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Abstract—Wholesale power markets around the world are
currently undergoing a controversial restructuring of their archi-
tecture and rules of operation. Some commentators have argued
that restructuring has not produced the intended improvements
in market efficiency while at the same time it has complicated
efforts to ensure reliability and fairness of operations. This
situation suggests the desirability of having publicly available test
beds suitable for the objective study of this restructuring process.
This study reports on the AMES Wholesale Power Market Test
Bed. AMES is an open-source agent-based computational labora-
tory designed for the systematic study of restructured wholesale
power markets operating over AC transmission grids subject
to congestion. The AMES traders have learning capabilities
permitting them to evolve their trading strategies over time. The
potential usefulness of AMES for research, teaching, and training
purposes is discussed and illustrated.

Index Terms—Restructured wholesale power markets, Loca-
tional marginal pricing (LMP), Agent-based test bed, Multi-
agent stochastic reinforcement learning, Dynamic 5-bus test case,
AMES Wholesale Power Market Test Bed

I. INTRODUCTION

CORE features of the market design advocated by the
U.S. Federal Energy Regulatory Commission (FERC) in

an April 2003 white paper [1] are in operation in the midwest
(MISO), New England (ISO-NE), New York (NYISO), and
the mid-atlantic states (PJM). These core features include:
central administration by an independent market operator; a
two-settlement system consisting of a bid/offer-based day-
ahead market supported by a parallel real-time market to
ensure continual balancing of supply and demand for power;
and management of transmission grid congestion by means of
locational marginal pricing.

One commonly expressed problem for participants in these
restructured wholesale power markets is lack of transparency
regarding pricing and settlement rules. Due in great part to
the complexity of the market design in its various actual
implementations, the business practices manuals and other
public documents released by market operators are daunting to
read and difficult to comprehend. Moreover, in many energy
regions (e.g., MISO), data is only posted in partial and masked
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form with a significant time delay. The result is that many
participants are wary regarding the efficiency, reliability, and
fairness of the resulting market outcomes. Moreover, outsiders
(e.g., university researchers) are hindered from subjecting the
design to systematic testing in an open and impartial manner.

In response to this problem, a group of researchers at Iowa
State University has been working to develop the AMES
Wholesale Power Market Test Bed.1 Based on business prac-
tices manuals for the MISO and ISO-NE, AMES simulates
a centrally administered wholesale power market operating
through time over an AC transmission grid. Hourly locational
marginal prices (LMP) for the day-ahead market are deter-
mined via DC optimal power flow based on the demand bids
and supply offers of traders with learning capabilities. AMES
is being developed and released as open-source software to fa-
cilitate an objective understanding of the restructuring process
and to promote communication between market stakeholders
and university researchers.

The main features of AMES (V2.02) are outlined in sec-
tion II. General steps for running AMES simulation ex-
periments are outlined in section III. Section IV presents
experimental findings for a dynamic 5-bus test case to illustrate
AMES research capabilities. Teaching and training capabilities
of AMES are discussed in section V.

II. THE AMES TEST BED (VERSION 2.02)

A. Overview

Fig. 1. AMES test bed architecture

1AMES is an acronym for Agent-based Modeling of Electricity Systems.
Downloads, manuals, and tutorial information for all AMES version releases
to date can be accessed at the AMES homepage [2].
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AMES(V2.02) incorporates, in simplified form, core fea-
tures of the wholesale power market design proposed by the
U.S. FERC [1]; see Figure 1. A detailed description of many
of these features can be found in Refs. [3]-[7]. Below is a
summary description of the logical flow of events in the AMES
wholesale power market as currently implemented:

• The AMES wholesale power market operates over an
AC transmission grid starting on day 1 and continuing
through a user-specified maximum day (unless terminated
earlier in accordance with a user-specified stopping rule).
Each day D consists of 24 successive hours H = 00,01,
...,23.

• The AMES wholesale power market includes an Indepen-
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSEs) and
Generation Companies (GenCos) distributed across the
busses of the transmission grid. Each of these entities is
implemented as a software program encapsulating both
methods and data; see, e.g., the schematic depiction of a
GenCo in Fig. 2

Fig. 2. AMES GenCo: A cognitive agent with learning capabilities

• The objective of the ISO is the reliable attainment of
appropriately constrained operational efficiency for the
wholesale power market, i.e., the maximization of total
net benefits subject to generation and transmission con-
straints.

• In an attempt to attain this objective, the ISO undertakes
the daily operation of a day-ahead market settled by
means of locational marginal pricing (LMP), i.e., the
determination of prices for electric power in accordance
with both the locating and timing of its injection into, or
withdrawal from, the transmission grid.2

• The objective of each LSE is to secure power for its
downstream (retail) customers. During the morning of
each day D, each LSE reports a demand bid to the ISO
for the day-ahead market for day D+1. Each demand bid
consists of two parts: a fixed demand bid (i.e., a 24-hour
load profile); and 24 price-sensitive demand bids (one for
each hour), each consisting of a linear demand function

2Roughly stated, a locational marginal price at any particular transmission
grid bus is the least cost of servicing demand for one additional megawatt
(MW) of power at that bus.

defined over a purchase capacity interval. LSEs have no
learning capabilities; LSE demand bids are user-specified
at the beginning of each simulation run.

• The objective of each GenCo is to secure for itself
the highest possible net earnings each day. During the
morning of each day D, each GenCo i uses its current
action choice probabilities to choose a supply offer from
its action domain ADi to report to the ISO for use in
all 24 hours of the day-ahead market for day D+1.3

Each supply offer in ADi consists of a linear marginal
cost function defined over an operating capacity interval.
GenCo i’s ability to vary its choice of a supply offer
from ADi permits it to adjust the ordinate/slope of its
reported marginal cost function and/or the upper limit of
its reported operating capacity interval in an attempt to
increase its daily net earnings.

• After receiving demand bids from LSEs and supply offers
from GenCos during the morning of day D, the ISO
determines and publicly reports hourly power supply
commitments and LMPs for the day-ahead market for
day D+1 as the solution to hourly bid/offer-based DC
optimal power flow (DC-OPF) problems. Transmission
grid congestion is managed by the inclusion of congestion
cost components in LMPs.

• At the end of each day D, the ISO settles all of the
commitments for the day-ahead market for day D+1 on
the basis of the LMPs for the day-ahead market for day
D+1.

Fig. 3. AMES GenCos use stochastic reinforcement learning to determine
the supply offers they report to the ISO for the day-ahead market.

• At the end of each day D, each GenCo i uses stochastic
reinforcement learning to update the action choice proba-
bilities currently assigned to the supply offers in its action
domain ADi, taking into account its day-D settlement
payment (“reward”). In particular, as depicted in Fig. 3, if
the supply offer reported by GenCo i on day D results in a
relatively good reward, GenCo i increases the probability
of choosing this supply offer on day D+1, and conversely.

3In the MISO [8], GenCos each day are actually permitted to report a
separate supply offer for each hour of the day-ahead market. In order to
simplify the learning problem for GenCos, the current version of AMES
restricts GenCos to the daily reporting of only one supply offer for the day-
ahead market. Interestingly, the latter restriction is imposed on GenCos by
the ISO-NE [9] in its particular implementation of FERC’s market design.
Baldick and Hogan [10, pp. 18-20] conjecture that imposing such limits on
the ability of GenCos to report distinct hourly supply offers could reduce their
ability to exercise market power.
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• There are no system disturbances (e.g., weather changes)
or shocks (e.g., forced generation outages or line out-
ages). Consequently, the binding financial contracts deter-
mined in the day-ahead market are carried out as planned
and traders have no need to engage in real-time (spot)
market trading.

• Each LSE and GenCo has an initial holding of money
that changes over time as it accumulates earnings and
losses.

• There is no entry of traders into, or exit of traders
from, the wholesale power market. LSEs and GenCos
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

The activities of the ISO on a typical day D are depicted
in Fig. 4. The overall dynamical flow of activities in the
wholesale power market on a typical day D in the absence
of system disturbances or shocks is depicted in Fig. 5.

Fig. 4. AMES ISO activities during a typical day D

Fig. 5. Illustration of AMES dynamics on a typical day D in the absence
of system disturbances or shocks for the special case of a 5-bus grid

Fig. 6. Illustration of an AMES LSE’s fixed and price-sensitive demand bids

B. Demand Bids and Supply Offers

As seen from Fig. 6, for each day D the demand bid reported
by LSE j for each hour H of the day-ahead market in day D+1
consists of a fixed demand bid pF

Lj(H) (in MWs) and a price-
sensitive demand bid function

DjH(pS
Lj(H)) = cj(H) − 2dj(H) · pS

Lj(H) (1)

defined over a true purchase capacity interval

0 ≤ pS
Lj(H) ≤ SLMaxj(H) (2)

for real power pS
Lj(H) (in MWs). The expression DjH (pS

Lj(H))
denotes LSE j’s true purchase reservation value for pS

Lj(H),
i.e., the maximum dollar amount it is truly willing to pay per
MWh for pS

Lj(H).

Fig. 7. Illustration of an AMES GenCo’s reported marginal cost curve (supply
offer) relative to its true marginal cost curve

Also, as seen from Fig. 7, for each day D the single supply
offer reported by GenCo i for use in each hour H of the day-
ahead market for day D+1 consists of a reported marginal cost
function

MCR
i (pGi) = aR

i + 2bRi · pGi (3)

defined over a reported operating capacity interval

CapL
i ≤ pGi ≤ CapRU

i (4)
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for real power pGi (in MWs). The expression MCR
i (pGi)

denotes GenCo i’s reported sale reservation value for pGi,
i.e., the minimum dollar payment it reports it is willing to
accept per MWh for pGi.

To avoid operating at a point where the true incremental
cost of the last supplied MW of power exceeds the marginal
benefit (payment) for this last supplied MW of power, GenCo
i’s reported marginal cost functions always lie on or above its
true marginal cost function

MCi(pGi) = ai + 2bi · pGi . (5)

Also, to avoid infeasible commitments, GenCo i always re-
ports an upper operating capacity level CapRU

i that lies within
GenCo i’s true operating capacity interval

CapL
i ≤ pGi ≤ CapU

i . (6)

Note from the above discussion that each reported supply
offer for GenCo i can be summarized in the form of a vector
(aR

i ,bR
i ,CapRU

i ).

C. Costs, Profits, and Net Earnings

Total variable cost refers to the costs sustained by a supplier
that vary with the level of its operations, whereas fixed cost
refers to the costs sustained by a supplier independently of its
level of operations. Total cost refers to the sum of the two.

The true total variable cost function for GenCo i for each
hour H takes the form

TV Ci(pGi) =
∫ pGi

0

MCi(p)dp = ai·pGi+bi·[pGi]2 , (7)

and the true total cost function for GenCo i for each hour H
takes the form

TCi(pGi) = [TV Ci(pGi) + FCosti] , (8)

where pGi denotes any real-power generation level in the
interval (6). By definition, then, the fixed cost for GenCo i
in each hour H takes the form

TCi(0) = FCosti . (9)

Profit is defined as revenues minus true total cost. On the
other hand, net earnings are defined as revenues minus true
total variable cost. Suppose, in particular, that GenCo i is
located at bus k(i) and is committed at a generation level pGi

at price LMPk(i) for hour H of the day-ahead market for day
D+1. Then the profit of GenCo i for hour H of day D+1,
received at the end of day D, is given by

πi(H,D) = LMPk(i) ∗ pGi − TCi(pGi) . (10)

On the other hand, the net earnings of GenCo i for hour H of
day D+1, received at the end of day D, are given by

NEi(H,D) = LMPk(i) ∗ pGi − TV Ci(pGi) . (11)

The net earnings of GenCo i over all 24 hours of day D+1,
received at the end of day D, are then given by

NEi(D) =
H=23∑
H=00

NEi(H,D) . (12)

D. Determination of LMPs and Power Commitments

As detailed in [11, Appendix A], the ISO computes hourly
LMPs and power commitments for the day-ahead market
by solving bid/offer-based DC Optimal Power Flow (OPF)
problems that approximate underlying AC-OPF problems. To
handle these computations, the ISO makes repeated calls to
DCOPFJ, an accurate and efficient DC-OPF solver developed
by Sun and Tesfatsion [4]. DCOPFJ consists of a strictly
convex quadratic programming solver wrapped in an outer SI-
pu data conversion shell.

E. GenCo Action Domain Construction

The construction of action domains (supply offer choice
sets) for the GenCos is a critical modeling issue. Empiri-
cal sensibility suggests these action domains should permit
flexible choice from among a wide range of possible supply
offers, and that the degree of flexibility should be roughly
similar across the GenCos. On the other hand, computational
practicality suggests the number of supply offers included in
each action domain should not be unduly large.

In [11, Appendix B] a brief discussion is given regarding
how action domains for the AMES GenCos have been con-
structed in accordance with these objectives. A rigorous de-
tailed discussion and illustration of action domain construction
for the AMES GenCos can be found in [3, Appendix].

F. GenCo Learning

The essential idea of stochastic reinforcement learning is
that the probability of choosing an action should be increased
(reinforced) if the corresponding reward is relatively good
and decreased if the corresponding reward is relatively poor.
As detailed in [11, Appendix C], each GenCo determines
its supply offers by means of VRE reinforcement learning,
a variant of a stochastic reinforcement learning algorithm
developed by Alvin Roth and Ido Erev ([12], [13]) on the basis
of human-subject experiments. The user can tailor the settings
of each GenCo’s learning parameter values to its situation, in
particular to its cost attributes, its operating capacity, and its
anticipated net earnings.

G. Graphical User Interface

AMES has a graphical user interface (GUI) with separate
screens for carrying out the following functions: (a) cre-
ation, modification, analysis, and storage of case studies; (b)
initialization and editing of the structural attributes of the
transmission grid; (c) initialization and editing of the structural
attributes of LSEs and GenCos; (d) specification of learning
parameters for GenCos; (e) specification of simulation controls
(e.g., the simulation stopping rule); and (f) customization of
table and chart output displays.

H. Simulation Control

The user can control the length of each simulation run by
choosing to set (or not) any combination of the following five
stopping rules:
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• Stop when a specified maximum day is reached.
• Stop when each GenCo is choosing a single supply offer

with a probability that exceeds a user-specified threshold
probability.

• Stop when the probability distribution used by each
GenCo to select its supply offers has stabilized to within
a user-specified threshold for a user-specified number of
days.

• Stop when the supply offer selected by each GenCo has
stabilized to within a user-specified threshold for a user-
specified number of days.

• Stop when the net earnings of each GenCo have stabilized
to within a user-specified threshold for a user-specified
number of days.

When multiple stopping rules are flagged, the simulation run
terminates as soon as any one of the flagged stopping rules is
satisfied.

III. RUNNING AMES SIMULATION EXPERIMENTS

Detailed instructions for developing and running general
AMES simulations in either single-run or batch-run mode
can be found in the set-up information file included with the
AMES software download; see [2]. Here we briefly outline
the general sequence of actions for a single simulation run, as
follows:

1: To load one of the pre-set test cases (e.g., the 5-Bus
Test Case), use the “Case → Load Test Case → 5-
Bus Test Case” command sequence on the GUI menu.
Alternatively, to create a new case, use the “Case →
New Case” command sequence on the GUI menu.

2: For a pre-set test case, either use the default parameter
settings (including the default random seed value) or
change some or all of these default settings to other
admissible values. To change the default parameter
settings, or to set parameters for a new case, use the
“Case → Case Parameters” command sequence on the
GUI menu to access a sequence of setting screens for
grid, LSE, GenCo, and simulation control parameters;
see, e.g., fig. 8. Inadmissible parameter settings trigger
explanatory error messages.

3: To run the case, click the “Start” button on the GUI tool-
bar or use the “Command → Start” command sequence
from the GUI menu.

4: View a customizable output file in the AMES DATA
directory using various programs (e.g., Microsoft Excel,
Wordpad).

5: Alternatively, view output data in either table or chart
form using either the “View → Output Tables” or the
“View → Output Charts” command sequence from the
GUI menu.

The AMES GUI tables and charts display six types of
output for each run: GenCo commitments; GenCo profits
and net earnings; cleared LSE price-sensitive demand; LSE
net earnings corresponding to cleared price-sensitive demand;
LMPs; and total supply and demand curves. This output is
further subdivided into “benchmark” and “learning” portions
as follows: (i) initially generated output for a no-learning

Fig. 8. AMES GUI: Setting screen for LSE fixed demand bids and price-
sensitive demand function parameters for each hour

benchmark case in which the supply offers that the GenCos
report to the ISO reflect their true cost and capacity attributes;
and (ii) subsequently generated output for a learning case in
which the GenCos attempt to learn over time which supply
offers to report to the ISO to increase their net earnings.

As demonstrated in the next section, the benchmark-case
output provides a benchmark of comparison for the learning-
case output.

IV. AMES RESEARCH CAPABILITIES:
ILLUSTRATIVE FINDINGS

AMES has been designed with a modular architecture,
and released as open source, to encourage the cumulative
development of its features and scope. Research applications
to date have focused on market performance under alternative
learning, demand, and grid specifications; see Refs.[3]-[7].

The AMES download includes dynamic 5-bus and 30-bus
test cases to help acquaint users with AMES research capabil-
ities. This section illustrates these capabilities by reporting on
experimental findings obtained for 5-bus test case experiments
using the AMES default parameter settings.

The configuration of the 5-bus grid for this dynamic 5-bus
test case is depicted in Fig. 9. The daily fixed demand (load)
profiles for the three LSEs are as shown in Fig. 10. A critical
aspect of these profiles is that each peaks at hour 17.4

A. Benchmark-Case Results

Fig. 11 displays hourly LMP values for the benchmark dy-
namic 5-bus test case in which the supply offer of each GenCo
consists of its true marginal cost function and its true operating
capacity interval. These LMP results illustrate the complicated

4The shapes of the fixed demand profiles are adopted from a case study
presented in Shahidehpour et al. [14, p. 296-297].
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Fig. 9. Transmission grid for the dynamic 5-bus test case

Fig. 10. Daily LSE fixed demand profiles for the dynamic 5-bus test case
(all 24 hours, same for each day)

Fig. 11. AMES chart display: Hourly LMPs for the benchmark dynamic
5-bus test case (all 24 hours, same for each day)

influences of daily load profiles, transmission congestion, and
operating capacity limits on LMP determination, even in the
absence of learning effects.

More precisely, branch congestion occurs between bus 1
and bus 2 (and only these busses) in each of the 24 hours
comprising a “typical day” for this benchmark case. The direct
consequence of this branch congestion is the occurrence of
widespread LMP separation, i.e. the LMP values differ across
all busses for each hour. In particular, LMP2 and LMP3 (the
LMPs for busses 2 and 3) exhibit a sharp spike around the
peak-demand hour 17, increasing by about 100% from hour
16 to hour 17 and then dropping back to more normal levels
in hour 18 and beyond.

B. Learning-Case Results

As noted in section II-F, the AMES GenCos are profit-
seeking traders who use individual stochastic reinforcement
learning to determine which particular supply offers they
report to the ISO during each day D for the day-ahead market
in day D+1. More precisely, they use their daily net earnings
outcomes to update the action choice probilities currently
assigned to the supply offers in their admissible action do-
mains, where each supply offer is characterized by a vector
(aR, bR, capRU ); see Figs. 3 and 7. Direct communication or
coordination efforts among the GenCos are not permitted.

In general, the AMES GenCos can engage in both economic
capacity withholding (choice of aR and bR) and physical
capacity withholding (choice of capRU ). More precisely, the
GenCos can report higher-than-true marginal costs and/or less-
than-true maximum operating capacities. However, in the par-
ticular experiments reported below, the GenCos are restricted
to economic capacity withholding only.5

Fig. 12 displays the hourly LMP values for all 24 hours of
day 51. Comparing Fig. 12 with Fig. 11, the effects of GenCo
learning are immediately apparent: the resulting LMP values
are higher at each bus during off-peak hours and exhibit more
volatility around the peak-demand hour 17. These correlated
LMP effects arise over time solely through the individual
profit-seeking actions of the learning GenCos.

Fig. 12. AMES chart display: Hourly LMPS for the dynamic 5-bus test case
with learning (all 24 hours, day 51)

Fig. 13 displays a portion of these same LMP outcomes in
table format. The full AMES output table display for LMPs
permits users to see precisely how the LMP values change
from one day to the next as the learning GenCos adaptively
update their supply offer choices. A similar observation holds
for the table and figure displays for all types of output. The
length of the displays is determined by the user’s choice of
simulation stopping rule; see section II-H.

Fig. 14 displays the total demand and supply curves for
hour 17 of day 51. Note the initial verticality of the total
demand curve (corresponding to LSE fixed demand) and the
steepness of the remaining portion of the total demand curve
(reflecting the relatively small amount of bid-in price-sensitive
demand). These demand characteristics are typical for current

5See Li et al. [6] for a study permitting the AMES GenCos to engage in
both economic and physical capacity withholding.
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Fig. 13. AMES table display (only partially shown): Hourly LMPs for the
dynamic 5-bus test case with learning (hours 16-18, day 51)

Fig. 14. AMES chart display: Total demand and supply curves calculated
from demand bids and supply offers for the dynamic 5-bus test case with
learning (hour 17, day 51)

restructured wholesale power markets in the U.S., e.g., the
MISO [8].

The intersection of the total demand and supply curves de-
picted in Fig. 14 occurs at the power-price point (1236.90MW,
$55.80/MWh). Note that cleared demand at this point would
include both fixed and price-sensitive demand. However, due
to congestion on the transmission line between bus 1 and bus
2, only total fixed demand (1153.59MW) is actually cleared;
total cleared price-sensitive demand is zero. Moreover, as
seen in Fig. 13, this line congestion also causes the LMPs
at individual busses to exhibit strong separation. The LMP at
bus 1 is -$1.04/MWh, the LMP at bus 2 is $437.49/MWh,
the LMP at bus 3 is $354.40/MWh, the LMP at bus 4 is
$125.91/MWh, and the LMP at bus 5 is $21.46/MWh. The
average of these actual LMP values is $187.64/MWh, far
higher than the “market clearing” price level $55.80/MWh
depicted in Fig. 14.

Fig. 15 displays daily GenCo profits, net earnings and
revenues in table format for two successive days (42 and 43)
during which the learning GenCos are still in the process of
updating their supply offer choices. Note that the daily net
earnings of GenCo 4 actually decline from day 42 to day 43
whereas the the net earnings of the other four GenCos increase.
This indicates the extremely complicated multi-agent learning
problem faced by the five GenCos; in general, the net earnings
attained by any one GenCo during a particular day D depend

Fig. 15. AMES table display (only partially shown): Daily GenCo profits,
net earnings and revenues for the dynamic 5-bus test case with learning (days
42-43)

Fig. 16. Illustration of the construction of the R ratio for measuring relative
demand-bid price sensitivity for the special case R=0.5

on the day-D supply offer choices of all other GenCos as well.
Intuitively, GenCos should have an increased ability to

exercise “market power” (profitable control over prices) the
greater the verticality of the LSE total demand curve. In
particular, there is no natural upper bound on LMP levels when
all LSE demand for power is fixed (price insensitive), implying
a perfectly vertical total demand curve.

To test the sensitivity of LMPs to the degree of price-
sensitive demand, we consider the ratio R of maximum
potential price-sensitive demand to maximum potential total
demand for each LSE j in each hour H of a typical day D.
Specifically,

Rj(H) =
SLMaxj(H)
MPTDj(H)

, (13)

where SLMaxj(H) denotes LSE j’s maximum potential price-
sensitive demand in hour H as measured by the upper bound
of its purchase capacity interval (2), and

MPTDj(H) = [pF
Lj(H) + SLMaxj(H)] (14)

denotes LSE j’s maximum potential total demand in hour H as
the sum of its fixed demand pF

Lj(H) and its maximum potential
price-sensitive demand SLMaxj(H) in hour H. See Fig. 16.

An increase in R for an LSE indicates an increased ability
to exercise price resistance. Table I displays outcomes for an
experiment involving three different R values for potential
bid-in demand: R=0.0 (100% fixed); R=0.5 (50% fixed and
50% price-sensitive); and R=1.0 (100% price sensitive). For
each tested R value, thirty runs were conducted with (13)
maintained at the tested R value for each LSE j in each
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hour H.6 As intuitively expected, average LMP levels, average
total demand, average ISO operating costs, and average GenCo
“market power” levels (as measured by the Lerner Index LI)
all decrease monotonically with increases in R.

TABLE I
AVERAGE EFFECTS (WITH STANDARD DEVIATIONS) OF R CHANGES FOR

THE DYNAMIC 5-BUS TEST CASE WITH LEARNING (DAY 100)

R Avg LMP Avg Total Demand Avg Op Cost Avg LI
0.0 70.10 318.21 9198.63 0.5692

(3.14) (0.00) (125.88) (0.01)
0.5 35.75 170.75 2717.73 0.4185

(0.48) (2.42) (157.73) (0.01)
1.0 23.23 108.51 1184.18 0.2078

(0.48) (5.80) (125.88) (0.01)

V. AMES TEACHING AND TRAINING CAPABILITIES

The release of AMES as free open source software (OSS)
is meant to facilitate the use of AMES for teaching and
training as well as for research. AMES permits economists
to better understand the complicated physical constraints on
power flow imposed by the transmission grid and engineers to
better understand how incentives for strategic trading can have
dramatic effects on resulting price and quantity outcomes.

The AMES homepage [2] has been designed for easy
navigation. It includes pointers to software downloads, set-
up information, manuals, tutorials, licensing information, and
research applications.

An annotated pointer to the AMES homepage is included at
a highly active resource site [15] specializing in OSS suitable
for teaching and training about restructured electricity markets,
as well as at the software site of the IEEE Task Force on Open
Source Software for Power Systems [16]. In addition, AMES
has been used as demonstration software in a power economics
course catering jointly to engineers and economists; see [17].
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