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Abstract—Wholesale power markets operating over trans-
mission grids subject to congestion have distinctive features
that complicate the detection of market power and operational
inefficiency. This study uses a wholesale power market test bed
with strategically learning traders to experimentally test the
extent to which market performance measures commonly used
for other industries are informative for the dynamic operation
of restructured wholesale power markets. Examined measures
include the Herfindahl-Hirschman Index (HHI), the Lerner
Index, the Residual Supply Index, the Relative Market Advantage
Index, and the Operational Efficiency Index. It is also shown that
the objective function commonly used to manage these markets
deviates systematically from the standard economic measure of
market efficiency when grid congestion is present.
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Agent-based modeling; Restructured wholesale power markets;
Dynamic market performance; HHI; Lerner Index; Residual
Supply Index; Relative Market Advantage Index; Operational
Efficiency Index

I. INTRODUCTION

THe U.S. electric power industry is currently undergoing
substantial changes in both its structure (ownership and

technology aspects) and its architecture (operational and over-
sight aspects). These changes involve attempts to move the
industry away from highly regulated markets with adminis-
tered cost-based pricing and towards competitive markets in
which prices more fully reflect supply and demand forces.

The goal of these changes is to provide industry participants
with better incentives to control costs and introduce innova-
tions. The process of enacting and implementing policies and
laws to bring about these changes has come to be known as
restructuring.

This restructuring process has been controversial. The melt-
down in the restructured California wholesale power market
in the summer of 2000 has shown what can happen when
market mechanisms with complicated incentive structures are
implemented without sufficient pre-testing. Following the Cal-
ifornia crisis, numerous energy researchers have argued the
need to combine sound physical understanding of electric
power and transmission grid operation with economic analysis
of incentives in order to develop electricity markets with good
real-world performance characteristics.
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Many commercially available packages for power system
analysis now incorporate components critical for the simu-
lation of restructured electricity markets (e.g. optimal power
flow solvers). However, these packages have three major
drawbacks.

First, the critical effect of incentives on human participant
behaviors is typically not addressed. Second, the proprietary
nature of these packages generally prevents users from gaining
a complete and accurate understanding of what has been im-
plemented, restricts the ability of users to experiment with new
software features, and hinders users from tailoring software to
specific needs. Third, the concern for commercial applicability
to large-scale real-world systems makes these packages cum-
bersome to use for research, teaching, and training purposes
requiring intensive experimentation and sensitivity analyses.

In response to these concerns, a group of researchers at
Iowa State University has been working to develop the AMES
Wholesale Power Market Test Bed.1 AMES is an agent-based
computational laboratory suitable for studying the dynamic
performance of restructured wholesale power markets in a
manner that addresses both economic and engineering con-
cerns. A key aspect of the AMES project is the release of
AMES as open-source software to encourage interdisciplinary
communication and cumulative enhancements.

AMES incorporates core elements of a wholesale power
market design recommended by the U.S. Federal Energy Reg-
ulatory Commission (FERC) in an April 2003 White Paper [6].
This design recommends the operation of wholesale power
markets by Independent System Operators (ISOs) or Regional
Transmission Organizations (RTOs) using locational marginal
prices (LMPs) to price energy by the location and timing of
its injection into or withdrawal from the transmission grid.

As shown in Fig. 1, variants of FERC’s proposed wholesale
power market design have now been adopted in many regions
of the U.S. These regions include New England (ISO-NE),
New York (NYISO), the mid-atlantic states (PJM), the mid-
west (MISO), the southwest (SPP), and California (CAISO).
According to Joskow [7], over 50% of generating capacity
in the U.S. is now operating under some variant of FERC’s
market design.

AMES models electric power sellers (generation companies)
with learning capabilities interacting over time with elec-

1Detailed descriptions of AMES can be found in refs. ([1], [2], [3], [4]).
AMES is an acronym for Agent-based Modeling of Electricity Systems. The
first version of AMES was released as an open-source Java software package
at the IEEE PES General Meeting in June 2007. Downloads, manuals, and
tutorial information for all AMES version releases to date can be accessed at
the AMES homepage [5].
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Fig. 1. Energy regions operating under variants of FERC’s market design

tric power buyers (load-serving entities) in an ISO-managed
wholesale power market. This market operates over an AC
transmission grid subject to congestion. The ISO manages
congestion on the grid by means of LMPs derived from
optimal power flow solutions.

This study explores the potential usefulness of test beds such
as AMES for practical energy policy concerns. Specifically, we
use AMES to experimentally test the extent to which market
performance measures commonly used for other industries
are informative for the dynamic operation of restructured
wholesale power markets.

In particular, we focus on the measurement of “seller market
power” and “market efficiency” relative to a “competitive
equilibrium ” benchmark. Competitive equilibrium is said to
hold for a market when all traders take prices as given in
the formulation of their demands and supplies and the market
price is then set to equate total market demand to total market
supply. Seller market power refers to the ability of a seller to
profitably raise the market price of a good relative to compet-
itive equilibrium conditions. Market efficiency measures the
degree to which the total net surplus (earnings) secured by
sellers and buyers through actual market operations matches
the maximum total net surplus that sellers and buyers would
secure under competitive equilibrium conditions.

The organization of this study is as follows. The main
features of the AMES test bed are outlined in Section II.
In Section III we elaborate on several special factors com-
plicating the detection and prevention of seller market power
and the measurement and attainment of market efficiency in
restructured wholesale power markets. In particular, we show
that the standard ISO optimal power flow objective function
used to manage these markets deviates systematically from
the standard economic measure for market efficiency when
grid congestion is present.

In Section IV we provide careful definitions for the spe-
cific seller market power and market efficiency measures
to be experimentally examined in this study. We start with
two commonly used measures for seller market power, the
Herfindahl-Hirschman Index (HHI) and the Lerner Index. We
then present the Residual Supply Index recently developed
by CAISO researchers as a test for seller market power in
wholesale power markets. We next explain the Relative Market
Advantage Index, a market performance measure developed by
Nicolaisen et al. [8] as a necessary indicator for seller market

Fig. 2. AMES test bed architecture

Fig. 3. AMES GenCo: A cognitive agent with learning capabilities

power. Finally, we examine a measure for efficient market
operations referred to as the Operational Efficiency Index.

Section V sets out a simple experimental design permitting
comparisons of the strengths and weaknesses of each of these
measures relative to its intended purpose. Section VI presents
some of our main experimental findings to date.

Power markets are critically important systems for national
welfare and security, but they are also inherently complicated
to understand. In keeping with the purposes of this special
issue, every effort is made below to keep equations to a min-
imum. However, as an aid to interested readers, pointers are
given to supporting works where more technical discussions
can be found.

II. THE AMES TEST BED (VERSION 2.01)

A. Overview

AMES(V2.01) incorporates, in simplified form, core fea-
tures of the wholesale power market design proposed by the
U.S. FERC [6]; see Fig. 2. A detailed description of these
features can be found in materials provided at the AMES
homepage [5].

Below is a summary description of the logical flow of events
in the AMES(V2.01) wholesale power market:
• The AMES wholesale power market operates over an

AC transmission grid starting on day 1 and continuing
through a user-specified maximum day (unless terminated



3

Fig. 4. AMES GenCos use stochastic reinforcement learning to determine
the supply offers they report to the ISO for the day-ahead market.

earlier in accordance with a user-specified stopping rule).
Each day D consists of 24 successive hours H = 00,01,
...,23.

• The AMES wholesale power market includes an Indepen-
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSEs) and
Generation Companies (GenCos) distributed across the
busses of the transmission grid. Each of these entities is
implemented as a software program encapsulating both
methods and data; see, e.g., the schematic depiction of a
GenCo in Fig. 3

• The objective of the ISO is the reliable attainment of
appropriately constrained operational efficiency for the
wholesale power market, i.e., the maximization of buyer
and seller total net surplus (earnings) subject to genera-
tion and transmission constraints.

• In an attempt to attain this objective, the ISO undertakes
the daily operation of a day-ahead market settled by
means of locational marginal pricing (LMP), i.e., the
determination of prices for electric power in accordance
with the location and timing of its injection into, or
withdrawal from, the transmission grid. Roughly stated,
a locational marginal price at any particular transmission
grid bus is the least cost to the system of servicing
demand for one additional megawatt (MW) of electric
power at that bus.2

• The objective of each LSE is to secure power for its
downstream (retail) customers. During the morning of
each day D, each LSE reports a demand bid to the ISO
for the day-ahead market for day D+1. Each demand bid
consists of two parts: a fixed demand bid (i.e., a 24-hour
load profile); and 24 price-sensitive demand bids (one for
each hour), each consisting of a linear demand function
defined over a purchase capacity interval. LSEs have no

2In reality, LMPs are shadow prices for “nodal balance constraints”
constituting part of the constraint set of optimal power flow problems and are
derived as derivatives of the optimized power flow objective function with
respect to particular types of perturbations of these constraints. Moreover,
these nodal balance constraints are imposed at “pricing nodes” that might
not correspond to actual physical bus locations on the grid. For expositional
simplicity, throughout this study we use the standard engineering short-hand
description for LMPs as valuations for single-unit increases in demand and
we treat pricing nodes as coincident with transmission grid busses. For a more
rigorous explanation and derivation of LMPs, see [2].

learning capabilities; LSE demand bids are user-specified
at the beginning of each simulation run.

• The objective of each GenCo is to secure for itself
the highest possible net earnings each day. During the
morning of each day D, each GenCo i uses its current
action choice probabilities to choose a supply offer from
its action domain ADi to report to the ISO for use in all
24 hours of the day-ahead market for day D+1.3

• Each supply offer in ADi consists of a linear marginal
cost function defined over an operating capacity interval.
GenCo i’s ability to vary its choice of supply offers
from ADi permits it to adjust the ordinate/slope of its
reported marginal cost function and/or the upper limit of
its reported operating capacity interval in an attempt to
increase its daily net earnings.

• After receiving demand bids from LSEs and supply offers
from GenCos during the morning of day D, the ISO
determines and publicly reports hourly power supply
commitments and LMPs for the day-ahead market for
day D+1 as the solution to hourly bid/offer-based DC
optimal power flow (DC-OPF) problems. Transmission
grid congestion is managed by the inclusion of congestion
cost components in LMPs.

• At the end of each day D, the ISO settles all of the
commitments for the day-ahead market for day D+1 on
the basis of the LMPs for the day-ahead market for day
D+1.

• At the end of each day D, each GenCo i uses stochastic
reinforcement learning to update the action choice proba-
bilities currently assigned to the supply offers in its action
domain ADi taking into account its day-D settlement
payment (“reward”). In particular, as depicted in Fig. 4, if
the supply offer reported by GenCo i on day D results in a
relatively good reward, GenCo i increases the probability
of choosing this supply offer on day D+1, and conversely.

• There are no system disturbances (e.g., weather changes)
or shocks (e.g., forced generation outages or line out-
ages). Consequently, the binding financial contracts deter-
mined in the day-ahead market are carried out as planned
and traders have no need to engage in real-time (spot)
market trading.

• Each LSE and GenCo has an initial holding of money
that changes over time as it accumulates earnings and
losses.

• There is no entry of traders into, or exit of traders
from, the wholesale power market. LSEs and GenCos
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

The activities of the ISO on a typical day D are depicted
in Fig. 5. The overall dynamical flow of activities in the

3In the MISO [9], GenCos each day are actually permitted to report a
separate supply offer for each hour of the day-ahead market. In order to
simplify the learning problem for GenCos, the current version of AMES
restricts GenCos to the daily reporting of only one supply offer for the day-
ahead market. Interestingly, the latter restriction is imposed on GenCos by
the ISO-NE [10] in its particular implementation of FERC’s market design.
Baldick and Hogan [11, pp. 18-20] conjecture that imposing such limits on
the ability of GenCos to report distinct hourly supply offers could reduce their
ability to exercise seller market power.
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Fig. 5. AMES ISO activities during a typical day D

Fig. 6. Illustration of AMES dynamics on a typical day D in the absence
of system disturbances or shocks for the special case of a 5-bus grid

wholesale power market on a typical day D in the absence
of system disturbances or shocks is depicted in Fig. 6.

III. MEASUREMENT CONUNDRUMS FOR POWER MARKETS

A. Detection of Seller Market Power

Although the exercise of seller market power in restructured
wholesale power markets can have substantial adverse effects
on the efficiency, reliability, and fairness of market operations,
it is difficult to construct measures for its reliable detection.
Excellent discussions elaborating some of the reasons for this
can be found in Borenstein et al. [12], Sheffrin et al. [13],
Stoft [14, Chapter 4], and Twomey et al. [15]. Here we briefly
review the key issues.

On the one hand, the complexity of the rules and regula-
tions governing market operations in restructured wholesale
power markets creates opportunities for GenCos to game the

system to their advantage through strategic behaviors, either
individually or in tacit collusion. These strategic behaviors take
two main forms: economic withholding of capacity through
a reporting of higher-than-true marginal costs; and physical
withholding of capacity.

Economic withholding of capacity can induce higher prices
for cleared supply as well as out-of-merit-order dispatch,
i.e., more expensive generation dispatched in place of less
expensive generation. This results in inefficient (and politically
important) transfers of wealth away from LSEs and their
downstream (retail) consumers and towards GenCos.

Physical withholding of capacity can induce higher prices
for the remaining offered capacity and hence higher net
earnings for GenCos that withhold only a portion of their
capacities. It can also result in out-of-merit-order dispatch. In
addition, however, physical withholding of capacity increases
the chances of inadequacy events in which offered capacity is
insufficient to meet total fixed demand, forcing ISOs to take
special actions to avoid the breakdown of power flow on the
grid.

In short, strategic withholding results in distorted price
signals as well as the possible need for special non-market
dispatch. This hinders the efficient and fair use of existing re-
sources as well as the proper assessment of future transmission
and generation investment needs.

On the other hand, the physical laws governing power
flow on transmission grids mean that these grids are strongly
connected networks. Injections or withdrawals of power at one
location on the grid can have substantial effects on branch
flows and bus sensititivies at distant locations. In particular,
if an injection of power at a particular grid location leads to
grid congestion, this will cause at least some separation of
LMPs across the grid. Indeed, as explained more carefully
in Subsection III-B, under congested conditions LMPs can
strictly exceed the marginal cost of each marginal GenCo at
the system operating point, despite the complete absence of
any deliberate exercise of seller market power.

Alternatively, a change in the pattern of grid congestion can
cause dramatic discontinous changes in LMP levels even if the
overall number of congested branches remains the same. For
example, a load pocket can suddenly emerge in which a GenCo
effectively becomes a high-priced monopolist with respect
to the demand for power in its local area because outside
power cannot be transported into this local area. In standard
economic terminology, the energy market has segmented into
submarkets, and the electric power quantities offered for sale at
locations within distinct submarkets now effectively represent
distinct goods supporting a distinct array of prices.

Standard economic measures for seller market power have
not been designed with these complex effects in mind. Con-
sequently, their usefulness for the detection of seller market
power in restructured wholesale power markets is not clear.

B. Measurement of Market Efficiency

The standard economic measurement of “market efficiency”
also has to be carefully reconsidered for restructured wholesale
power markets. Market efficiency means there are no wasted
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Fig. 7. Illustration of a competitive equilibrium (Q*,P*) = (5,$65) with
corresponding calculations for net buyer and seller surplus. The range of all
possible competitive equilibria is given by Q*=5 and $60 ≤ P ∗ ≤ $70.

resources. Economists identify two types of wastage: (1)
physical wastage, in the sense that some valued units of
resource remain unused; and (2) wastage of value, in the sense
that some units of resource are not being used by those who
value them most.

Economists measure the efficiency of a market in terms of
the “total net surplus” attained by buyers and sellers. Net
buyer surplus is defined to be the maximum amount that
a buyer would have been willing to pay for a quantity of
goods q minus the actual payment that the buyer makes for
q. Similarly, net seller surplus is defined to be the payment
received by a seller for the sale of a quantity of goods q minus
the minimum payment the seller would have been willing to
accept in payment for q. The total net surplus (TNS) attained in
a market M during a specified time period T is then defined
to be the sum of the net surplus attained by all buyers and
sellers in M during T.

Market efficiency is said to be achieved in a market if TNS
is maximized, since wastage of resources is then minimized.
In standard textbook market settings, TNS is maximized in
competitive equilibrium, that is, when all buyers and sellers
in the market take prices as given in the formulation of their
demands and supplies and the market price P* equates total
market demand to total market supply at some common quan-
tity level Q*. The equilibrium quantity Q* is the summation of
all of the cleared quantities q∗i supplied by individual sellers
i, that is, the quantities q∗i that can be scheduled for purchase
because for each successive quantity unit the market price lies
between some buyer’s maximum willingness to pay and the
seller’s minimum acceptable price.

See, for example, the depiction of a competitive equilibrium
in Fig. 7 with accompanying calculations for net buyer and
seller surplus. The demand curve D depicts buyer maximum
willingness to pay for each successive unit demanded, in de-
scending order, and the supply curve S depicts seller minimum
acceptable sale price for each successive unit supplied, in
ascending order. The eight quantity units offered for sale might
all belong to a single seller that is not capacity constrained.
Alternatively, the eight units could represent units offered
for sale by different capacity-constrained sellers—e.g., eight
different sellers, each capacity-constrained to supply at most

one unit. In either case only five of these units can be cleared in
competitive equilibrium because buyer maximum willingness
to pay drops below seller minimum acceptable sale price for
any additionally offered quantity units.

Economists typically equate a seller’s minimum acceptable
sale price with its marginal cost. Consequently, economists
commonly test for the maximization of TNS at a point (Q’,P’)
by testing whether the market price P’ lies between MC−(Q’)
and MC+(Q’), the left-hand and right-hand seller marginal
costs evaluated at the market output level Q’.4 If seller
marginal cost is a well-defined continuous function of Q at
Q’, then left-hand and right-hand seller marginal costs coincide
at Q’ and this requirement reduces to the standard condition
P’=MC(Q’).5 If P’ exceeds right-hand seller marginal cost
at Q’, this raises the possibility that additional buyer/seller
surplus could be extracted from the market by the sale of
additional quantity units. It also raises the possibility that
sellers are exercising market power through the deliberate
withholding of capacity.

Due to network externalities, however, this P/MC test must
be applied with great caution in restructured wholesale power
markets operating over transmission grids with congestion
managed by LMP pricing. To understand why, it is necessary
to consider carefully the constructive derivation of LMPs.

As noted in Section II, the LMP at each bus of the
transmission grid is defined as a right-hand system marginal
cost: namely, the least cost to the system of servicing an
additional megawatt (MW) of electric power demand at that
bus. By definition, then, each LMP is determined only by
the marginal GenCos at the system operating point, i.e., by
the GenCos that are capable of supplying additional demand
because they are currently operating strictly below their upper
capacity limits.

Consequently, as is well understood, the LMP received
by each individual non-marginal (i.e., capacity-constrained)
GenCo for each MW it sells at its operating point can strictly
exceed its left-hand marginal cost.6 The MWs supplied by
these non-marginal GenCos constitute “inframarginal” quan-
tity units in the terminology of standard microeconomic theory,
similar to the quantity units to the left of Q*=5 in Fig. 7.

What is not as well understood, however, is that an LMP can
strictly exceed the right-hand marginal cost of each marginal
GenCo if grid congestion requires out-of-merit-order dispatch.
For example, to service an additional MW of demand at some

4Assuming the seller minimum acceptable sale prices in Fig. 7 are marginal
costs, the depicted competitive equilibrium (Q*,P*)=(5,$65) satisfies precisely
this type of requirement, as follows: $60 = MC−(Q*) < P*=$65< MC+(Q*)
= $80. A similar requirement can be formulated stating that the market
price P’ should lie between the left-hand and right-hand expressions for
buyer maximum willingness to pay at Q’. Both of these requirements follow
from the following alternative geometrically-expressed form for the definition
of competitive equilibrium in standard market contexts: A technologically
feasible quantity-price combination (Q’,P’) is a competitive equilibrium if
and only if it is an intersection point of the market demand and supply curves
with all vertical and horizontal portions included.

5Marginal cost curves for power markets typically have jump points due
to generation capacity constraints. See Stoft [14, Chapter 1-6] for a careful
discussion of marginal cost calculations for power markets.

6The marginal cost curve of a capacity-constrained GenCo goes vertical
at its upper capacity limit, implying that the right-hand marginal cost of a
GenCo operating at its upper capacity limit is effectively infinite.
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bus k for some hour H in the presence of grid congestion
might require that less expensive generation at some second
bus k′ be backed down, e.g., by 2MWs at $20/MWh, and that
more expensive generation at some third bus k′′ be brought
up, e.g., by 3MWs at $30/MWh, in order to avoid overloading
an already constrained transmission grid branch. In this case
the system marginal cost of servicing an additional MW of
demand at bus k for hour H—i.e., the LMP at bus k for hour
H—is $50/h = [3MWs·($30/MWh) - 2MWs·($20/MWh)]. If
the 3MWs at $30/MWh are supplied by a GenCo that has
even more operating capacity available at a marginal cost not
exceeding $49/MWh, then the LMP at bus k strictly exceeds
the right-hand marginal cost of this marginal GenCo.

C. Attainment of Market Efficiency
Subsection III-B discusses a number of issues that seri-

ously complicate the measurement of market efficiency for
day-ahead markets in restructured wholesale power markets.
However, a potentially more fundamental problem is that the
form of the objective function used by ISOs in these markets to
determine LMPs and power commitments renders problematic
the attainment of market efficiency.

This issue is extremely important but fairly technical to
explain. For this reason we delay discussion of this issue until
subsection IV-C, below, so that we can exploit the previous
development of a quantitative measure for market efficiency
specifically tailored for wholesale power markets.

IV. MARKET PERFORMANCE MEASURES

A. Seller Market Power Measures
Market concentration is the extent to which a relatively

large share of market activity is carried out by a relatively
small number of participant firms. Market concentration is
routinely used as an indicator of potential seller market power
by the U.S. Department of Justice in antitrust actions as well
as by researchers in academic studies. The intuitive idea is
that anticompetitive behavior by firms is to be expected in a
market that is highly concentrated.

Market concentration measures are most often applied to
the seller side of a market. Typically these measures depend
critically on two structural attributes: (a) the number of firms
selling into a market; and (b) the relative “market share”
of these seller firms as measured either by output, by sales
revenues, or by operating capacity. All else equal, these
measures indicate an increase in concentration either when
the number of firms decreases or when the market share of
the largest firms increases. A key unresolved issue in the
construction of such measures is the relative weight that should
be attached to the two structural dimensions (a) and (b).

One of the most commonly used market concentration
measures is as follows:
• The Herfindahl-Hirschman Index (HHI):

Let sn denote the percentage share of market output of
the nth largest firm in a market with N firms for some
time period T. Then

HHI =
N∑

n=1

s2n (1)

Note that market share in (1) is defined as the percentage
share of market output. Consequently, the corresponding HHI
is an ex post measure in the sense it depends on actual market
outcomes.

Larger values for HHI indicate a higher degree of con-
centration and hence a higher potential for the exercise of
seller market power. For example, if a market consists of
just one firm, then the percentage share of market output
for this one firm will be 100% and HHI will equal 10,000
(1002). Conversely, if a market consists of a large number of
small firms, the percentage share of market output for each
of these small firms will be close to 0%, implying that HHI
will have a value close to 0. However, the HHI has well
known deficiencies as an indicator of seller market power
in any market. For example, it focuses only on the supply
side of a market, ignoring demand conditions, and it ignores
differences in firm costs and the potential entry of rival firms;
see Pepall [16, Section 2.1].

One of the most commonly used direct measures for seller
market power is the “Lerner Index,” defined as follows:7

• Lerner Index (LI):
For any firm i supplying a positive quantity q at a per-unit
sale price P in some time period T,

LI(i) =
[
P −MCi(q)

P

]
, (2)

where MCi(q) denotes firm i’s true left-hand marginal
cost, evaluated at q.

The LI builds on the idea, explained and critiqued in Sec-
tion III, that positive discrepancies between market price and
seller marginal cost indicate the possible exercise of seller
market power through the withholding of capacity.

For later purposes, we now specialize definition (2) to
wholesale power markets operating under LMP pricing. Con-
sider a GenCo i located at a bus k(i) in day D. Let pGi denote
the total amount of electric power that GenCo i is cleared to
sell in the day-ahead market for hour H of day D+1. Also,
let LMPk(i) denote the LMP at bus k(i) in hour H of day
D+1. By definition, LMPk(i) is the sale price that GenCo i is
scheduled to receive for each MW of its cleared supply pGi.
Finally, let MCi(pGi) denote GenCo i’s true left-hand marginal
cost, evaluated at pGi. Then

LI(i) =
[

LMPk(i) −MCi(pGi)
LMPk(i)

]
(3)

We next present a measure that considers both the demand
and supply sides of a market by building on the concept of
a “pivotal supplier.” A firm i participating in some market M
is called a pivotal supplier if total operating capacity in M
without the capacity of firm i is not sufficient to meet market
demand.

7The definition of the Lerner Index is typically presented without distin-
guishing between left-hand and right-hand marginal cost, important for the
consideration of capacity-constrained firms; see, e.g., Stoft [14, p. 339]. In
empirical applications, however, the “marginal costs” appearing in Lerner
Index calculations appear universally to be left-hand (historically realized)
marginal costs. Consequently, we state the definition in this form.
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Although relevant for any market, the concept of a pivotal
supplier has special salience for restructured wholesale power
markets for which much of the bid-in demand is fixed, i.e., not
sensitive to price.8 More precisely, electric power effectively
cannot be stored, and imbalances between demand and supply
of electric power on a grid lead to voltage instabilities and
ultimate grid collapse if not swiftly corrected. For these
reasons, ISOs in wholesale power markets must ensure at all
times that generation capacity is sufficient to meet total fixed
demand. This requirement means that GenCos in restructured
wholesale power markets who are pivotal suppliers for total
fixed demand have tremendous potential to exercise seller
market power through the withholding of their capacity.

The following “Residual Supply Index” tests for the pivotal-
supplier status of arbitrary groupings of firms participating in
a market.

• Residual Supply Index (RSI):
Let N denote the collection of all firms participating in
a market during some time period T. For any subset S
of N , let TotalCap(S) denote the total operating capacity
of the firms in S during T. Also, let TotalDemand denote
total demand during T. Then

RSI(S) =
[

TotalCap(N)− TotalCap(S)
TotalDemand

]
(4)

If RSI(S) < 1, the indication is that the firms in S have
potential seller market power because total demand cannot
be met without their capacity. When total demand and firm
capacities are known in advance, the RSI represents an ex
ante measure in the sense that it can be calculated in advance
of actual market outcomes.

The RSI in various forms was first proposed by a group of
researchers affiliated with the Department of Market Analysis
at the California Independent System Operator (CAISO). See
Sheffrin et al. [13, p. 60] for a report on empirical findings
for these measures applied to CAISO market data. See, also,
Mani and Ainspan [17] for applications of RSI to the New
England wholesale power market (ISO-NE).

Finally, we present the definition of a market performance
measure proposed in [8] as a necessary indicator of market
power for either a buyer or seller. Here we specialize the
measure to a seller.

• Relative Market Advantage Index (RMAI):
Let NetEarnC(i) denote the net earnings that a seller i
would earn in competitive equilibrium during some time
period T, and let NetEarnA(i) denote the net earnings
of seller i in actual market trading during T. Assuming
NetEarnC(i) is not zero,

RMAI(i) =
[

NetEarnA(i)− NetEarnC(i)
NetEarnC(i)

]
(5)

In order for seller i to have profitably exerted control over the
market price during T, RMAI(i) must necessarily be positively

8For example, in the U.S. Midwest Independent System Operator (MISO),
LSEs are permitted to submit demand bids to the ISO for the day-ahead
market that have both fixed and price-sensitive parts. However, according to
demand bid data released by the MISO [9], at the present time only about
1% of the total bid-in demand for the day-ahead market is price sensitive.

valued. Consequently, RMAI(i) > 0 is a necessary condition
for seller i to have exercised seller market power during T.

B. Market Efficiency Measure

Recall from Subsection III-B that market efficiency is said
to hold for a market if maximum extraction of total net
surplus (TNS) is achieved. Moreover, for standard market
contexts such as depicted in Fig. 7, maximum TNS extraction
is achieved in any competitive equilibrium.

Let M denote a standard market context in some time
period T. Let TNSC denote the (maximum) TNS that could be
extracted in market M in period T in competitive equilibrium,
and let TNSA denote the TNS actually extracted in market M
during T. Assuming TNSC is positively valued, an “Opera-
tional Efficiency Index” can be defined for market M during
T as follows:

• Operational Efficiency Index (OEI):

OEI =
TNSA

TNSC
(6)

If buyers never purchase goods above their maximum willing-
ness to pay and sellers never sell goods below their minimum
acceptable sale price, OEI ranges between 0 and 1 in value
with OEI=1 corresponding to 100% market efficiency.

For later purposes, we now specialize the definitions of
net buyer surplus, net seller surplus, total net surplus, and
OEI to markets for electric power. In particular, we consider
the case of J LSEs and I GenCos participating in an ISO-
managed day-ahead wholesale power market operating under
LMP pricing.

In standard economic terminology, an LSE that has a
positive fixed (price-insensitive) demand for electric power
has a vertical demand curve for these quantity units, implying
an infinite maximum willingness to pay for them. In ISO-
managed day-ahead markets, fixed demand must be met in
all normal market circumstances. Consequently, this infinite
benefit does not help to distinguish between the efficiency
attained under different (normal) market scenarios because in
effect it cancels out when the benefits arising under any two
of these scenarios are differenced.

For this reason, power economists routinely omit consid-
eration of LSE fixed demand benefits in the construction
of measures designed to evaluate relative market efficiency.
A special case of this is when all LSE demand is fixed
and attention is focused solely on minimization of the total
variable costs incurred in satisfying this fixed demand. Here
we consider the more general case, reflective of many actual
ISO-managed day-ahead wholesale power markets, in which
LSE demand bids consist of both fixed and price-sensitive
parts.

Consider an LSE j located at a transmission grid bus k(j)
in some day D. Let pS

Lj and pF
Lj denote the quantities of

electric power that LSE j is cleared to buy in the day-ahead
market for hour H of day D+1 corresponding to its price-
sensitive demand-bid function Dj(p) and its fixed demand bid,
respectively. LSE j’s total cleared demand is thus given by

pLj =
[
pS

Lj + pF
Lj

]
(7)
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Also, let LMPk(j) denote the LMP for bus k(j) in hour H of
day D+1. LMPk(j) is the price that LSE j is committed to pay
for each MW of its total cleared demand (7).

The net buyer surplus of LSE j corresponding to its total
cleared demand (7), adjusted to omit the infinitely-valued
benefit corresponding to its fixed demand, takes the following
form:

AdjNBSLj =
∫ pS

Lj

0

[Dj(p)] dp− LMPk(j) · pLj (8)

In (8), Dj(p) denotes LSE j’s maximum willingness to pay
for an increment dp of power, evaluated at the power level p.
Consequently, the integral term measures the benefit gained by
LSE j from the price-sensitive portion pS

Lj of its total cleared
demand pLj , whereas the far-right term denotes the cost to
LSE j for its total cleared demand pLj .

Next consider a GenCo i located at a transmission grid bus
k(i) in some day D. Let pGi denote the quantity of electric
power that GenCo i is cleared to sell in the day-ahead market
for hour H of day D+1. Also, let LMPk(i) denote the LMP
for bus k(i) in hour H of day D+1. LMPk(i) is the price that
GenCo i is committed to accept in payment for each MW of
its cleared supply pGi.

The net seller surplus of GenCo i corresponding to its
cleared supply pGi is therefore given by

NSSGi = LMPk(i) · pGi −
∫ pGi

0

[MCi(p)] dp (9)

In (9), MCi(p) denotes GenCo i’s true left-hand marginal cost
(minimum acceptable sale price) for an increment dp of power,
evaluated at the power level p. Consequently, the integral
term measures the true variable cost incurred by GenCo i for
its cleared supply pGi, whereas LMPk(i) · pGi measures the
payments received by GenCo i for this cleared supply.

The total net surplus attained in the day-ahead market in
hour H of day D+1, adjusted by omission of the infinite benefit
corresponding to LSE fixed demand, thus takes the following
form:

AdjTNS =
J∑

j=1

AdjNBSLj +
I∑

i=1

NSSGi (10)

We consider two different calculations of AdjTNS:
• AdjTNSC : AdjTNS calculated under competitive bench-

mark conditions in which the ISO knows the true struc-
tural attributes of all LSEs and GenCos;

• AdjTNSR: AdjTNS calculated under auction conditions
in which the ISO must depend on the reported demand
bids and supply offers of potentially strategic LSEs and/or
GenCos with learning capabilities.

In parallel with (6), we then define an “adjusted” operational
efficiency index as follows:

AdjOEI =
AdjTNSR

AdjTNSC
(11)

The Adjusted OEI (11) does not have as straightforward an
interpretation as the standardly defined OEI (6). For example,
AdjTNS calculated under either competitive or auction condi-
tions can be negatively valued in the presence of LSE fixed

demands since LSE fixed demand payments are included but
LSE fixed demand benefits are not. Moreover, as elaborated in
the following section, the standardly assumed ISO objective
function for the day-ahead market does not guarantee that
AdjTNSC equals maximum possible AdjTNS. These issues
will be further addressed in Section VI, where we present
experimental findings for AdjOEI.

C. ISO Objective Function and Market Efficiency

Economists typically assume that an appropriate market
objective for policy makers is market efficiency interpreted
to mean the maximization of the sum of net buyer and seller
surplus, i.e., total net surplus (TNS). As depicted in Fig. 7,
TNS in standard market contexts can be expressed as the
area between the market demand curve and the market supply
curve, and maximum TNS is achieved where these curves
intersect.

The basic objective typically assumed for ISOs in day-
ahead markets is the constrained maximization of the area be-
tween the market price-sensitive demand curve and the market
supply curve as constructed from the reported price-sensitive
demand bids and supply offers of the participant traders.9

Many researchers appear to be under the impression that the
constrained maximization of this ISO objective function is
equivalent to the constrained maximization of adjusted TNS
as constructed in (10) and hence comports well with standard
economic policy prescriptions for the achievement of market
efficiency. See, for example, Crampton et al. [18, Appendix
1.3, pp. 42-44]. However, it will now be shown that this is not
necessarily the case.

Consider, for example, an ISO-managed wholesale power
market consisting of J LSEs and I GenCos. Let the objective
function of the ISO in day D for hour H of the day-ahead
market in day D+1 be expressed as follows:

BR−CR =
J∑

j=1

∫ pS
Lj

0

[
DR

j (p)
]
dp−

I∑
i=1

∫ pGi

0

[
MCR

i (p)
]
dp

(12)
In 12, DR

j (p) denotes LSE j’s reported price-sensitive demand
function, hence the corresponding summed integral expression
BR denotes the reported total benefits to LSEs corresponding
to their reported price-sensitive demand bids (i.e., the area
under their reported price-sensitive demand functions up to
their cleared demands). MCR

i (p) denotes GenCo i’s reported
marginal cost function, hence the corresponding summed
integral expression CR denotes the reported total variable
costs incurred by GenCos (i.e., the area under their reported
marginal cost curves up to their cleared supplies).

The question is whether the objective function (12) is
equivalent to AdjTNS as constructed in (10). To see why this is
not true in general, consider the following. The payments from
LSEs and to GenCos for the day-ahead market in day D+1 are
settled through the ISO at the end of day D. Let ISONetSurplus
denote the net payments collected by the ISO in the day-D

9Sometimes additional “unit commitment” costs are also included, such as
no-load and start-up costs, but this does not affect the essential point of this
section.
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settlement for hour H of the day-ahead market in day D+1.
Using previously introduced terminology, ISONetSurplus can
be expressed as follows: J∑

j=1

LMPk(j) · pLj −
I∑

i=1

LMPk(i) · pGi

 (13)

Combining (8), (9), (10), (12), and (13), it is seen that

BR − CR =
[
AdjTNSR + ISONetSurplus

]
, (14)

where AdjTNSR denotes AdjTNS based on reported demand
bids and supply offers.

Clearly the maximization of (14) subject to generation
and transmission constraints will not typically ensure the
maximization of AdjTNS subject to these same constraints. It
might be argued that the inclusion of ISO net surplus in (14)
along with net buyer and seller surplus is appropriate, since
ISOs are also market participants. However, ISOs are typically
constituted as non-profit organizations, meaning they have a
fiduciary responsibility to oversee energy market operations
for the securement of social welfare rather than for the
securement of maximum organizational profits.

Why not simply “correct” the objective function (14) by
replacing it with AdjTNS (or AdjTNSR)? The key difficulty
here is that the LMPs entering into the expression for AdjTNS
in (10) are solved for endogenously within the ISO’s opti-
mization problem as shadow prices on certain “nodal balance
constraints” embodying an important physical constraint on
power flow (Kirchhoff’s Current Law). By construction, these
shadow prices measure the marginal cost to the system of
servicing marginal increments of demand at different grid
locations. Any explicit appearance of LMPs as endogenous
variables in the ISO’s optimization problem apart from their
role as shadow prices on nodal balance constraints would de-
stroy their interpretation as shadow prices for these constraints
and hence their valid interpretation as system marginal costs.

Sufficient conditions for equivalence between the con-
strained maximization of [AdjTNSR + ISONetSurplus] in (14)
and the similarly constrained maximization of AdjTNS in (10)
are as follows: (1) LSEs and GenCos report non-strategic
demand bids and supply offers, implying that AdjTNSR =
AdjTNS; and (2) grid congestion is absent, implying all LMPs
collapse to a single uniform price level. Given condition (2),
ISONetSurplus = 0 because the total quantity of electric power
sold equals the total quantity of electric power bought.

How likely are these two conditions to hold? With regard
to (1), Li et al. ([3], [4]) report AMES experiments indicating
that strategic profit-seeking GenCos in restructured wholesale
power markets typically have an incentive to report supply
offers to the ISO that systematically misrepresent their true
net surplus outcomes. This is the case whether or not grid
congestion is present and whether or not the bid-in demand
of LSEs is fixed or price sensitive.

With regard to (2), grid congestion is quite common within
restructured wholesale power markets in the U.S. and increas-
ingly in other countries as well. In the presence of grid conges-
tion, LMPs can dramatically separate across the grid, hence
the prices paid to the ISO by LSEs can differ substantially

Fig. 8. 5-bus transmission grid for the dynamic 5-bus test case

from the prices received from the ISO by GenCos. Li et al. [4]
report consistently positive ISONetSurplus outcomes in a suite
of AMES experiments for a dynamic 5-bus test case in which
grid congestion persistently arises. It is actually a bit disturbing
to realize that maximization of an objective function such as
(14) could have the unintended consequence of encouraging
the emergence and persistence of grid congestion.

What can be done, then, to ensure that the constrained
maximization of [AdjTNSR + ISONetSurplus] at least ap-
proximately achieves the similarly-constrained maximization
of AdjTNS? One possible way to help ensure AdjTNSR =
AdjTNS would be for an ISO to engage in suitable monitoring
of demand bids and supply offers to discourage strategic
reporting. Indeed, ISOs in the U.S. now routinely have “market
monitoring” units for just this purpose.

One possible way to ensure, in effect, that ISONetSur-
plus=0 might be for an ISO to institute a policy under which
the ISONetSurplus (whether positive or negative in sign)
is distributed back to participants in “financial transmission
rights” markets as “congestion rent” payments. Alternatively,
a positive ISONetSurpus might be used to enhance the wel-
fare of market participants through direct ISO investment in
transmission or generation. However, neither of these options
guarantees market efficiency in the original day-ahead market.
This issue requires further study.

V. EXPERIMENTAL DESIGN

All market performance experiments reported in this study
were carried out using the AMES test bed [5] developed by
H. Li, J. Sun, and L. Tesfatsion. These experiments are based
on a dynamic 5-bus test case characterized by the following
structural, institutional, and behavioral conditions:
• The 5-bus transmission grid configuration is as depicted

in Fig. 8, with transmission grid, LSE, and GenCo
structural attributes as presented in Li et al. [4].10

• In particular, the maximum operating capacities of the
five GenCos depicted in Fig. 8 are as follows: 110MW for

10The 5-bus transmission grid depicted in Fig. 8 is due to Lally [19]. This
grid configuration is now used extensively in ISO-NE/PJM training manuals
to derive quantity and price solutions at a given point in time assuming ISOs
have complete and correct information about grid, LSE, and GenCo structural
attributes.
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Fig. 9. Daily LSE fixed demand (load) profiles for the dynamic 5-bus test
case

GenCo 1 (G1); 100MW for GenCo 2 (G2); 520MW for
GenCo 3 (G3); 200MW for GenCo 4 (G4); and 600 MW
for GenCo 5 (G5). Note that the next-to-largest GenCo
3 is favorably situated in a potential “load pocket” with
respect to the three LSEs.

• Also, GenCo 4 (the “peaking unit”) has the most costly
generation. Next in line is GenCo 3. The three remaining
GenCos 1, 2, and 5 have more moderate costs.

• The daily fixed demand (load) profiles for the three LSEs
are the same from one day to the next. As depicted in
Fig. 9, each daily fixed demand profile peaks at hour 17.11

• The learning parameters for each of the five GenCos are
set at “sweet spot” values shown in Li et al. [4] to be
where the GenCos as a whole earn the highest average
daily net earnings.12 The only factor that changes market
outcomes from one day to the next is GenCo learning.

Since the GenCos rely on stochastic reinforcement learning
to determine their supply offers, multiple runs need to be
conducted for each experimental treatment to control for
purely random effects. As in Li et al. [4], we conduct thirty
runs for each treatment using thirty distinct random seeds
generated via the standard Java “random” class.13

Moreover, only one of the five possible stopping rules in
AMES(V2.01) was flagged for each experimental run: namely,
the stopping rule requiring that each run terminate at a user-
designated day DMax. The value set for DMax in each run
was 1000.

The key treatment factor used in our experimental design,
originally developed by Li et al. [3], is the ratio R of maximum
potential price-sensitive demand to maximum potential total
demand. More precisely, for each LSE j and each hour H, let

Rj(H) =
SLMaxj(H)
MPTDj(H)

. (15)

In (15) the expression SLMaxj(H) denotes LSE j’s maximum
potential price-sensitive demand in hour H as measured by
the upper bound of its purchase capacity interval, and

MPTDj(H) = [pF
Lj(H) + SLMaxj(H)] (16)

11These profile shapes are adopted from a case study presented in Shahideh-
pour et al. [20, p. 296-297].

12In particular, we use the GenCo Case(1,1) learning parameter values
characterized by α = 1 and β = 100 in Li et al. [4].

13See Li et al. [4] for these 30 numerical seed values.

Fig. 10. Illustration of the construction of the R ratio for measuring relative
demand-bid price sensitivity for the special case R=0.5

denotes LSE j’s maximum potential total demand in hour
H as the sum of its fixed demand pF

Lj(H) and its maximum
potential price-sensitive demand SLMaxj(H) in hour H. The
construction of the R ratio is illustrated in Fig. 10.

For our price-sensitive demand experiments we start by
setting all of the R values (15) for each LSE j and each
hour H equal to R=0.0 (the pure fixed-demand case). We then
systematically increase R by tenths, ending with the value
R=1.0 (the pure price-sensitive demand case). A positive R
value indicates that the LSEs are able to exercise at least some
degree of price resistance.

The maximum potential price-sensitive hourly demands
SLMaxj(H) for each LSE j are thus systematically increased
across experiments. However, we control for confounding
effects arising from changes in overall demand capacity as
follows: For each LSE j and each hour H, the denominator
value MPTDj(H) in (16) is held constant across experiments
by appropriate reductions in the fixed demand pF

Lj(H) as
SLMaxj(H) is increased. Specifically, MPTDj(H) is set equal
across all experiments to BPF

Lj(H), the hour-H fixed-demand
level BPF (H) for LSE j specified in Li et al. [4] for their
benchmark dynamic 5-bus test case. Consequently, for each
tested R value,

pF
Lj(H) = [1-R] ∗ BPF

Lj(H) ; (17)

SLMaxj(H) = R ∗ BPF
Lj(H). (18)

Moreover, as R is incrementally increased from R=0.0
to R=1.0, we control for confounding effects arising from
changes in the LSEs’ price-sensitive demand bids by hold-
ing fixed the ordinate and slope values {(cj(H),dj(H)):
H=00,...,23} for each LSE j. A listing of the specific numerical
values used can be found in Li et al. [4].

VI. EXPERIMENTAL FINDINGS

This section uses the experimental design outlined in Sec-
tion V for the dynamic 5-bus test case to conduct comparative
tests of the five market performance measures developed in
Section IV.

In particular, we examine outcomes for the Herfindahl-
Hirschman Index (HHI) as defined in (1), the Lerner Index (LI)
as defined in (3), the Residual Supply Index (RSI) as defined in
(4), the Relative Market Advantage Index (RMAI) as defined
in (5), and the Adjusted Operational Efficiency Index (AdjOEI)
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as defined in (11). Average results are reported for R values
ranging from R=0.0 (100% fixed demand) to R=1.0 (100%
price-sensitive demand).

Average HHI and LI results are reported in Tables I through
IV for both the competitive benchmark case (no GenCo learn-
ing) and the learning GenCos case. The averages are based on
30 runs, each consisting of 1000 time periods (“days”).14 The
only factor causing changes in market outcomes over time in
the dynamic 5-bus test case is GenCo learning, hence averages
are separately reported for days 10, 50, 100, and 1000 in
Tables II and IV to check the effects of GenCo learning on
HHI and LI valuations over time.

As noted in Section IV-A, larger HHI values indicate a
higher degree of market concentration. Tables I and II show
that, for each tested R value, HHI is generally higher under
GenCo learning. Moreover, for each indicated day, HHI sys-
tematically increases as R increases. The latter occurs because
LSE total cleared demand (fixed plus price sensitive) system-
atically decreases as R increases, which results in the larger
GenCos 3 and 5 supplying a larger share of the decreasing
electric power output. A key question, addressed below, is
whether this higher indicated concentration at higher R values
in fact indicates a greater exercise of seller market power.

By design, LI is meant to vary directly with seller market
power. That is, a higher LI value is meant to indicate a greater
exercise of seller market power.

The average LI results reported in Tables III and IV sys-
tematically decrease with increases in R for each indicated
day, which suggests that seller market power decreases with
increases in the price sensitivity of LSE demand. The intuition
is that the greater price-sensitivity of demand at higher R
values gives LSEs a greater ability to resist higher prices
and hence results in a lowering of average LMP values.
This intuition is supported by the LMP experimental findings
reported in Li et al. [4] for the dynamic 5-bus test case;
average LMP systematically declines (along with LSE total
cleared demand) as R increases from R=0.0 to R=1.0. This
decline is observed both with and without GenCo learning,
although average LMP is much higher with GenCo learning
than without for each tested R value.

Comparing these average LI results with the earlier dis-
cussed findings for average HHI, it seems fair to say that
HHI is a misleading indicator of seller market power in the
context of the dynamic 5-bus test case. A similar conclusion
is reached by Borenstein et al. [12, Section 4] for other
market contexts. Conversely, for all of its conceptual faults,
the direction of change in average LI correctly indicates the
direction of change in seller market power.

On the other hand, note in Table IV that average LI for the
learning GenCos case systematically increases from day 10 to
day 1000 for R=0.0 (100% fixed demand), almost doubling
by day 1000. However, average LI first increases and then
declines back approximately to its original level for all positive
R values (i.e., all cases for which LSE total cleared demand
is partially price sensitive). This suggests that price sensitivity

14See Appendix A for a more detailed explanation of these average outcome
calculations.

of demand is preventing the learning GenCos from reaching
and sustaining the high seller market power levels achieved
with 100% fixed demand.

RSI values are reported in Table V for the two largest
GenCos 3 and 5. The “total demand” term in RSI is calculated
to include only LSE fixed demands, hence attention is limited
to R values for which at least a portion of LSE demand is
fixed. Since LSE fixed demand profiles and GenCo capacities
are exogenously given and constant from one day to the next in
the dynamic 5-bus test case, RSI is an ex ante measure whose
values are also exogenously determined and constant from one
day to the next, independently of whether the GenCos learn or
not. Consequently, it suffices to report RSI values for a typical
day D.

By design, RSI is meant to vary inversely with seller market
power. That is, a higher RSI value for some GenCo is meant
to indicate a smaller potential for the exercise of seller market
power. Moreover, an RSI value less than 1 for some GenCo
indicates a potentially substantial opportunity for this GenCo
to exercise seller market power because LSE fixed demand
cannot be met without this GenCo’s capacity.

All of the RSI results in Table V follow directly from the
definition of RSI. In particular, the larger GenCo 5 has a lower
RSI value than the smaller GenCo 3 for each hour and each
tested R value. Moreover, for each hour, each GenCo’s RSI
value systematically increases with increases in R (i.e., with
decreases in fixed demand), a direct reflection of the increasing
ease with which the smaller fixed demand can be met from
remaining GenCo capacity. Consequently, the implication from
these RSI results is that seller market power decreases with
increases in R.

Moreover, RSI systematically dips down for both GenCos in
a neighborhood of the peak demand hour 17 for each tested
R value, with RSI falling below 1 in this time interval for
R=0.0 (100% fixed demand). Consequently, the implication is
that the risk of seller market power is greatest around the peak
demand hour 17, particularly so for the case in which all LSE
demand is fixed.

How do the RSI results reported in Table V compare with
the LI results reported in Tables III and IV? Both sets of results
indicate that seller market power decreases with increases
in R. Since LI is a direct indicator of seller market power
and RSI is an inverse indicator of seller market power, these
results support the empirically-based finding of Sheffrin et
al. [13, pp. 62-63] that the measures LI and RSI are negatively
correlated.

Note, however, that RSI exceeds 1 for both GenCos in all
hours as soon as R exceeds 0.0, i.e., as soon as a portion of
LSE total cleared demand is price sensitive. An unresolved
issue is the extent to which seller market power can be
exercised by GenCos when their RSI values exceed 1.

As recognized by Sheffrin et al. [13], a potential weakness
of the RSI measure (and the pivotal supplier concept more
generally) is that transmission grid congestion is not taken into
account. Consequently, RSI does not reflect the possibility that
a load pocket situation can emerge that permits a GenCo to
exercise substantial seller market power even though its RSI
value exceeds 1.
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Indeed, based on data from the California wholesale power
market, Sheffrin et al. [13, p. 63] devise the following rule of
thumb for a “workably competitive market:” The RSI of the
largest supplier must not be less than 1.1 for more than 5% of
the hours in a year. Table V indicates that the largest GenCo
5, as well as the next-largest GenCo 3, have RSI values that
are well in excess of 1.1 for R values ranging from 0.2 to 0.8.
Is it correct to say that the day-ahead market for the dynamic
5-bus test case is “workably competitive” for these higher R
values?

The LI results in Table IV suggest, to the contrary, that
significant seller market power is still being exercised at these
higher R values in the learning GenCos case. The conceptual
problems with LI detailed in Section III would normally
suggest that caution be exercised in interpreting these LI
results. However, the detailed experimental results for GenCo-
reported supply offers obtained by Li et al. [4] for the dynamic
5-bus test case clearly show that all of the learning GenCos
are exercising seller market power in the form of economic
withholding at all tested R values, including R=1.0 (100%
price-sensitive demand).

Consider, next, the average RMAI results reported in Ta-
ble VI. By construction, RMAI is intended to measure the
ability of sellers to increase their daily net earnings relative
to a competitive pricing situation. In particular, applied to
the dynamic 5-bus test case, RMAI measures the ability of
the learning GenCos to increase their daily net earnings (i.e.,
their daily net seller surplus) through strategic reporting of
supply offers in comparison to the competitive benchmark
case in which the ISO knows the GenCos’ true costs and
capacities. This increase in daily net earnings is normalized
by dividing through by the daily net earnings of the GenCos
in the competitive benchmark.

The average RMAI results reported in Table VI for R=0.0
(100% fixed demand) indicate that the learning GenCos are
able to substantially improve their daily net earnings over time
relative to the competitive benchmark. On the other hand, for
higher R values their daily net earnings first increase relative
to the competitive benchmark but then fall back.

This pattern for average RMAI appears similar to the pattern
seen in Table IV for average LI. However, the RMAI standard
deviations reported in Table VI are extremely large. This
suggests the need to look at the RMAI findings at a more
disaggregated level.

For example, one possible cause of the high RMAI standard
deviations in Table VI could be that the 30 simulation runs
upon which the average RMAI results are based in fact consti-
tute two or more distinct “clusters” converging to two or more
distinct “attractors” with distinctly differerent GenCo daily
net earnings outcomes relative to the competitive benchmark.
The low-earnings attractor could represent cases in which
interaction effects among the five learning GenCos hinder
the GenCos from co-learning how to implicitly collude on
reported supply offers that ensure high daily net earnings.

The average RMAI results reported in Table VI for each
indicated day also show that average RMAI exhibits a rather
substantial increase as R varies from R=0.0 to R=1.0, i.e., as
LSE total cleared demand moves from 100% fixed demand to

100% price-sensitive demand. On the other hand, an examina-
tion of the corresponding results for simple Market Advantage
(MA) (i.e., the numerator of RMAI) in Table VII shows
the more intuitively expected finding that—in level rather
than relative terms—the daily net earnings of the GenCos
substantially decrease as R varies from R=0.0 to R=1.0.

The problem here is that the denominator of RMAI is not
invariant to changes in R, implying that two potentially off-
setting effects are occurring at the same time. As R increases
from R=0.0 to R=1.0, LSE total cleared demand decreases
rather substantially in the competitive benchmark, as do the
corresponding daily net earnings of the GenCos. This means
that the decreasing gains from learning at each successively
higher R value are being normalized by an ever smaller
competitive benchmark base value. Table VI suggests that the
latter effect dominates, resulting in larger RMAI values as
R increases. The bottom line is that cross-R comparisons of
average RMAI are not very meaningful.

Finally, consider the average AdjOEI results reported in
Table VIII. These results display systematic patterns that
resemble some of the patterns seen for average MA in Ta-
ble VII. For example, for R=0.0 (100% fixed demand), AdjOEI
increases for each successive indicated day. Moreover, for each
indicated day, AdjOEI exhibits a rather substantial decrease as
R varies from R=0.0 (100% fixed demand) to R=1.0 (100%
price sensitive demand).

Also, since all of the average AdjOEI results in Table VIII
are positively valued, the numerator and denominator for
AdjOEI must have the same signs. Consequently,

(AdjOIE < 1) ⇔ | AdjTNSR | < | AdjTNSC | (19)

Note that AdjOEI drops below 1 at R=1.0 for each successive
indicated day.

However, due to the conceptual problems analyzed at some
length in Section IV-B, it is difficult to use relation (19)
to draw inferences about operational efficiency. The critical
difficulty here is that the denominator of AdjOEI—namely,
AdjTNSC—does not necessarily represent maximum AdjTNS.
Rather, AdjTNSCrepresents the AdjTNS outcome for the
competitive benchmark case when the ISO undertakes the
constrained maximization of [AdjTNS + ISONetSurplus]. In
the presence of grid congestion, ISONetSurplus can depart
substantially from zero. For example, in parallel AMES ex-
periments reported in Li et al. [4] for the dynamic 5-bus
test case, the branch connecting bus 1 to bus 2 is nearly
always congested around the peak demand hour 17 for both the
competitive benchmark and learning GenCos cases, resulting
in large positive ISONetSurplus outcomes.

The bottom line is that the denominator of AdjOEI needs
to be replaced with a more reliable proxy for maximum
achievable adjTNS.

APPENDIX A
CALCULATION OF REPORTED DATA AVERAGES

AND STANDARD DEVIATIONS

Below we explain how we obtained the average Lerner
Index (LI) results reported in Table IV, together with standard
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deviations, for any specified day D and any specified R value.
Average and standard deviation calculations for the remaining
ex post market performance measures are similarly obtained.

First, for each run r, for each hour H (of day D), and
for each GenCo i with a positive cleared power supply pGi

for run r during hour H, determine GenCo i’s Lerner Index
LI(i,r,H,D) as in (3). Second, for each hour H and for each
GenCo i, determine the average of GenCo i’s Lerner Indices
LI(i,r,H,D) across all of the runs r for which GenCo i had
a positive cleared power supply for hour H. Third, for each
hour H, determine the average of these run-averaged Lerner
Indices across all GenCos i that have a positive cleared power
supply during hour H for at least one run r. Finally, determine
the average of these GenCo-averaged and run-averaged Lerner
Indices across all 24 hours H to get AvgLI(D).

For example, if all of the five GenCos have positive cleared
supplies for each hour H of day D in each run r, AvgLI(D)
can be expressed as follows:

AvgLI(D) =

[∑23
H=00

∑5
i=1

∑30
r=1[LI(i, r,H, D)]

]
24 ∗ 5 ∗ 30

(20)

The corresponding standard deviation StDevLI(D) is then
calculated using the “N” definition (i.e., division by the total
number N=[24*5*30] of summed terms rather than N-1), as
follows:√√√√[∑23

H=00

∑5
i=1

∑30
r=1[LI(i, r,H, D)−AvgLI(D)]2

]
24 ∗ 5 ∗ 30

(21)
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TABLE I
DYNAMIC 5-BUS TEST CASE: AVERAGE HERFINDAHL-HIRSCHMAN INDEX (HHI) RESULTS FOR A TYPICAL DAY D FOR THE COMPETITIVE

BENCHMARK CASE (NO GENCO LEARNING) AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
D 4,037.48 4,190.91 4,640.96 5,418.82 6,422.01 6,558.37

(92.33) (287.38) (649.97) (823.19) (585.55) (453.14)

TABLE II
DYNAMIC 5-BUS TEST CASE: AVERAGE HERFINDAHL-HIRSCHMAN INDEX (HHI) RESULTS WITH STANDARD DEVIATIONS ON SUCCESSIVE DAYS FOR

THE LEARNING GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
10 4,314.10 4,848.53 6,135.92 6,933.69 7,263.76 7,660.50

(910.52) (1,406.28) (1,883.14) (2,109.11) (2,235.60) (2,158.85)
50 4,069.60 4,548.91 5,377.97 6,300.46 6,740.58 7,266.92

(970.27) (1,528.33) (2,174.75) (2,347.72) (2,426.82) (2,529.18)
100 3,945.12 4,654.25 6,052.07 6,742.74 6,992.86 7,806.67

(758.27) (1,291.36) (1,978.25) (2,175.19) (2,165.93) (2,150.25)
1000 3,141.35 4,619.71 5,977.48 6,953.54 7,200.11 7,750.79

(916.17) (1,501.05) (1,987.65) (2,230.85) (2,316.82) (2,060.53)

TABLE III
DYNAMIC 5-BUS TEST CASE: AVERAGE LERNER INDEX (LI) RESULTS FOR A TYPICAL DAY D FOR THE COMPETITIVE BENCHMARK CASE

(NO GENCO LEARNING) AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
D 0.0053 0.0035 0.0029 0.0022 0.00 0.00

(0.0431) (0.0383) (0.0320) (0.0237) (0.00) (0.00)

TABLE IV
DYNAMIC 5-BUS TEST CASE: AVERAGE LERNER INDEX (LI) RESULTS WITH STANDARD DEVIATIONS ON SUCCESSIVE DAYS FOR THE LEARNING

GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
10 0.3098 0.2961 0.2498 0.1837 0.1589 0.1338

(0.2646) (0.2535) (0.2432) (0.2181) (0.2035) (0.1866)
50 0.3356 0.3271 0.3206 0.2542 0.2173 0.1610

(0.2905) (0.2734) (0.2680) (0.2622) (0.2482) (0.2142)
100 0.3979 0.3286 0.2816 0.2364 0.2024 0.1491

(0.3169) (0.2657) (0.2571) (0.2497) (0.2291) (0.1992)
1000 0.6049 0.3200 0.2433 0.1873 0.1621 0.1266

(0.2861) (0.2892) (0.2517) (0.2321) (0.2209) (0.1947)

TABLE V
DYNAMIC 5-BUS TEST CASE: RESIDUAL SUPPLY INDEX (RSI) VALUES BY HOUR FOR THE TWO LARGEST GENCOS 3 AND 5 DURING A TYPICAL DAY D

FOR THE LEARNING GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=0.8 (20% FIXED DEMAND)

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8
Hour RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5) RSI(G3) RSI(G5)

00 1.12 1.03 1.40 1.29 1.87 1.72 2.81 2.58 5.61 5.17
01 1.22 1.12 1.52 1.40 2.03 1.87 3.04 2.80 6.08 5.60
02 1.29 1.19 1.61 1.48 2.15 1.98 3.22 2.96 6.44 5.93
03 1.33 1.22 1.66 1.53 2.21 2.04 3.32 3.05 6.63 6.11
04 1.37 1.26 1.71 1.57 2.28 2.10 3.42 3.15 6.84 6.30
05 1.35 1.24 1.68 1.55 2.25 2.07 3.37 3.10 6.73 6.20
06 1.33 1.22 1.66 1.53 2.21 2.04 3.32 3.05 6.63 6.11
07 1.25 1.15 1.56 1.44 2.08 1.92 3.13 2.88 6.25 5.76
08 1.09 1.01 1.37 1.26 1.82 1.68 2.74 2.52 5.47 5.04
09 0.99 0.92 1.24 1.15 1.66 1.53 2.49 2.29 4.97 4.58
10 0.97 0.90 1.22 1.12 1.62 1.49 2.43 2.24 4.86 4.48
11 0.96 0.89 1.20 1.11 1.60 1.48 2.41 2.21 4.81 4.43
12 0.97 0.90 1.22 1.12 1.62 1.49 2.43 2.24 4.86 4.48
13 0.99 0.92 1.24 1.15 1.66 1.53 2.49 2.29 4.97 4.58
14 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
15 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
16 0.96 0.89 1.20 1.11 1.60 1.48 2.41 2.21 4.81 4.43
17 0.88 0.81 1.09 1.01 1.46 1.34 2.19 2.02 4.38 4.03
18 0.91 0.84 1.14 1.05 1.52 1.40 2.28 2.10 4.56 4.20
19 0.92 0.85 1.15 1.06 1.54 1.41 2.30 2.12 4.61 4.24
20 0.93 0.86 1.16 1.07 1.55 1.43 2.33 2.14 4.66 4.29
21 0.95 0.88 1.19 1.10 1.59 1.46 2.38 2.19 4.76 4.38
22 1.01 0.93 1.26 1.16 1.68 1.54 2.52 2.32 5.03 4.63
23 1.08 0.99 1.35 1.24 1.80 1.66 2.70 2.49 5.40 4.98
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TABLE VI
DYNAMIC 5-BUS TEST CASE: AVERAGE RELATIVE MARKET ADVANTAGE INDEX (RMAI) RESULTS WITH STANDARD DEVIATIONS ON SUCCESSIVE

DAYS FOR THE LEARNING GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
10 139.06 424.86 719.19 2,006.50 1,873.17 3,116.74

(416.49) (1,201.19) (2,449.79) (6,627.53) (6,308.01) (11,478.58)
50 276.60 697.52 1,524.85 3,443.01 2,649.94 3,707.51

(748.42) (2,112.42) (4,608.18) (10,471.74) (8,590.80) (11,909.11)
100 362.40 569.93 899.26 2,379.93 2,348.32 3,069.37

(829.61) (1,523.32) (2,724.74) (6,752.46) (6,817.43) (10,091.30)
1000 878.59 906.97 776.06 1,968.14 1,737.53 2,918.16

(1,513.36) (2,906.84) (2,657.66) (6,590.91) (6,389.19) (12,095.18)

TABLE VII
DYNAMIC 5-BUS TEST CASE: AVERAGE MARKET ADVANTAGE (MA) RESULTS WITH STANDARD DEVIATIONS ON SUCCESSIVE DAYS FOR THE

LEARNING GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
10 146,808.50 69,037.57 32,372.44 21,121.70 15,277.52 8,274.85

(296,766.02) (106,469.42) (48,622.70) (40,103.79) (27,527.92) (16,626.61)
50 175,500.45 69,575.46 43,939.71 27,184.67 16,558.95 7,717.03

(353,928.49) (88,212.41) (63,760.51) (45,737.52) (26,863.22) (15,060.39)
100 307,262.12 68,976.70 36,528.33 24,177.05 16,067.05 8,172.46

(556,696.68) (97,491.68) (59,562.84) (43,029.44) (27,086.31) (16,330.44)
1000 469,927.68 94,377.59 34,959.28 22,404.63 15,472.34 8,274.95

(1,513.36) (165,337.31) (59,932.77) (42,864.65) (27,334.08) (16,171.00)

TABLE VIII
DYNAMIC 5-BUS TEST CASE: AVERAGE ADJUSTED OPERATIONAL EFFICIENCY INDEX (ADJOEI) RESULTS WITH STANDARD DEVIATIONS ON

SUCCESSIVE DAYS FOR THE LEARNING GENCOS CASE AS R VARIES FROM R=0.0 (100% FIXED DEMAND) TO R=1.0 (100% PRICE-SENSITIVE DEMAND)

Day R = 0.0 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0
10 2.5045 2.1544 1.7395 1.2741 2.4764 0.6155

(1.3451) (1.0462) (0.6554) (0.1981) (1.2885) (0.2203)
50 2.9325 1.8717 1.5878 1.3599 2.8254 0.5936

(1.8837) (0.5695) (0.4312) (0.3191) (1.8416) (0.2677)
100 4.6678 1.8240 1.5484 1.2747 2.4697 0.6299

(2.4285) (0.9039) (0.5006) (0.2716) (1.5602) (0.2424)
1000 6.0972 2.6831 1.6238 1.2289 2.2098 0.6709

(1.1949) (1.8110) (0.7226) (0.2212) (1.2518) (0.2358)


