DC-Optimal Power Flow and LMP Determination in the AMES Test Bed

Leigh Tesfatsion

Professor of Economics
Courtesy Professor of Mathematics and
Electrical \& Computer Engineering
Iowa State University
Ames, IA 50011-1070
https://www2.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

Latest Revision: 13 June 2010

Presentation Outline

\square Introduction
\square Double auction basics for energy markets

- Supply, demand, \& market equilibrium
- Net surplus extraction
\square Market efficiency vs. social welfare: Implications for independent system operators in energy markets
\square Illustrative AMES Test Bed experiments for a 5-bus test case with learning generators

Introduction

In many regions of U.S., wholesale electric energy -measured in megawatt-hours (MWh) -- is transacted in "day-ahead" markets designed as double auctions.

- Double Auction = A centrally-cleared market in which sellers make supply offers \& buyers make demand bids.
- After review of basic double auction concepts, efficiency \& welfare issues arising from use of double auctions for centrally-managed day-ahead markets for energy will be discussed.

DOUBLE-AUCTION BASICS: EXAMPLE

Seller 1's Supply Offer: $P=S_{1}(Q)$, where $P=\underline{\text { Price }}$ and $Q=\underline{\text { Quantity }}$

$\mathbf{Q}=\underline{\text { Quantity }}$ of specialty apples (in bushels) $\mathbf{P}=$ Price of specialty apples (\$ per bushel)

For each $\mathrm{Q}: \mathrm{P}=\mathrm{S}_{1}(\mathrm{Q})$ is Seller 1's minimum acceptable sale price for the "last" bushel it supplies at Q .

Bushels \mathbf{Q}	Price $\mathbf{P}=\mathbf{S}_{1}(\mathbf{Q})$
1	$\$ 20$
2	$\$ 30$
3	$\$ 60$
4	$\$ 80$
5	$\$ 90$
6	∞
	5 bushels = Seller S's
max possible supply.	

Note: "Minimum acceptable sale price" is also called a "(sale) reservation value"

Seller 2's Supply Offer: $P=S_{2}(Q)$, where $P=\underline{\text { Price }}$ and $Q=\underline{\text { Quantity }}$

For each $\mathrm{Q}: ~ \mathrm{P}=\mathrm{S}_{2}(\mathrm{Q})$ is Seller 2's minimum acceptable sale price for the last bushel it supplies at Q .

Bushels \mathbf{Q} Price $P=S_{2}(Q)$

1	$\$ 10$
2	$\$ 50$
3	$\$ 90$
4	∞

$$
\begin{aligned}
& 3 \text { bushels = Seller } \mathrm{S}_{2}^{\prime} \mathrm{s} \\
& \text { max possible supply. }
\end{aligned}
$$

Total System (Inverse) Supply Function: P = S(Q)

Bushels \mathbf{Q}	Price $\mathbf{P}=\mathbf{S}(\mathbf{Q})$	
1	$\$ 10$	$(\mathrm{~S} 2)$
2	$\$ 20$	$(\mathrm{~S} 1)$
3	$\$ 30$	$(\mathrm{~S} 1)$
4	$\$ 50$	$(\mathrm{~S} 2)$
5	$\$ 60$	$(\mathrm{~S} 1)$
6	$\$ 80$	$(\mathrm{~S} 1)$
7	$\$ 90$	$(\mathrm{~S} 1 / \mathrm{S} 2)$
8	$\$ 90$	$(\mathrm{~S} 2 / \mathrm{S} 1)$
9	∞	
Max possible total $=8$ bushels of apples.		

Buyer 1's Demand Bid: $P=D_{1}(Q)$, where $P=\underline{\text { Price }}$ and $Q=\underline{\text { Quantity }}$

Buyer 2's Demand Bid: $P=D_{2}(Q)$, where $P=\underline{\text { Price }}$ and $Q=\underline{\text { Quantity }}$

Buyer 3's Demand Bid: $P=D_{3}(Q)$, where $P=$ Price and $Q=\underline{\text { Quantity }}$

Total System (Inverse) Demand Function: P = D(Q)

Bushels $\mathbf{Q} \quad$ Price $P=D(Q)$

1	$\$ 90$	$(\mathrm{~B} 3)$
2	$\$ 84$	$(\mathrm{~B} 1)$
3	$\$ 80$	$(\mathrm{~B} 3)$
4	$\$ 76$	$(\mathrm{~B} 1)$
5	$\$ 70$	$(\mathrm{~B} 1)$
6	$\$ 50$	$(\mathrm{~B} 2)$
7	$\$ 30$	$(\mathrm{~B} 2)$
8	$\$ 20$	$(\mathrm{~B} 2)$
9	$\$ 0$	

Competitive Market Clearing (CMC) Points

Points (Q, P) where the aggregate supply curve $P=S(Q)$ intersects the aggregate demand curve $P=D(Q): P=S(Q)=D(Q)$

Multiple CMC points ($\mathrm{Q}^{*}, \mathrm{P}^{*}$) with different CMC prices P^{*} :

$$
Q^{*}=5, \$ 60 \leq P^{*} \leq \$ 70
$$

Bushels Q Max Buy P Min Sell P

1	$\$ 90$	$\$ 10$
2	$\$ 84$	$\$ 20$
3	$\$ 80$	$\$ 30$
4	$\$ 76$	$\$ 50$
5	$\$ 70$	$\$ 60$
6	$\$ 50$	$\$ 80$
7	$\$ 30$	$\$ 90$
8	$\$ 20$	$\$ 90$
9	0	∞
No bushel sales are possible		
beyond five bushels!		

Can also possibly have multiple CMC points with a range of CMC quantities

Can also possibly have a unique CMC point

Unique CMC Point:

$$
\mathrm{Q}^{*}=4, \mathrm{P}^{*}=\$ 20
$$

Seller \& Buyer Net Surplus Amounts at CMC Points

A different selected CMC point \Rightarrow different seller \& buyer net surplus amounts

Total Net Surplus at a CMC Point

(If multiple CMC points exist, TNS = same for each point.)

Standard Measure of Market Efficiency (Non-Wastage of Resources)

Inframarginal vs. Extramarginal
 Quantity Units at CMC Points

Market Efficiency < 100\% can arise if ...

some inframarginal quantity unit fails to trade

- E.g., physical capacity withholding ("market power"*)
- some extramarginal quantity unit is traded
- a more costly unit is sold in place of a less costly unit ("out-of-merit-order dispatch")
- and/or a less valued unit is purchased in place of a more valued unit ("out-of-merit-order purchase")
* Market Power: Ability of a seller or buyer to extract more net surplus from a market than they would achieve at a CMC point.

Example: Exercise of market power by Seller S1 that results in ME < 100\%

Example: ME < 100\% ... Continued

Market Efficiency vs. Social Welfare

- Efficiency for one market at one time point is a very narrow measure of resource non-wastage.
- Ideally, social efficiency should be measured by resource non-wastage across all markets and across all current and future time periods.
- Moreover, economists measure social welfare in terms of the "utility" (well-being) of people in their roles as consumers/users of final goods and services.
- Social efficiency is necessary but not sufficient for the optimization of social welfare.

Market Efficiency, Social Welfare, and the Extraction of Net Surplus by "Third Parties"

Suppose [price P_{S} paid to a seller] < [price P_{B} charged to a buyer] for some quantity unit sold in a market

Net surplus $\left[P_{B}-P_{S}\right]$ is extracted by some type of "third party"

Examples: Gov't tax revenues; ISO net surplus extractions that result from grid congestion in Day-Ahead Markets (DAMs) for grid-delivered energy (MWh) settled by means of Locational Marginal Prices LMP(b,H) (\$/MWh) conditional on grid delivery location b and operating hour H."First order effect" of this third-party extracted net surplus is a decrease in the net surplus going to sellers \& buyers.

Social efficiency/welfare implications of this third-part extracted net surplus depend on precisely how it is extracted and to what uses it is subsequently put.

AMES DC-OPF Formulation

Caution: Notation Switch

- P (in MWs) now denotes amounts of power
- $\mathrm{LMP}_{\mathrm{k}, \mathrm{T}}(\$ / \mathrm{MWh})=$ Locational Marginal Price at bus k for operating period T , roughly defined as the least cost of maintaining one additional MW of generated power at bus k during operating period T .

Discussion of double auctions, market efficiency, \& social welfare specialized to an ISO managed Day-Ahead Market (DAM) for grid-delivered energy (MWh) with LMP settlements (\$/MWh):

LSEs
LSE Payments
ISO
Day-Ahead Market:
Clear bids/offers
using DC-OPF.
Post LMPs/dispatch.
ISO Net Surplus $=$
[LSE Payments -
GenCo Revenues]

GenCo Revenues

Day-ahead market activities on a typical operating day D

ISO goal is to maximize Total Net Surplus (TNS) subject to system constraints: A Two-Bus Example (Adapted from Harold Salazar, ISU ECpE M.S. Thesis, 2008)

Given the line capacity limit M, the cleared LSE load at bus $2=\mathrm{p}_{\mathrm{L}}$. The LSE receives price $\mathrm{r}(\$ / \mathrm{MWh})$ for the resale of p_{L} at the retail level.
M units of p_{L} are supplied by GenCo G 1 at bus 1 at price $\mathrm{LMP}_{1}(\$ / \mathrm{MWh})$; the line capacity limit M prevents G 1 from supplying any additional units. Remaining [$p_{L}{ }_{L}-M$] units are supplied by GenCo 2 at bus 2 at the higher price $\mathrm{LMP}_{2}(\$ / \mathrm{MWh})$. The LSE at bus 2 pays LMP_{2} for each unit of p_{L}.

As a result of these transactions, the ISO collects "ISO Net Surplus" defined as follows:

ISO Net Surplus

=: [LSE Payments - GenCo Revenues]
$=\mathrm{LMP}_{2} \times \mathrm{p}_{\mathrm{L}}^{\mathrm{F}}-\mathrm{M} \times \mathrm{LM} P_{1}-\left[\mathrm{p}_{\mathrm{L}}-\mathrm{M}\right] \times \mathrm{LMP}{ }_{2}$
$=\mathrm{M} \times\left[\mathrm{LMP}_{2}-\mathrm{LMP}_{1}\right]=[$ Shaded Figure Area]

Two-Bus Example ... Continued

ISO Net Surplus:

$$
\text { Area INS =: } \mathrm{M} \times\left[\mathrm{LMP}_{2}-\mathrm{LMP}_{1}\right]
$$

GenCo Net Surplus:
Area S1 + Area S2

LSE Net Surplus:

$$
\text { Area } B=: p_{L} \times\left[r-\mathrm{LMP}_{2}\right]
$$

Total Net Surplus:
TNS = [INS + S1 + S2 + B]
ISO Optimization Objective:
Maximize TNS subject to system constraints.

AMES GenCo Supply Offers

Hourly supply offer for each GenCo i = Reported linear marginal cost function over a reported operating capacity interval for real power p_{Gi} (in MWs):
$M C_{i}^{R}\left(p_{G i}\right)=a_{i}^{R}+2 b_{i}^{R} p_{G i}$
Cap $_{i}{ }^{\text {L }} \leq \mathrm{p}_{\mathrm{Gi}} \leq \mathrm{Cap}_{\mathrm{i}}{ }^{\text {RU }}$
GenCos can learn to report higher-than-true marginal costs and/or to report lower-than-true maximum capacity.

AMES LSE Demand Bids

Hourly demand bid for each LSE j = Fixed demand bid +
Price-sensitive demand bid

- Fixed demand bid $=p^{F_{L j}}$ (MWs)
- Price-sensitive demand bid
= Inverse demand function for real power p_{Lj} (MWs) over a purchase capacity interval:

$$
\begin{aligned}
& F_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{Lj}}^{\mathrm{s}}\right)=\mathrm{c}_{\mathrm{j}}-2 \mathrm{~d}_{\mathrm{j}} \mathrm{p}_{\mathrm{Lj}} \\
& 0 \leq \mathrm{p}_{\mathrm{Lj}} \leq \operatorname{SLMax}_{\mathrm{j}}
\end{aligned}
$$

AMES Illustration: Total Net Surplus (TNS) in Hour 17

 for 5-Bus Test Case with 5 GenCos and 3 LSEs

ISO Net Surplus Experiments (Li/Tesfatsion, 2009)

(Experiments run with AMES Wholesale Power Market Test Bed)

Five GenCo sellers G1,...,G5 and three LSE buyers LSE 1, LSE 2, LSE 3

R Measure for Demand-Bid Price Sensitivity

Note: In actual U.S. ISO energy regions, price-sensitivity $\mathbf{R} \cong 0.01$

Experimental Outcomes: Varied Price-Sensitivity for Demand Bids

Demand bid for LSE j (MW):
Fixed demand bid $p_{L j}+$ Price-sensitive demand bid $p_{L j}^{s}$, where $0 \leq \mathbf{p}_{{ }_{L j}}^{s} \leq$ SLMax $_{j}$

(1) $R=0.0$

(2) $\mathrm{R}=0.5$

(3) $R=1.0$

Average LMP Outcomes on Day 1000

(under varied GenCo learning \& LSE demand price-sensitivity treatments)

Average ISO Net Surplus Outcomes on Day 1000 for varied learning \& demand treatments

ISO Net Surplus, Market Efficiency, and Social Welfare

- Two-bus example and experimental findings suggest ISO net surplus extractions can be substantial, and can dramatically increase with:
- decreases in price sensitivity of demand
- increases in GenCo learning ability resulting in the reporting of supply offers at higher-than-true costs (especially profitable in presence of fixed demand)
- Important Issue: How to ensure ISO financial incentives are properly aligned with goal of ensuring market efficiency/soc welfare?

AMES Calculation of TNS: General Form (Note LMPs cancel out of TNS expression!)

Total Net Surplus for Hour H of Day D+1, based on
Day D Supply Offers and Demand Bids:
$T N S(H, D)$
$=\operatorname{LSENetSur}(H, D)+\operatorname{GenNetSur}(H, D)+\operatorname{ISONetSur}(H, D)$
$=\sum_{j=1}^{J} G S_{j}(H, D)-\sum_{i=1}^{I}\left[\mathrm{C}_{i}^{a}(H, D)\right]$
where

$$
\begin{array}{ll}
G S_{j}(H, D)=\left[r \cdot p_{L j}^{F}(H, D)+\int_{0}^{p_{L j}^{S}(H, D)} \mathrm{F}_{j H D}(p) d p\right] \\
\mathrm{C}_{i}^{a}(H, D)=\int_{0}^{p_{G i(H, D)}} \mathrm{MC}_{i}(p) d p \longleftarrow \begin{array}{l}
\text { GenCo i's total avoidable } \\
\text { costs of production }
\end{array} \\
\hline
\end{array}
$$

AMES Basic DC-OPF Formulation:

SI unit representation for AMES ISO's DC-OPF problem for hour H of day $D+1$, solved on day D.

DC-OPF formulation is derived from AC-OPF under three assumptions:
(a) Resistance on each branch km = 0
(b) Voltage magnitude at each bus $\mathrm{k}=$ base voltage $\mathrm{V}_{\text {。 }}$
(c) Voltage angle difference d_{km} $=$: $\left[\right.$ delta $_{k}$ - delta ${ }_{m}$] across each branch km is close to zero, implying that $\cos \left(d_{k m}\right) \cong 1$ and $\sin \left(d_{\mathrm{km}}\right) \cong \mathrm{d}_{\mathrm{km}}$ in amplitude.
with respect to $L S E$ real-power price-sensitive demands, GenCo real-power generation levels, and voltage angles

$$
p_{L j}^{S}, j=1, \ldots, J ; p_{G i}, i=1, \ldots, I ; \delta_{k}, k=1, \ldots, K
$$(16)

subject to

(i) a real-power balance constraint for each bus $k=1, \ldots, K$:

$$
\begin{equation*}
\sum_{i \in I_{k}} p_{G i}-\sum_{j \in J_{k}} p_{L j}^{S}-\sum_{k m} P_{k m}=\sum_{j \in J_{k}} p_{L j}^{F} \tag{17}
\end{equation*}
$$

where, letting $x_{k m}$ (ohms) denote reactance for branch $k m$, and V_{o} denote the base voltage (in line-to-line $k V$),

$$
P_{k m}=\left[V_{o}\right]^{2} \cdot\left[1 / x_{k m}\right] \cdot\left[\delta_{k}-\delta_{m}\right]
$$

(ii) a limit on real-power flow for each branch km :

$$
\begin{equation*}
\left|P_{k m}\right| \leq P_{k m}^{U} \tag{18}
\end{equation*}
$$

(iii) a real-power operating capacity interval for each GenCo $i=1, \ldots, I$:

$$
\begin{equation*}
\operatorname{Cap}_{i}^{L} \leq p_{G i} \leq \operatorname{Cap}_{i}^{U} \tag{19}
\end{equation*}
$$

(iv) a real-power purchase capacity interval for price-sensitive
demand for each LSE $j=1, \ldots, J$:

$$
\begin{equation*}
0 \leq p_{L j}^{S} \leq \text { SLMax }_{j} \tag{20}
\end{equation*}
$$

(v) and a voltage angle setting at angle reference bus 1:

$$
\delta_{1}=0
$$

TNS ${ }^{\text {R }}$ = Total Net Surplus based on reported GenCo marginal cost functions rather than true GenCo marginal cost functions.

AMES DC-OPF problem is a special type of GNPP, and

 LMPs are Lagrange Multiplier Solutions for this GNPP
General Nonlinear Programming Problem (GNPP):

- $x=n \times 1$ choice vector;
- $\mathbf{c}=\mathrm{m}_{\times 1}$ vector $\& \mathbf{d}=\mathrm{S}_{\times 1}$ vector (constraint constants)
- $f(x)$ maps \mathbf{x} into R (all real numbers)
- $\mathbf{h}(\mathbf{x})$ maps \mathbf{x} into R^{m} (all m-dimensional vectors)
- $\mathbf{z}(\mathbf{x})$ maps \mathbf{x} into R^{s} (all s-dimensional vectors)

GNPP: Minimize $f(x)$ with respect to x subject to

$$
\begin{array}{ll}
\mathbf{h}(\mathbf{x})=\mathbf{C} & \text { (e.g., DC-OPF bus balance constraints) } \\
\mathbf{Z}(\mathbf{x}) \geq \mathbf{d} & \text { (e.g., DC-OPF branch constraints \& GenCo capacity constraints) }
\end{array}
$$

AME DC-OPF as a GNPP ... Continued

- Define the Lagrangean Function as $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{c}, \mathbf{d})=\mathrm{f}(\mathbf{x})+\boldsymbol{\lambda}^{\top}[\mathbf{c}-\mathrm{h}(\mathbf{x})]+\boldsymbol{\mu}^{\top}[\mathbf{d}-\mathbf{z}(\mathbf{x})]$
- Assume Kuhn-Tucker Constraint Qualification (KTCQ) holds at \mathbf{x}^{*}, roughly stated as follows:

The true set of feasible directions at \mathbf{x}^{*}
$=$ Set of feasible directions at \mathbf{x}^{*} assuming a linearized set of constraints in place of original set of constraints.

AMES DC-OPF as a GNPP ... Continued

- Given KTCQ, the First-Order Necessary Conditions (FONC) for \mathbf{x}^{*} to solve (GNPP) are: There exist vectors $\boldsymbol{\lambda}^{*}$ and μ^{*} of Lagrange multipliers (or "shadow prices") such that ($\mathrm{x}^{*}, \lambda^{*}, \mu^{*}$) satisfies:

$$
\begin{aligned}
& 0=\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}, \mathbf{c}, \mathbf{d}\right) \\
& \quad=\left[\nabla_{x} f\left(\mathbf{x}^{*}\right)-\lambda^{* T} \cdot \nabla_{x} h\left(x^{*}\right)-\mu^{* T} \cdot \nabla_{x} z\left(x^{*}\right)\right] \\
& h\left(x^{*}\right)=\mathbf{c} ; \\
& z\left(x^{*}\right) \geq d ; \mu^{* T} \cdot\left[d-z\left(x^{*}\right)\right]=0 ; \mu^{*} \geq 0
\end{aligned}
$$

These FONC are often referred to as the Karush-Kuhn-Tucker (KKT) conditions.

Solution as a Function of (c,d)

By construction, the components of the solution vector ($\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \mu^{*}$) are functions of the constraint constant vectors c and d
${ }^{\bullet} \mathbf{x}^{*}=\mathbf{x}(\mathbf{c}, \mathrm{d})$

- $\lambda^{*}=\lambda(c, d)$
- $\mu^{*}=\mu(\mathrm{c}, \mathrm{d})$

GNPP Lagrange Multipliers as Shadow Prices

Given certain additional regularity conditions...

- The solution $\boldsymbol{\lambda}^{*}$ for the $m \times 1$ multiplier vector $\boldsymbol{\lambda}$ is the derivative of the minimized value $f\left(x^{*}\right)$ of the objective function $f(\mathbf{x})$ with respect to the constraint vector \mathbf{c}, all other problem data remaining the same.

$$
\partial f\left(\mathbf{x}^{*}\right) / \partial c=\partial f(\mathbf{x}(\mathbf{c}, \mathrm{~d})) / \partial \mathbf{c}=\lambda^{* T}
$$

GNPP Lagrange Multipliers as Shadow Prices ...

Given certain additional regularity conditions...

- The solution μ^{*} for the $s \times 1$ multiplier vector μ is the derivative of the minimized value $f\left(\mathbf{x}^{*}\right)$ of the objective function $f(\mathbf{x})$ with respect to the constraint vector \mathbf{d}, all other problem data remaining the same.

$$
0 \leq \partial f\left(\mathbf{x}^{*}\right) / \partial d=\partial f(\mathbf{x}(\mathbf{c}, \mathbf{d})) / \partial d=\mu^{* T}
$$

GNPP Lagrange Multipliers as Shadow Prices ...

Consequently...

- The solution $\boldsymbol{\lambda}^{*}$ for the multiplier vector $\boldsymbol{\lambda}$ thus essentially gives the prices (values) associated with unit changes in the components of the constraint vector \mathbf{c}, all other problem data remaining the same.
- The solution μ^{*} for the multiplier vector μ thus essentially gives the prices (values) associated with unit changes in the components of the constraint vector \mathbf{d}, all other problem data remaining the same.
- Each component of $\boldsymbol{\lambda}^{*}$ can take on any sign
- Each component of μ^{*} must be nonnegative

Counterpart to Constraint Vector c for AMES DC-OPF?

AMES DC-OPF Has K Equality Constraints:

(i) a real-power balance constraint for each bus $k=1, \ldots, K$:

$$
\left.\sum_{i \in I_{k}} p_{G i}-\sum_{j \in J_{k}} p_{L j}^{S}-\sum_{k m} P_{k m}=\sum_{j \in J_{k}} p_{L j}^{F} \quad \begin{array}{l}
\text { Fixed demand } \\
\text { of LSE } \mathrm{j}
\end{array}\right] \begin{aligned}
& \text { Index set for LSEs } \\
& \text { located at bus } \mathrm{k}
\end{aligned}
$$

Below is the kth Component of Kx1 Constraint Vector c:

$$
\sum_{j \in J_{k}} p_{L j}^{F}=\mathrm{FD}_{\mathbf{k}}=\text { Total Fixed Demand at Bus } \mathbf{k}
$$

LMP as Lagrange Multiplier

- TNS*(H,D) = Maximized Value of TNS(H,D) from the ISO's DC-OPF solution on Day D for hour H of the dayahead market on Day D+1
- $\mathrm{LMP}_{\mathrm{k}}(\mathrm{H}, \mathrm{D})=$ Least cost of servicing one additional MW of fixed demand at bus k during hour H of day-ahead market on day D+1
дTNS*(H,D)
$\operatorname{LMP}_{\mathrm{k}}(\mathrm{H}, \mathrm{D})=$

$$
\partial F_{k}
$$

Online Resources

\square Notes on DC-OPF Formulation in AMES

https://www2.econ.iastate.edu/tesfatsi/DCOPFInAMES.LT.pdf
\square AMES Wholesale Power Market Testbed
https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
\square Market Basics for Price-Setting Agents
https://www2.econ.iastate.edu/tesfatsi/MBasics.SlidesIncluded.pdf
\square Optimization Basics for Electric Power Markets
https://www2.econ.iastate.edu/tesfatsi/OptimizationBasics.LT458.pdf
\square Power Market Trading with Transmission Constraints
https://www2.econ.iastate.edu/classes/econ458/tesfatsion/OPFTransConstraintsLMP.KS6.1-6.3.2.9.pdf

Online Resources ... Continued

\square L. Tesfatsion (2009), "Auction Basics for Wholesale Power Markets: Objectives \& Pricing Rules," IEEE PES General Meeting Proceedings, July. https://www2.econ.iastate.edu/tesfatsi/AuctionTalk.LT.pdf (Slide-Set) https://www2.econ.iastate.edu/tesfatsi/AuctionBasics.IEEEPES2009.LT.pdf (Paper)
\square H. Li \& L. Tesfatsion (2011), "ISO Net Surplus Collection and Allocation in Wholesale Power Markets Under Locational Marginal Pricing," IEEE Transactions on Power Systems, Vol. 26, No. 2, pp 627-641.
https://www2.econ.iastate.edu/tesfatsi/ISONetSurplus.WP09015.pdf

