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Presentation Outline 

❑ Introduction

❑ Double auction basics for energy markets

▪ Supply, demand, & market equilibrium
▪ Net surplus extraction

❑ Market efficiency vs. social welfare: Implications for 

independent system operators in energy markets

❑ Illustrative AMES Test Bed experiments for a 5-bus 

test case with learning generators



3

Introduction 

◆ In many regions of U.S., wholesale electric energy --

measured in megawatt-hours (MWh) -- is transacted in 

“day-ahead” markets designed as double auctions.

◆ Double Auction  =  A centrally-cleared market in which 

sellers make supply offers & buyers make demand bids.

◆ After review of basic double auction concepts, efficiency 

& welfare issues arising from use of double auctions for 

centrally-managed day-ahead markets for energy will be 

discussed.



4

DOUBLE-AUCTION BASICS:  EXAMPLE  

Seller 1’s Supply Offer:  P = S1(Q), where P = Price and Q = Quantity

P

Q
0

90

10

30

50

70

Q = Quantity of specialty apples (in bushels)
P = Price of specialty apples ($ per bushel)

For each Q:  P=S1(Q) is Seller 1’s minimum 
acceptable sale price for the “last” bushel it 
supplies at Q.

Bushels Q           Price P = S1(Q) 

1                           $20

2                           $30
3                           $60
4                           $80
5                           $90
6                             ∞

2 4 6

S1(Q)

1 3 5

5 bushels = Seller S1’s 
max possible supply.

Note: “Minimum acceptable sale price”
is also called a “(sale) reservation value”
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Seller 2’s Supply Offer:  P = S2(Q), where P = Price and Q = Quantity 

P

Q
0

90

10

30

50

70

For each Q:   P = S2(Q) is Seller 2’s minimum acceptable 
sale price for the last bushel it supplies at Q.

Bushels Q     Price P = S2(Q)

1                      $10
2                      $50
3                      $90
4                        ∞

2 4 6

S2(Q)

1 3 5

3 bushels = Seller S2’s 
max possible supply.
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Total System (Inverse) Supply Function:  P = S(Q)

P

0

90

10

30

50

70

Bushels Q      Price P = S(Q) 

1                  $10   (S2)

2                  $20   (S1)
3                  $30   (S1)
4                  $50   (S2)
5                  $60   (S1)
6                  $80   (S1)
7                  $90   (S1/S2)
8                  $90   (S2/S1)
9                    ∞

2 4 6 8

S(Q)  

Q

S2

S1

S1

S2

S1

S1

S1 S2

1 3 5 7

Max possible total market supply
= 8 bushels of apples.
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Buyer 1’s Demand Bid:  P = D1(Q), where P = Price and Q = Quantity

P

Q
0

90

10

30

50

70

For each Q:   P = D1(Q) is Buyer 1’s max purchase price
($/bushel) for the last bushel it purchases at Q.

Bushels Q      Price P = D1(Q)                 

1                       $84

2                       $76
3                       $70
4                       $  0 

2 4 6

D1(Q)

1 3 5

Note: “Maximum purchase price” ≡
“maximum willingness to pay” is also 
called a “(purchase) reservation value.”

Buyer 1’s demand for apples 
is “satiated” at 3 bushels.
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Buyer 2’s Demand Bid:  P = D2(Q), where P = Price and Q = Quantity

P

Q
0

90

10

30

50

70

For each Q:   P = D2(Q) is Buyer 2’s max purchase price 
($/bushel) for   the last bushel it purchases at Q.

Bushels Q    Price P = D2(Q)                

1                      $50
2                      $30
3                      $20
4                      $  0

2 4 6

D2(Q)

1 3 5

Buyer 2’s demand for apples 
is “satiated” at 3 bushels.
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Buyer 3’s Demand Bid:  P = D3(Q), where P=Price and Q = Quantity

P

Q
0

90

10

30

50

70

For each Q:   P = D3(Q) is Buyer 3’s max purchase price
($/bushel) for the last bushel it purchases at Q

Bushels Q      Price P = D3(Q) 

1                      $90
2                      $80
3                      $  0

2 4 6

D3(Q)

1 3 5

Buyer 3’s demand for apples  
is “satiated” at 2 bushels.
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Total System (Inverse) Demand Function:  P = D(Q)

P

0

90

10

30

50

70

Bushels Q     Price P = D(Q)

1                  $90   (B3)
2                  $84   (B1)
3                  $80   (B3)
4                  $76   (B1)
5                  $70   (B1)
6                  $50   (B2)
7                  $30   (B2)
8                  $20   (B2)
9                  $  0

2 4 6 8

D(Q) 

Q

B3
B1

B3

B1
B1

B2

B2

B2

1 3 5 7 9
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Competitive Market Clearing (CMC) Points 
Points (Q,P) where the aggregate supply curve P = S(Q) intersects the 

aggregate demand curve P = D(Q):  P = S(Q) = D(Q)

P

0

90

10

30

50

70

Bushels Q   Max Buy P  Min Sell P

1             $90            $10  
2             $84            $20
3             $80            $30
4             $76            $50
5             $70            $60
6             $50            $80
7             $30            $90
8             $20            $90
9                0              ∞

2 4 6 8

D(Q)
Q

S(Q)

Multiple CMC points (Q*,P*) with 
different CMC prices P*:

Q*=5, $60 ≤ P*≤ $70

B3

B1
B3

B1

B1

S1

S1 S2

S2

S1

S1

S2

S1

B2

B2

B2

60

5

[

80

20

40

91 3 7 No bushel sales are possible
beyond five bushels !
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Can also possibly have multiple CMC points 

with a range of CMC quantities

P

0

90

10

30

60

70

2 4 5 6 8

Q

S(Q)

D(Q)

Multiple CMC points (Q*,P*) with 
different CMC quantities Q*:

4 ≤ Q*≤ 5,  P*=$60

S1 S2

S3 S4

B5

S6 S7 S8

B1 B2 B3

B4

S5

D6

B7 B8

40

50

80

20

1 3 7
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Can also possibly have a unique CMC point

P

0

30

5

15

20

25

2 4 6 8

D(Q)
Q

S(Q)
Unique CMC Point:

Q*=4,  P*= $20

S1

S2

S1

S3

B1 B1 B1 B1

B2 B2
10



1 3 5 7

35

40

45
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Seller & Buyer Net Surplus 
Amounts at CMC Points

P

0

90

10

30

50

70

Bushels Q   MaxBPrice P*=65      BuyNetSur
1                 $90      - $65      =         $25
2                 $84      - $65      =         $19
3                 $80      - $65      =         $15
4                 $76      - $65      =         $11
5                 $70      - $65      =         $ 5

BUYER NET SURPLUS:   $75

2 4 6 8

D(Q)
Q

S(Q) Ex 1: CMC Point Q*=5, P*=$65 

Buyers

Sellers

Bushels Q   P*=65   MinSPrice SellNetSur
1               $65     - $10         =         $55
2               $65     - $20         =         $45
3               $65     - $30         =         $35
4               $65     - $50         =         $15
5               $65     - $60         =         $ 5

SELLER NET SURPLUS:   $155

5

65

B3
B1

B3
B1

B1

S2

S1

S1

S2

S1

1 3 7
Total Net Surplus:  $230
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A different selected CMC point
➔ different seller & buyer net surplus amounts

P

0

90

10

30

50

70

Bushels Q    MaxBuyPrice P*=60        BuyNetSurplus

1                     $90      - $60      =            $30
2                     $84      - $60      =            $24
3                     $80      - $60      =            $20
4                     $76      - $60      =            $16
5                     $70      - $60      =            $10

BUYER NET SURPLUS:     $100

2 4 6 8

D(Q)
Q

S(Q) Ex 2: CMC Point Q*=5, P*=$60 

Buyers

Sellers
Bushels Q    P*=65      MinSellPrice SellNetSurplus

1                $60     - $10           =  $50
2                $60     - $20          = $40 
3                $60     - $30          = $30
4                $60     - $50         =          $10
5                $60     - $60          = $ 0 

SELLER NET SURPLUS:   $130

5

60

B3
B1

B3
B1

B1

S2

S1

S1

S2

S1

1 3 7

Total Net Surplus:  $230
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Total Net Surplus at a CMC Point
( If multiple CMC points exist, TNS = same for each point. )

P

0

90

10

30

50

70 Net
Bushels Q   MaxBuyP MinSellP Surplus

1               $90    - $10      = $80
2               $84    - $20      = $64
3               $80    - $30      = $50
4               $76    - $50      = $26
5               $70    - $60      = $10

TOTAL NET SURPLUS:   $230

2 4 6 8

D(Q)
Q

S(Q) CMC Points:

Q*=5, $60 ≤ P*≤ $70

5

60[

80

10

40

1 3 7
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Standard Measure of Market Efficiency
(Non-Wastage of Resources)

P

0

90

10

30

50

70 CMC Total Net Surplus

= $230  (Maximum Possible)

2 4 6 8

D(Q)
Q

S(Q)
CMC Points:

Q*=5, $60 ≤ P*≤ $70

5

60

MARKET EFFICIENCY (ME):

Extracted Total Net Surplus
100%  x

Max Possible Total Net Surplus

How can ME be
less than 100% ?

[

1 3 7
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Inframarginal vs. Extramarginal 
Quantity Units at CMC Points 

P

0

90

10

30

50

70
Bushels Q   MaxBuyPrice MinSellPrice

1                $90        >        $10  
2                $84        >        $20
3                $80        >        $30
4                $76        >        $50
5                $70        >        $60

6                $50       <         $80

7                $30       <         $90

8                $20       <         $90

9                  $0       <           ∞

D(Q)
Q

S(Q)

CMC Pts:  Q*=5, $60 ≤ P*≤ $70

S2

S1

S1

S2

S1

S1

S1 S2B3
B1

B3
B1

B1

B2

B2

B2

5

60[

inframarginal extramarginal
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Market Efficiency < 100% can arise if …

 some inframarginal quantity unit fails to trade

– E.g., physical capacity withholding (“market power”*)

 some extramarginal quantity unit is traded

– a more costly unit is sold in place of a less costly unit         
(“out-of-merit-order dispatch”)

– and/or a less valued unit is purchased in place of a more 
valued unit (“out-of-merit-order purchase”)

* Market Power: Ability of a seller or buyer to extract more net 
surplus from a market than they would achieve at a CMC point.
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Example: Exercise of market power

by Seller S1 that results in ME < 100%

P

0

90

10

30

50

70

2 4 6 8

D(Q)
Q

S(Q)

CMC Point: Q*=5, P*=$60

S1 Net Surplus at CMC Point:

$60-$20   =   $40
$60-$30   =   $30
$60-$60   =    $ 0

Buyers

Sellers

5

60

S2

S1

S1

S2

S1

B3
B1

B3
B1

B1

1 3 7

S1 Net Surplus = $7020

40

80

Total Net Surplus: $230
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Example: ME < 100% … Continued

P

0

90

10

30

50

2 4 6 8

D(Q) Q

S(Q)
CMC Point: Q*=5, P*=$60

S2

S1

S1

S2

S1

S1

S1 S2B3
B1

B3
B1

B1

B2

B2

B2

5

60

S1’s CMC Net Surplus = $70

S1 REPORTS a max sale price on his 3rd 
unit equal to $80 & on his 2nd unit equal 
to $75.99.

“CMC” Point:  Q’=4,  P’≅$76 

At new “CMC” point, S1 only sells its 

first 2 units, but S1’s net surplus
increases to  ≅ $102 = [$56+$46]

Extracted total net surplus  

DECREASES FROM 230 TO 220

because inframarginal 5th unit

now fails to sell.

75.99

31 7
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Market Efficiency vs. Social Welfare

◆ Efficiency for one market at one time point is a very 
narrow measure of resource non-wastage.

◆ Ideally, social efficiency should be measured by 
resource non-wastage across all markets and across all
current and future time periods.

◆Moreover, economists measure social welfare in terms 
of the “utility” (well-being) of people in their roles as 
consumers/users of final goods and services.

◆ Social efficiency is necessary but not sufficient for the 
optimization of social welfare.
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Market Efficiency, Social Welfare, and the 

Extraction of Net Surplus by “Third Parties”

◆ Suppose [price PS paid to a seller] <  [price PB charged to a buyer] 
for some quantity unit sold in a market

➔ Net surplus [PB-PS] is extracted by some type of “third party” 

Examples: Gov’t tax revenues; ISO net surplus extractions that result from 

grid congestion in Day-Ahead Markets (DAMs) for grid-delivered energy (MWh) 
settled by means of Locational Marginal Prices LMP(b,H) ($/MWh) conditional 
on grid delivery location b and operating hour H.

◆ “First order effect” of this third-party extracted net surplus is a 
decrease in the net surplus going to sellers & buyers.

◆ Social efficiency/welfare implications of this third-part extracted 
net surplus depend on precisely how it is extracted and to what 
uses it is subsequently put.
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AMES DC-OPF Formulation

Caution: Notation Switch

• P (in MWs) now denotes amounts of power

• LMPk,T ($/MWh) = Locational Marginal Price at bus k 
for operating period T, roughly defined as the least cost 
of maintaining one additional MW of generated power 
at bus k during operating period T.
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Discussion of double auctions, 
market efficiency, & social
welfare specialized to an ISO 
managed Day-Ahead Market
(DAM) for grid-delivered energy 
(MWh) with LMP settlements 
($/MWh):

Day-ahead market activities
on a typical operating day D
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ISO goal is to maximize Total Net Surplus (TNS) 
subject to system constraints:  A Two-Bus Example  

(Adapted from Harold Salazar, ISU ECpE M.S. Thesis, 2008)

Given the line capacity limit M, the cleared LSE load 
at bus 2 = pF

L.  The LSE receives price r ($/MWh) for 
the resale of pF

L at the retail level. 
M units of pF

L are supplied by GenCo G1 at bus 1 
at price LMP1 ($/MWh);  the line capacity limit M 
prevents G1 from supplying any additional units.   
Remaining [pF

L – M] units are supplied by GenCo 2 
at bus 2 at the higher price LMP2 ($/MWh).  The 
LSE at bus 2 pays LMP2 for each unit of pF

L.  
As a result of these transactions, the ISO collects 

“ISO Net Surplus” defined as follows:

ISO Net Surplus

=:  [ LSE Payments  - GenCo Revenues ]

=     LMP2 x pF
L – M x LMP1 – [pF

L – M] x LMP2

=    M x [ LMP2 – LMP1 ] = [Shaded Figure Area]

(C1-capacity constrained)

C1
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Two-Bus Example  …  Continued

ISO Net Surplus:

Area INS =:  M x [LMP2 – LMP1]

GenCo Net Surplus:
Area S1  +  Area S2

LSE Net Surplus:
Area B  =:  pF

L x  [r – LMP2] 

Total Net Surplus:

TNS = [INS + S1 + S2 + B]

ISO Optimization Objective:   
Maximize TNS subject to
system  constraints.

(C1-capacity constrained)

C1
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AMES GenCo Supply Offers
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AMES LSE Demand Bids
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AMES Illustration: Total Net Surplus (TNS) in Hour 17 
for 5-Bus Test Case with 5 GenCos and 3 LSEs

r

D

S

r = Fixed price
paid to LSEs by 
the LSEs’ retail 
customers with
flat-price
contracts

= LSEs’ max
willingness to
pay for each MW 
of their fixed 
demand pF in 
wholesale
power market

TNS

pF
Max Total GenCo Capacity

$/MWh

Power (MW)
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G4

G2G1 G3

G5

Bus 1 Bus 2 Bus 3

LSE 3
Bus 4Bus 5

LSE 1 LSE 2

Five GenCo sellers G1,…,G5 and three LSE buyers LSE 1, LSE 2, LSE 3

ISO Net Surplus Experiments (Li/Tesfatsion, 2009)

(Experiments run with AMES Wholesale Power Market Test Bed)
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R Measure for Demand-Bid Price Sensitivity

Note: In actual U.S. ISO energy regions, price-sensitivity R ≅ 0.01

32

R = SLMaxj /[ pF
Lj + SLMaxj ]

For LSE j in Hour H:

pFLj = Fixed demand for real power (MWs)

SLMaxj = Maximum potential price-sensitive demand (MWs) 

$/MWh

R=0.0 R=0.5 R=1.0

$/MWh $/MWh

SLMaxjSLMaxjpF
Lj pF

Lj

pLj pLj pLj

D D

D

(100% Fixed Demand) (100% Price-Sensitive Demand)

r r
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Experimental Outcomes: 
Varied Price-Sensitivity for Demand Bids

100% fixed demand 100% price-sensitive demand

D D
D
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Average LMP Outcomes on Day 1000 
(under varied GenCo learning & LSE demand price-sensitivity treatments)

R=0: LSE demand is
100% fixed

R=1: LSE demand is
100% price sensitive

with GenCo learning
Avg LMP ($/MWh)

without
GenCo
learning

R
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Average ISO Net Surplus Outcomes on Day 1000  
for varied learning & demand treatments

= ISO Net Surplus= GenCo Net Earnings

Without Learning With Learning GenCos

100% fixed 100% price sensitive100% fixed 100% price sensitive

RR

$ $
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ISO Net Surplus, Market Efficiency, and Social Welfare 

◆ Two-bus example and experimental findings suggest 
ISO net surplus extractions can be substantial, and can 
dramatically increase with: 

– decreases in price sensitivity of demand

– increases in GenCo learning ability resulting in the            
reporting of supply offers at higher-than-true costs      
(especially profitable in presence of fixed demand)

◆ Important Issue: How to ensure ISO financial 
incentives are properly aligned with goal of ensuring 
market efficiency/soc welfare?
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AMES Calculation of TNS: General Form
(Note LMPs cancel out of TNS expression!)

LSE j’s gross surplus
from its retail fixed
demand sales

LSE j’s gross surplus from its 
retail price- sensitive 
demand sales

GenCo i’s total avoidable
costs of production 
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Lagrange multiplier  
(or “shadow price” ) 
solution for the  bus-k 
balance constraint (17) 
gives LMPk at bus k

SI unit representation for AMES 
ISO’s DC-OPF problem for hour 
H of day D+1, solved on day D.

DC-OPF formulation  is derived 
from AC-OPF under three 
assumptions:

(a) Resistance on each  branch 
km = 0

(b) Voltage magnitude at each 
bus k= base voltage Vo

(c) Voltage angle difference dkm

=:  [deltak - deltam] across each 
branch km is close to zero, 
implying that cos(dkm) ≅ 1 and 
sin(dkm) ≅ dkm in amplitude.

TNSR = Total Net Surplus
based on reported GenCo 
marginal cost functions 
rather than true GenCo
marginal cost functions. 

AMES Basic DC-OPF Formulation:



39

AMES DC-OPF problem is a special type of GNPP, and 

LMPs are Lagrange Multiplier Solutions for this GNPP

General Nonlinear Programming Problem (GNPP):

▪ x = nx1 choice vector;  

▪ c = mx1 vector &  d = sx1 vector (constraint constants)

▪ f(x) maps x into R  (all real numbers) 

▪ h(x) maps x into Rm (all m-dimensional vectors)

▪ z(x) maps x into Rs  (all s-dimensional vectors)

GNPP: Minimize f(x) with respect to x subject to

h(x) =   c

z(x)   ≥   d

(e.g., DC-OPF bus balance constraints)

(e.g., DC-OPF branch constraints &  GenCo capacity constraints)
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AME DC-OPF as a GNPP … Continued

• Define the Lagrangean Function as

L(x,λ,,c,d)  =  f(x)  + λT[c - h(x)] + T[d - z(x)]

• Assume Kuhn-Tucker Constraint Qualification (KTCQ) 

holds at x*, roughly stated as follows:

The true set of feasible directions at x*

=  Set of feasible directions at x* assuming a  linearized 
set of constraints in place of original set of constraints.
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AMES DC-OPF as a GNPP … Continued

▪ Given KTCQ, the First-Order Necessary Conditions (FONC) for x* to solve 

(GNPP) are:  There exist vectors λ* and * of Lagrange multipliers (or 

“shadow prices”) such that (x*, λ*, *) satisfies:

0 = ∇xL(x*, λ*,*,c,d)

= [ ∇xf(x*)  - λ*T•∇xh(x*) - *T•∇xz(x*) ] ;

h(x*) =  c ; 

z(x*) ≥  d;  *T
•[d - z(x*)] = 0; * ≥ 0

 These FONC are often referred to as the Karush-Kuhn-Tucker (KKT) conditions.
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Solution as a Function of (c,d)

By construction, the components of the 
solution vector (x*, λ*, *) are functions of 
the constraint constant vectors c and d

•x*  =  x(c,d) 

• λ* = λ(c,d) 

• * = (c,d)
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GNPP Lagrange Multipliers as Shadow Prices

Given certain additional regularity conditions…

• The solution λ* for the m x 1 multiplier vector λ is the 

derivative of the minimized value f(x*) of the objective 

function f(x) with respect to the constraint vector c, all 

other problem data remaining the same.

∂f(x*)/∂c = ∂f(x(c,d))/∂c = λ*T
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GNPP Lagrange Multipliers as Shadow Prices …

Given certain additional regularity conditions…

• The solution * for the s x 1 multiplier vector  is  the 

derivative of the minimized value f(x*) of the objective 

function f(x) with respect to the constraint vector d, all 

other problem data remaining the same. 

0   ≤   ∂f(x*)/∂d = ∂f(x(c,d))/∂d =  *T
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GNPP Lagrange Multipliers as Shadow Prices …

Consequently…

• The solution λ* for the multiplier vector λ thus essentially gives 
the prices (values) associated with  unit changes in the 
components of the constraint vector c, all other problem data 
remaining the same. 

• The solution * for the multiplier vector  thus essentially 
gives the prices (values) associated with  unit changes in the 
components of the constraint vector d, all other problem data 
remaining the same.

• Each component of λ* can take on any sign

• Each component of * must be nonnegative



46

Counterpart to Constraint Vector c 
for AMES DC-OPF?

AMES DC-OPF Has K Equality Constraints:

Below is the kth Component of Kx1 Constraint Vector c :

Total Fixed Demand at Bus k==  FDk

Index set for LSEs
located at bus k

Fixed demand
of LSE j
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LMP as Lagrange Multiplier

• TNS*(H,D) =  Maximized Value of TNS(H,D) from the 

ISO’s DC-OPF solution on Day D for hour H of the  day-

ahead market on Day D+1

• LMPk (H,D) =  Least cost of servicing one additional MW 
of fixed demand at bus k during hour H of day-ahead 
market on day D+1

∂TNS*(H,D)
LMPk(H,D) =   

∂FDk
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Online Resources

❑ Notes on DC-OPF Formulation in AMES 
https://www2.econ.iastate.edu/tesfatsi/DCOPFInAMES.LT.pdf

❑ AMES Wholesale Power Market Testbed
https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

❑Market Basics for Price-Setting Agents
https://www2.econ.iastate.edu/tesfatsi/MBasics.SlidesIncluded.pdf

❑ Optimization Basics for Electric Power Markets
https://www2.econ.iastate.edu/tesfatsi/OptimizationBasics.LT458.pdf

❑ Power Market Trading with Transmission Constraints
https://www2.econ.iastate.edu/classes/econ458/tesfatsion/OPFTransConstraintsLMP.KS6.1-6.3.2.9.pdf

https://www2.econ.iastate.edu/tesfatsi/DCOPFInAMES.LT.pdf
https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
https://www2.econ.iastate.edu/tesfatsi/MBasics.SlidesIncluded.pdf
https://www2.econ.iastate.edu/tesfatsi/OptimizationBasics.LT458.pdf
https://www2.econ.iastate.edu/classes/econ458/tesfatsion/OPFTransConstraintsLMP.KS6.1-6.3.2.9.pdf
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Online Resources … Continued

❑ L. Tesfatsion (2009), “Auction Basics for Wholesale Power Markets: 
Objectives & Pricing Rules,” IEEE PES General Meeting Proceedings, July.
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