jmgeS in the LSEs’ price-sensitive demand bids by setting

price sensitivity. As our measure for this factor, we Cconstrugt . - -yinate and slope parametéfs; (H),d; (H)): H=00,....23
] . - yunny

a ra_t|o R of tmat>_<|r|n;1r:1 ngtem'ald p:/(lze-sensmye Ide;nand ;ﬁtfixed values for each LSE. A listing of the specific
maximum potential total demand. VIore precisely, 1or €agl, merical values used can be found in Li et al. [12].

LSE j and each hour H, let

SLMax; (H) _ (11) V. PROCEDURE FORDETERMINATION OF SWEET-SPOT
MPTD; (H) VRE LEARNING PARAMETER VALUES

In (11) the expression SLMa{H) denotes LSE’s maximum  This section reports on initial learning experiments con-

potential price-sensitive demanith hour H as measured by ducted with the dynamic 5-bus test case outlined in Section Il
6 _ N _ _ with 100% fixed demand and no physical capacity withhold-
In particular, as explained in the following Section 1V, we use Case(1,

1 R : . .
in Table | corresponding to the basic learning parameter settings1 and I?‘Ig. Th_e purpose of these initial Iearnlng experiments Is to
B = 100. determine “sweet-spot” VRE learning parameter values for

Ri(H) =



the GenCos that perform reasonably well for their particular DclaslOnl petasShl betazll

decision environment. alpha=1
Reasonability is judged in terms of the average daily net

earnings (Avg DNE) ultimately attained by the GenCos as a alpha=172

result of the supply offers (actions) they learn to report to the

ISO over time. Avg DNE is calculated as the daily net earnings alpha=1/4

(10) earned on the final day D averaged across all five GenCos

and across all thirty runs. alpha=1/10
As detailed in Appendix A, the VRE reinforcement learning

algorithm for each GenCois characterized by the following alpha=1/24
four parameters:

o GenCoi's initial action choice propensity leve;(1),
Wh_ICh determ!nes GenCds Ir_1|t|E}| aspiration level for Fig. 9. A heat-map depiction of average daily net earnings (Avg DNE)
daily net earnings at the beginning of day 1; outcomes under alternativer, 3) VRE learning parameter combinations.

« GenCoi's temperature cooling ratel;, which controls Lighter shades indicate higher Avg DNE.
the extent to which differences in Gen@s action choice
propensities translate into differences in GenGaction
choice probabilities;

« GenCo i's recency parameterr;, which controls the [N E(sR) = MCE(CapPU)  CapRV — TV Ci(CapPV) .
relative weight GenCa places on current versus past (17)
‘rewards” (daily net earnings outcomes) when it updateSiven a (typically) distinct positive value MaxDNHor each
its action choice propensity values; _ GenCoi, a non-negative setting far determines a distinct

« GenCor’s experimentation parametes;, which dampens jpitia| earnings aspiration level,({) for each GenCa. Low
the growth of GenCa's chosen-action propensity levels, yajues correspond to pessimistic aspiration levels (relative
and controls the extent to which a reward resulting frofgy MaxDNE;), and conversely.

a currently chosen action affects GenCe updating of e then define a second derived parameter
its action choice propensities for non-chosen actions.
In extensive VRE learning experiments conducted for the 8 = ¢:(1) Li=1
benchmark dynamic 5-bus test case under alternative settings T
for the recency and experimentation parameters r and e oGven a non-negative value fer in (15) — and hence a value
their full feasible ranges from 0 to 1, Pentapalli [16] defor g;(1) for each GenCa — a non-negative setting fos in
termined that high Avg DNE outcomes were generally olf18) determines a temperature cooling rajdar each GenCo
tained with r=0.04 and e=0.96 for each GenCo. Consequentlyl-ow 3 values correspond to high temperature cooling rates,
throughout the present study we set r=0.04 and e=0.96 fanmd conversely.
each GenCa. Table | reports experimental findings for Avg DNE under
Clearly the values set for the initial action choice propensigiternative values foxx and 3. Fig. 9 provides a heat-map
level g(1) and temperature cooling rate Tor each GenCo depiction of these Avg DNE findings.
¢ should reasonably be calibrated to the particular earningsAn interesting “sweet spot” pattern is immediately evident
opportunities it faces. The following normalization is used tm Fig. 9: namely, the «,3) combinations associated with
achieve this individual calibration while minimizing the totafthe highest Avg DNE outcomes are along a nonlinear ridge
number of parameter values to be experimentally determindide spanning combinations from (high,high)=(1,100) in the

I -1 070. 36 | [GEEAN

where the hourly net earnings function HNE]ssatisfies

I. (18)

gee ey

We first define a derived parameter northwest corner to (low,moderate)=(1/24,2) in the south-
ai(1) ' central region. What causes this nonlinear coupled dependence
= malzla---afa (15)  of Avg DNE ona and 3?

where MaxDNE is an estimate for GenCd's maximum A high « value reflecting an optimistically high initial

possible daily net earnings derived from its action domaﬁf"‘r_mngS qspirati(_)n tends to ind_uce ex_perimenta’Fion with alter-
AD; assuming “competitive” marginal-cost pricing (salegatlve action choices due to “disappointment” with the actual
pri(;e = reported marginal cost). Specifically, letting s net earnings outcomes resulting from early action choices
(/.07 Cagi’) denote a generic éupply offer iﬁ AD (reflected in large drops in propensity values for these chosen
e actions). Experimentation can facilitate the eventual discovery

MaxDNE; = 24*< max [HNE(SR)]) (16) of good actions. Conversely, a low value reflecting a
sfeAD; ’ pessimistically low initial earnings aspiration tends to induce
; _ , ___premature fixation on an early action choice due to the
Compare (16) with definition (10) for the actual net earnings of GenCo

over all 24 hours of the day-ahead market for day D+1 under LMP pricin ‘nexpected_ly high ear_nlngs OUt_Come reSUItmg_from this ChO'C_e
The LMP received by GenChbat a positive generation commitment levgtp (refelected in a large increase in the propensity value for this
in any hour H can exceed Gen@s reported marginal cost atcp for hour  chosen action).

H if GenCo: has a binding upper operating capacity limit at,;p This is -
why MaxDNE; is characterized as an estimate rather than a true upper bounoNeverthEIGSS' these effects can be ampllfled or offset

for GenCoi’s maximum possible daily net earnings. by g effects. A highs value (low T value) amplifies the



tendency to premature fixation by amplifying differences in Finally, the two smallest-capacity GenCos 1 and 2 are both
propensity levels across action choices. A moderately ldacated at Bus 1, hence they are in direct rivalry with each
(£ value can prevent premature fixation by dampening tlweher. Moreover, the branch connecting Bus 1 to Bus 2 exhibits
effects of propensity changes on action choice probabilitiggersistent congestion around the peak demand hour 17, hence
However, a sufficiently low3 value results in action choice GenCos 1 and 2 are partially blocked from servicing the
probability distributions that are essentially uniform across ttdemand at Busses 2, 3, and 4 during this peak demand time.
GenCo’s action domain, negating all of the GenCo’s effortS8onsequently, GenCos 1 and 2 are committed at relatively low
to learn which actions result in highest daily net earningpower outputs at relatively low mark-ups over true marginal
This deleterious effect is seen in the uniformly low Avg DNEost, on average, and both attain relatively low Avg DNEs.
outcomes achieved in Table | and Fig. 9 for the lowest testedTable Il also shows that the individual Avg DNEor each
G levels 1 and 1/2. GenCoi dramatically declines as R increases from 0.0 to
Based on the Avg DNE findings presented in Table | antl0. However, these declines are at different rates for different
depicted in Fig. 9, we use theweet-spotVRE learning GenCos, resulting in changes in their shares in overall Avg
parameter settingsa, 5) = (1,100) in all of the capacity- DNE.

withholding experiments reported in SectiorfV. For example, given R=0.0 (100% fixed demand), GenCo
5's share of Avg DNE is smaller than that of GenCo 3 despite

V. REPORT OFKEY FINDINGS having the largest operating capacity of all GenCos. However,

FOR CAPACITY WITHHOLDING given R=1.0 (00% price-sensitive demand), GenCo 5 has the

highest share of Avg DNE of all GenCos; it is now being
committed at the highest power level, and this outweighs
This subsection presents findings for dynamic 5-bus tagfe fact that GenCo 5 is exercising less economic capacity
case experiments in which the GenCos can exercise econoighholding than GenCo 3.
capacity withholding but not physical capacity withholding. The underlying reason for these relative changes in fortune
That is, the GenCos can learn over time to report higher-thag-that total demand substantially declines in moving from
true marginal cost functions, but each GenCalways reports R=0.0 to R=1.0. All GenCos are forced to compete with each
a maximum operating capacity equal to its true maximu@ther for the reduced demand. Eventually, all GenCos lose
operating capacity Cap® their pivotal supplier status, and any GenCo aggressively en-
Table Il reports Avg DNE outcomes for each Gen@s gaging in economic capacity withholding risks being undercut
well as overall Avg DNE, calculated for day D=100. Resultgy rival supply offers. In particular, GenCos with relatively
are reported for R values ranging from R=0.0 (100% fixefdw true marginal costs are more favored in this environment
demand) to R=1.0 (100% price-sensitive demand). since higher-cost GenCos could fail to be committed at all.
Consider, first, the results for R=0.0. Not surprisingly,
GenCo 3 attains the highest Avg DNE. As seen from Fig. 8. Common Maximum Physical Capacity Withholding Rates

GenCo 3 is located within a potential “load pocket”. Indeed, This subsection presents findings for dynamic 5-bus test

the branch connecting Bus 1 to Bus 2 is typically congestelse experiments in which the GenCos can exercise physical

around the peak demand hour 17, and GenCo 3 exploits 1,4ty withholding as well as economic capacity withhold-
resulting load-pocket opportunity by engaging in substantlﬁ,{g. More precisely, the GenCos can report supply offers

economic capacity withholding. for which their reported maximum operating capacities are

GenCo 5 has the largest operating capacity and it is COMMificyly |ess than their true maximum operating capacities by
ted at a higher power output each day, on average, than Ge rcentage no greater thamaximum shrinkage rajeither
3. However, it does not end up with as high a mark-up oveb, o 100410

true marginal cost as GenCo 3 and hence attains a lower Avgrgpie 11 reports GenCo average % capacity shrinkages

DNE. _GenCo 4 is committed at about half of it_s operatingng 94 Avg DNE changes (relative to the benchmark case of
capacity at a moderate mark-up over true marginal cost, R physical capacity withholding) calculated for day D=100

average, and the Avg DNE of GenCo 4 is approximately thgnhen the maximum shrinkage rate is 5%. Results are reported
same as for GenCo S. under systematically varied demand conditions ranging from

8For completeness and replicability purposes, we also note here that BEO'O (100% fixed demand) to R=1.0 (100% price-sensitive
following parameter settings for action domain construction were used temand). The results in Table Il display several regularities,
the Section V experiments for each Gen@oM1,=10; M2,=10; M3;=1 as follows:
(experiments with no physical capacity withholding); M30 (experiments , .
with physical capacity withholding); RIMifi = 1 (experiments with no ~ ® For each R value, each GenCo’s average % capacity
physical capacity witholding); RIMifi=0.95 (experiments with a maximum shrinkage is well below the maximum shrinkage rate.
of 5% physical capacity withholding permitted); and Ru\ﬁino.go (exper-
iments with a maximum of 10% physical capacity withholding permitted). 1°More precisely, each GenCis action domain AR consists of 1000
The cardinality of the action domain for each GenCis determined as the possible supply offers. GenCocan choose from among 10 equally-spaced
product M; of M1;, M2;, and M3. See Sun and Tesfatsion [5] for a detailedshrinkage rates s from 0% to the maximum shrinkage rate. Each shrinkage
description of action domain construction for the AMES GenCos. rate s has the form s = 100§G6ap” - Cap*V(s))/[Cap’ - Cap"], which
9More precisely, each GenCds action domain AD consists of 100 determines a reported maximum operating capacity &&4p). For each
possible supply offers. Each possible supply offer is a “marginal cost” functiahrinkage rate s there are 100 possible supply offers, each consisting of a
that lies on or above GenCis true marginal cost function and that spans‘marginal cost” function that lies on or above Gen€s true marginal cost
GenCoi's true operating capacity interval [CapCagd’]. function and that spans the operating capacity interval {Capp™U (s)].

A. Benchmark Case: No Physical Capacity Withholding



« For each R value, the five GenCos have similar average maximum permitted shrinkage rate of 5%; yet their %
% capacity shrinkages. Avg DNE changes (relative to benchmark) are highly
o For each R value, the % Avg DNE change is positive  dissimilar.
for some GenCos and negative for others (relative toe For many cases, the single GenCo engaging in capacity
benchmark). shrinkage has aegative% Avg DNE change (relative to
The latter net earnings finding reflects how extraordinarily ~—benchmark). This is particularly true for cases involving
difficult it is for individual GenCos operating in dynamic GenCo 1 and GenCo 5.
wholesale power markets with multiple rivals to ensure that e For almost all cases, at least one Gen@u engaging
strategic changes in their reported supply offers indeed result in capacity shrinkage haspositive% Avg DNE change
in higher average daily net earnings for themselves. (relative to benchmark). This is particularly true when
For example, for R=0.0, GenCo 1, GenCo 2, and GenCo 5 GenCo 1 engages in capacity shrinkage.
attain higher average daily net earnings (relative to benchmark) For no case is it true either thall GenCos end up having
while GenCo 3 and GenCo 4 substantially lose ground. @positive% Avg DNE change (relative to benchmark) or
Examining the micro data, it is seen that GenCo 1, GenCo 2, thatall GenCos end up having reegative % Avg DNE
and GenCo 5 are being committed on average at somewhat change (relative to benchmark).
higher power levels (relative to benchmark) while, at the A clear understanding of these results must await a more
same time, the LMPs at their busses are higher as weltensive examination of outcomes at a micro level. Yet one
(relative to benchmark). In contrast, GenCo 3 and GenCoidiplication seems clear. Capacity withholding has interesting
are being committed on average at somewhat smaller poweoss-effects that could potentially be exploited by GenCos
levels (relative to benchmark) and the LMPs at their bussesio own multiple generation plants located at multiple busses.
are much lower (relative to benchmark).
LMPs and power commitments are, of coursgstemout- V1. CONCLUDING REMARKS
comes determined by the totality of demand bids and supply .
offers reported into the day-ahead market in interaction with Restructured wholesale power markets are sequential open-

ended games. A careful explanation of the findings presented

nonlinear power flow on the grid. They are not under thf% Section V will thus require a detailed micro examination of

control of individual GenCos, yet they determine the indiVidu%arning behaviors and market interactions over time

daily net earnings of these GenCos. . . .
The pattern of findings seen in Table Il for a 5% maximum For example, maximum potential total demand (12) in our

. ) . . namic 5-bus test case experiments is always less than 90%
shrinkage rate is also seen in Table IV, which repeats tﬁ% P y °

. . . the true total operating capacity of the five GenCos. Even
experiments of Table Ill for a 10% maximum shrinkage rate, . perating capacity : .

. . . . during peak demand times when congestion partially blocks
In addition, the following regularities are also evident:

_relatively cheap generation at Bus 1 from servicing demand at
- For each R value, each Gen@s average % capacity gysses 2, 3, and 4 there is always enough potential operating
shrinkage under a 10% maximum shrinkage rate is almqstsacity to satisfy demand. Consequently, it would seem that
twice its average % capacity shrinkage under a S%raregic capacity withholding to induce higher net earnings
maximum shrinkage rate. , should not be a serious problem.

» Nevertheless, for each R value, each Gen€c% Avg What is missing from this high-level analysis, however,
DNE change is very similar in sign and magnitude ngy 5 getermination of the pivotal supplier status of different
matter which maximum shrinkage rate is in effect.  Gencos with regard to fixed demand, meaning that fixed

Given the latter finding, in the next subsection focusing oflemancannotbe metwithouttheir operating capacity. Pivotal
capacity withholding by a single GenCo we only report resultsypplier status relative to fixed demand implies substantial op-
for the case of a 5% maximum shrinkage rate. portunities for the exercise of market power through capacity
withholding. An additional complicating aspect is that capacity
C. Physical Capacity Withholding by a Single GenCo withholding on the part of some GenCos can induce pivotal

This subsection presents average % capacity shrinkages SHgPlier status (and higher net earnings) for others.
% Avg DNE changes (relative to the benchmark no-shrinkage This issue will be addressed in future studies.
case) calculated for day D=100 in dynamic 5-bus test case
experiments in which only a single GenCo engages in capacity APPENDIXA
shrinkage. The maximum shrinkage rate is fixed at 5%. VRE REINFORCEMENTLEARNING
Specifically, in Table V the single Genco is the relativelyhis section describes the implementation of the VRE rein-
cheap and small GenCo 1. In Table VI the single GenCo is thgrcement learning algorithm for an arbitrary AMES(V2.01)
relatively more expensive and large GenCo 3. And in Table V@§enCo:.
the single Genco is the relative cheap yet largest GenCo 5. Suppose it is the beginning of the initial day D=Each
Comparing the eighteen R/GenCo cases presented in thes@éCo: must choose an action (supply offer) from its action
three tables, the following intriguing regularities are seen: domain AD, to report to the I1SO for the day-ahead market in
« For the set of cases corresponding to any one R valumy D+1, where AD consists of M possible actions.
all of the GenCos engaging in capacity shrinkage have The initial propensity of GenCo: to choose actionn €
similar average % capacity shrinkages well below thd D, is given by q,,(1) for m = 1,..,.M. AMES(V2.01)
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TABLE |
AVERAGE GENCO DAILY NET EARNINGS FOR THE FINAL DAY UNDER ALTERNATIVE GENCO VRE LEARNING PARAMETER SPECIFICATIONS «, 3)
WITH NO PRICE-SENSITIVE DEMAND AND NO PHYSICAL CAPACITY WITHHOLDING.

( [ | beta=100 | beta=50 | beta=10 | beta=2 | beta=1 | beta=1/2 ||
GenCo 1 69,219.61 5,578.19 19,786.27 19,825.24 19,825.24 19,863.80
GenCo 2 54,548.72 3,040.47 12,299.14 11,765.93 11,765.93 11,765.93
GenCo 3 | 1,725,216.72| 1,765,140.21 529,014.82 548,883.32 548,883.32 547,658.35
alpha=1 GenCo 4 321,907.08 196,769.51 31,510.57 29,790.04 29,790.04 29,762.60
GenCo 5 270,754.58 187,954.06 190,968.98 189,378.40 189,378.40 189,396.96
Avg DNE | 2,441,646.71| 2,158,482.44 783,579.77 799,642.93 799,642.93 798,447.64
St. Dev. | (558,896.97)| (730,657.92)| (399,309.98)| (433,253.98)| (433,253.98)| (434,433.11)
GenCo 1 79,875.97 74,182.72 20,959.35 20,114.75 19,825.24 19,825.24
GenCo 2 64,817.10 61,235.66 14,366.78 12,241.57 11,765.93 11,765.93
GenCo 3 | 1,462,304.20| 1,737,816.84 537,044.33 520,518.36 548,883.32 548,883.32
alpha=1/2 GenCo 4 306,198.90 337,814.49 32,397.27 29,790.04 29,790.04 29,790.04
GenCo 5 276,640.75 280,020.65 192,046.57 189,168.30 189,378.40 189,378.40
Avg DNE | 2,189,836.92] 2,491,070.36 796,814.29 771,833.01 799,642.93 799,642.93
St. Dev. | (534,136.31)| (496,068.85)| (400,651.49)| (400,321.80)| (433,253.98)| (433,253.98)
GenCo 1 87,629.74 79,100.46 14,920.20 20,187.91 20,114.75 19,825.24
GenCo 2 76,471.25 65,279.31 9,170.37 12,323.55 12,241.57 11,765.93
GenCo 3 | 1,115,033.21| 1,328,446.25| 1,074,869.72 525,030.40 520,518.36 548,883.32
alpha=1/4 GenCo 4 258,044.34 305,601.87 95,151.47 30,809.31 29,790.04 29,790.04
GenCo 5 256,589.11 270,324.35 188,384.38 190,457.78 189,168.30 189,378.40
Avg DNE | 1,793,767.65| 2,048,752.24| 1,382,496.14 778,808.95 771,833.01 799,642.93
St. Dev. | (529,846.55)| (610,971.13)| (920,990.49)| (398,145.02)| (400,321.80)| (433,253.98)
GenCo 1 50,093.01 78,026.20 74,886.81 20,959.35 19,786.27 20,114.75
GenCo 2 47,977.10 69,290.98 60,364.79 14,366.78 12,299.14 12,241.57
GenCo 3 767,282.28| 1,042,911.66| 1,662,257.14 537,044.33 529,014.82 522,830.32
alpha=1/10|| GenCo 4 153,075.18 225,113.47 318,609.44 32,397.27 31,510.57 29,790.04
GenCo 5 182,152.53 235,383.32 274,076.15 192,046.57 190,968.98 189,168.30
Avg DNE | 1,200,580.10| 1,650,725.62| 2,390,194.34 796,814.29 783,579.77 774,144.97
St. Dev. | (510,232.72)| (665,255.14)| (561,884.41)| (400,651.49)| (399,309.98)| (398,842.95)
GenCo 1 37,197.65 53,395.14 79,422.74 9,329.03 22,190.32 20,787.98
GenCo 2 38,089.68 50,074.97 65,366.01 5,317.87 14,854.24 12,330.86
GenCo 3 635,691.68 682,930.40| 1,178,427.61| 1,615,272.93| 549,196.62 528,895.76
alpha=1/24|| GenCo 4 83,253.22 130,439.19 249,815.58 184,160.28 32,701.84 31,621.09
GenCo 5 183,685.63 193,689.29 248,395.06 193,984.82 192,528.20 192,354.51
Avg DNE 977,917.86| 1,110,528.99| 1,821,427.00| 2,008,064.92| 811,471.22 785,990.18
St. Dev. | (403,198.74)| (454,288.77)| (549,146.76)| (862,134.72)| (399,997.12)| (397,810.42)
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TABLE Il
BENCHMARK CASE: AVERAGE GENCO DAILY NET EARNINGS FOR DAY 100WHEN ONLY ECONOMIC CAPACITY WITHHOLDING IS PERMITTED
[ GenCo T R=0.0 Tl R=0.2 T R=0.4 Tl R=0.6 Tl R=0.8" Tl R=1.0 1

1 20,196.11 25,023.98 18,747.53 15,805.06 10,531.84 4,854.98

2 16,366.03 21,665.28 15,385.46 13,475.27 11,314.75 5,324.56

3 1,237,976.82 176,717.76 51,536.59 17,695.26 7,630.61 3,398.80

4 165,133.57 11,746.23 2,523.19 534.78 135.97 66.88

5 188,646.36 179,072.71 147,584.54 || 114,626.37 81,038.34 54,220.06

Avg DNE 1,628,318.89 414,225.96 235,777.31] 162,136.73|| 110,651.51 67,865.28

St. Dev. (878,152.41)|| (195,242.12)|| (116,151.45)|| (67,832.44)]|| (30,366.66)| (17,494.45)
TABLE Il

CAPACITY SHRINKAGE CASE 1 (5% MAXIMUM ): AVERAGE GENCO % CAPACITY SHRINKAGE AND % DAILY NET EARNINGS CHANGES
FOR DAY 100RELATIVE TO THE BENCHMARK CASE

Il I R=0.0 I R=0.2 I R=0.4 I R=0.6 I R=0.8 I R=1.0 1

GenCo | % ACap | % ANE || % ACap | % ANE || % ACap | % ANE || % ACap | % ANE || % ACap | % ANE [[ % ACap | % ANE

T 0023 | 0124 0023 | -0.109 0023 | 0.050 0024 | -0.097 0025 | -0.119 0026 | -0.026
(0.014) (0.015) (0.014) (0.014) (0.014) (0.013)

Z 0.017 | 0333 0.017 | -0.021 0.017 | 0272 0.017 | 0.140 0.017 | -0.059 0.018 | 0.001
(0.013) (0.013) (0.014) (0.013) (0.013) (0.013)

3 0.022 | 0577 0.021 | 0.033 0.010 | -0.006 0.010 | -0.043 0.010 | 0.038 0.010 | 0.012
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Z 0.021 | -0.784 0.020 | -0.073 0.021 | 0323 0.020 | 0.092 0.020 | 0.02T 0.020 | 0.022
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

5 0.022 | 0.107 0.021 | 0.035 -0.020 | 0.060 0.020 | 0.002 0.020 | -0.019 0.020 | -0.028
(0.013) (0.012) (0.012) (0.013) (0.013) (0.013)
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TABLE IV
CAPACITY SHRINKAGE CASE 2 (10% MAXIMUM ): AVERAGE GENCO % CAPACITY SHRINKAGE AND % DAILY NET EARNINGS CHANGES
FOR DAY 100RELATIVE TO THE BENCHMARK CASE

I I R=0.0 I R=0.2 I R=0.4 I R=0.6 I R=0.8 I R=1.0 I
GenCo [ % ACap [ % ANE [ % ACap [ % ANE [[ % ACap | % ANE [[ % ACap | % ANE [[ % ACap | % ANE [ % ACap [ % ANE
1 -0.046 0.124 -0.046 -0.101 -0.046 0.050 -0.049 -0.101 -0.050 -0.126 -0.052 -0.032
(0.028) (0.029) (0.028) (0.028) (0.027) (0.026)
2 -0.034 0.327 -0.033 -0.015 -0.034 0.275 -0.034 0.137 -0.035 -0.066 -0.037 -0.002
(0.027) (0.027) (0.027) (0.026) (0.027) (0.025)
3 -0.042 -0.566 -0.043 0.043 -0.038 0.007 -0.037 -0.019 -0.037 0.051 -0.037 0.021
(0.028) (0.026) (0.026) (0.025) (0.025) (0.025)
Z -0.041 -0.778 -0.041 -0.038 -0.043 0.366 -0.040 0.142 -0.040 0.040 -0.040 0.043
(0.026) (0.025) (0.026) (0.026) (0.026) (0.026)
5 -0.044 0.120 -0.042 0.081 -0.040 0.071 -0.041 0.007 -0.040 -0.017 -0.040 -0.026
(0.026) (0.025) (0.024) (0.025) (0.027) (0.026)
TABLE V
CAPACITY SHRINKAGE CASE 3 (5% MAXIMUM , GENCO 1 ONLY): GENCO 1'S AVERAGE % CAPACITY SHRINKAGE AND ALL GENCOS'
AVERAGE % DAILY NET EARNINGS CHANGES FOR DAY100RELATIVE TO THE BENCHMARK CASE
I I R=0.0 I R=0.2 I R=0.4 I R=0.6 I R=0.8 I R=1.0 I
GenCo [ % ACap [ % ANE [ % ACap [ % ANE [[ % ACap | % ANE [[ % ACap | % ANE [[ % ACap | % ANE [ % ACap [ % ANE
I -0.025 -0.061 -0.022 -0.093 -0.023 -0.100 -0.024 -0.072 -0.025 -0.097 -0.026 0.00T
(0.013) (0.014) (0.014) (0.014) (0.013) (0.013)
2 0.000 -0.012 0.000 0.017 0.000 0.016 0.000 0.014 0.000 -0.004 0.000 -0.007
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
3 0.000 0.012 0.000 0.011 0.000 0.010 0.000 0.009 0.000 0.011 0.000 0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
4 0.000 0.016 0.000 0.007 0.000 0.015 0.000 0.022 0.000 0.018 0.000 0.006
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
5 0.000 0.019 0.000 0.000 0.000 0.010 0.000 0.011 0.000 -0.002 0.000 -0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TABLE VI

CAPACITY SHRINKAGE CASE 4 (5% MAXIMUM , GENCO 3 ONLY): GENCO 3’'S AVERAGE % CAPACITY SHRINKAGE AND ALL GENCOS'
AVERAGE % DAILY NET EARNINGS CHANGES FOR DAY100RELATIVE TO THE BENCHMARK CASE

I I R=0.0 I R=02 I R=04 I R=06 I R=038 I R=10 0

GenCo || % ACap | % ANE || % ACap [ % ANE [[ % ACap | % ANE || % ACap | % ANE || % ACap [ % ANE [[ % ACap | % ANE

T 0.000 0.181 0.000 | -0.054 0.000 0.006 0.000 0.020 0.000 0.000 0.000 0.000
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

Z 0.000 0.181 0.000 | -0.094 0.000 0.00T 0.000 | -0.005 0.000 0.000 0.000 0.000
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

3 0.023 | 0573 0.021 | 0.052 0.019 | 0.004 0.019 | 0.01T 0.019 | 0.013 -0.019 | -0.003
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

7 0.000 | -0.778 0.000 | -0.063 0.000 0.010 0.000 0.01T 0.000 0.010 0.000 0.008
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

5 0.000 | -0.005 0.000 | -0.014 0.000 0.005 0.000 | -0.002 0.000 0.000 0.000 0.000
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

TABLE VI

CAPACITY SHRINKAGE CASE 5 (5% MAXIMUM , GENCO 5 ONLY): GENCO 5’S AVERAGE % CAPACITY SHRINKAGE AND ALL GENCOS'
AVERAGE % DAILY NET EARNINGS CHANGES FOR DAY100RELATIVE TO THE BENCHMARK CASE

I I R=0.0 I R=0.2 I R=0.4 I R=0.6 I R=0.8 I R=1.0 I

GenCo [ % ACap | % ANE [[ % ACap | % ANE [[ % ACap | % ANE J[ % ACap [ % ANE [ % ACap [ % ANE [[ % ACap [ % ANE

-0.103 0.000 -0.153 0.000 0.172 0.000 0.003 0.000 -0.079 0.000 -0.004
(0.000) (0.000) (0.000) (0.000) (0.000)

0.024 0.000 -0.169 0.000 0.106 0.000 -0.039 0.000 -0.060 0.000 0.062

0.000
(0.000)

Z 0.000 ; ; ; ; ;
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

3 0.000 0.008 0.000 | -0.015 0.000 | -0.027 0.000 | -0.022 0.000 | -0.004 0.000 0.009
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

Z 0.000 | -0.005 0.000 0.073 0.000 0457 0.000 0.023 0.000 0.019 0.000 0.006
(0:000) (0:000) (0:000) (0:000) (0:000) (0:000)

5 0.02Z | 0.086 0.021 | -0.01T 0.021 | 0.047 ~0.020 | 0.000 0.020 | -0.0I8 0.020 | -0.030
(0.013) (0.012) (0.012) (0.012) (0.013) (0.013)




