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THE BASIC SOLOW-SWAN DESCRIPTIVE GROWTH MODEL

1 Introduction

These notes provide a concise rigorous introduction to the basic descriptive growth model

independently developed by Robert Solow (1956) and Trevor Swan (1956). The key issue ad-

dressed by the Solow-Swan descriptive growth model is the extent to which full employment

of all productive resources can be maintained in the long run, given the capacity-creating

effects of net investment.

The Solow-Swan descriptive growth model provides the basic foundation for modern

macroeconomic modeling approaches, including optimal growth theory, overlapping genera-

tions models, real business cycle theory, and dynamic stochastic general equilibrium (DSGE)

modeling. Nevertheless, many criticisms of the model remain on both theoretical and em-

pirical grounds. We will touch on some of these criticisms in the concluding section of these

notes and in subsequent course readings.

After presentation of the basic model, the following question is posed: To what extent

are the model’s predictions consistent with regularities in empirical macroeconomic data?

As detailed in Barro and Sala-i-Martin (2003, Chapter 1), data gathered on many countries

up through 2003 were observed to be roughly consistent with the following Stylized Facts of

Growth originally developed by Nicholas Kaldor in the 1960s.
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[SF1] The ratio K/Y of physical capital K to output Y is nearly constant over time.

[SF2] The shares of labor and physical capital in national income, wL/Y and rK/Y , are

nearly constant over time, where w and r denote the real wage rate of labor and the

real rental rate of capital, respectively.1

[SF3 Per capita output y = Y/L grows over time without a tendency to converge to a

constant value.

[SF4] Per-capita physical capital k = K/L grows over time without a tendency to converge

to a constant value.

[SF5] The growth rate D+y/y of y = Y/L differs substantially across countries.

As it turns out, the basic Solow-Swan descriptive growth model is not consistent with stylized

facts [SF3] and [SF4], above. In subsequent work, however, Solow extended his basic model

to include “labor-augmenting technological change” in such a manner that consistency with

stylized facts [SF1] through [SF4] was attained. In addition, Solow also developed his now

famous “growth accounting equation” that decomposes the growth rate in real GDP by

source. We will cover both of these developments in later sections of these notes.

2 Basic Solow-Swan Descriptive Growth Model

in Level Form

Suppose at each time t in some specified time interval [0, T ] an economy produces an output,

Y(t), using capital and labor inputs K(t) and L(t) in a production technology described by

an aggregate production function

Y = F (K,L) . (1)

Consumption at time t is denoted by C(t). The capital stock K(t) is assumed to depreciate

at a constant nonnegative rate δ, so that gross investment I(t) at time t is given by

I(t) = D+K(t) + δK(t) . (2)

1We now know that the share of labor in U.S. national income has in fact been declining since the mid-
1970s, in violation of SF2, first gradually and then (since 2000) at a fairly steep rate; see Elsby et al. (2013).
In a well-researched study dubbed “disturbingly persuasive” by the Financial Times, Ford (2015) connects
this fall in labor share to the accelerating use of artificially intelligent machines as a substitute for labor.
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The time-t output Y (t) is assumed to be divided between consumption and (gross) invest-

ment, the usual “national income accounting identity” for an economy without a government

or foreign sector. Finally, the labor supply L(t) is assumed to grow at a constant positive

rate g. The relations described above can be formalized analytically as follows:

Y (t) = F (K(t), L(t)) ; (3)

I(t) = D+K(t) + δK(t) ; (4)

Y (t) = C(t) + I(t) ; (5)

D+L(t) = gL(t) . (6)

TECHNICAL REMARK: In this and following sections, time-derivatives are generally

assumed to be right derivatives, denoted by D+. The right derivative of a function H:R→ R

at a point t is defined to be

D+H(t) = lim
s→t, s > t

[
H(s)−H(t)

s− t
] . (7)

In contrast, the derivative of H(·) at t is defined as follows:

DH(t) = lim
s→t

[
H(s)−H(t)

s− t
] . (8)

Comparing (7) with (8), one sees for the right derivative that the ratio [H(s)−H(t)]/[s− t]
is only required to converge as s approaches t “from the right,” i.e., for values s > t, whereas

for the ordinary derivative this same ratio is required to converge as s approaches t from

any feasible direction. As will be seen below, imposing only right differentiability on rates

of change for time-t predetermined variables permits discontinuous jumps in these rates of

change. Consequently, these rates of change are free to move as time-t endogenous variables,

unconstrained by past variable realizations. In contrast, requiring these rates of change to

be ordinary derivatives as in (8) would reduce them to time-t predetermined variables, i.e.,

variables determined by past realizations, since the existence of an ordinary derivative for a

variable at a point requires the equality of its right and left derivatives at this point. For

more discussion of this point, see Tesfatsion (2016).

The simple model described above is a one-sector model , in the sense that it incorporates

only one produced good, Y.2 Capital is simply a stockpile of the one produced good. Notice

2Leisure is not traditionally thought of as a “produced good.”
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that the labor market is implicitly assumed to clear. That is, the labor demanded—namely,

the labor quantity appearing in the production function—is simply assumed to be equal to

the labor supply L(t). Also, capital is assumed to be fully utilized.

So far, no restrictions have been placed on the production function (1). In very early

work on growth (e.g., in the work of Domar and Harrod), this production function was often

assumed to take the form of a fixed-coefficient production function

Y = F (K,L) ≡ min{K
v
,
L

u
} , (9)

where v and u are fixed positive coefficients having dimensions “units of K per unit of Y ” and

“units of L per unit of Y ,” respectively. By construction, then, one unit of Y is obtained by

using v units of K and u units of L. Moreover, (v, u) is the most efficient input configuration

for producing one unit of Y in the following sense: Given (K,L) = (v, u), any additional

usage of K (keeping L equal to u), or any additional usage of L (keeping K equal to v),

simply wastes input resources since it results in no additional output.

More generally, as shown in Fig. 1, it follows from (9) that efficient production (i.e.,

non-wastage of K or L) requires L/u = K/v, or L = [u/v]K. Therefore, given any desired

production level Ŷ , the efficient production of Ŷ requires Ŷ v units of K and Ŷ u units of L.

As depicted in Fig. 1, the isoquants for the fixed coefficient production function (9) are thus

rectangular with kink points along the line L = [u/v]K. Notice, also, that this production

function exhibits constant returns to scale; that is,

bY = F (bK, bL) , for all b > 0 . (10)

As a generalization of (9), suppose that two distinct fixed coefficient production processes

are available to firms, as follows:

Y = min{K
v1
,
L

u1
} ; (11)

Y = min{K
v2
,
L

u2
} . (12)

To rule out trivial dominance of one process over the other, suppose that the first production

process uses less capital but more labor than the second process per each unit of Y ; i.e.,

suppose that v2 > v1 and u2 < u1. What do the production isoquants for firms look like

now?
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Figure 1: Isoquants for a fixed-coefficient production function

Suppose, for example, that a firm wishes to produce Ŷ units of Y , and is able to use any

combination of the two production processes (11) and (12) to accomplish this production.

Using only production process 1, an efficient firm would use A = (Ŷ v1, Ŷ u1) units of K and

L to produce Ŷ units of Y . Using only production process 2, an efficient firm would use B

= (Ŷ v2, Ŷ u2) units of K and L to produce Ŷ units of Y . On the other hand, the firm can

also divide the production of Ŷ between the two production processes in any proportion.

For example, for any given λ ∈ [0, 1], the firm can produce λŶ units of Y using production

process 1 and [1−λ]Ŷ units of Y using production process 2. The efficient input requirements

for this division of production between processes 1 and 2 are given by

C = λA+ [1− λ]B = (Ŷ vc, Ŷ uc) , (13)

where vc = λv1 + [1 − λ]v2 and uc = λu1 + [1 − λ]u2. By construction, point C lies on the

line segment connecting A to B; and all such points C are on the isoquant corresponding to

the output level Ŷ . It follows that this isoquant takes the form of a kinked line segment as

depicted in Fig. 2(a). Note that production still exhibits constant returns to scale.

As more and more fixed coefficient production processes are made available to the firm,

the firm has a greater opportunity to substitute K for L in the production process, i.e., to

choose among different combinations of capital and labor to produce any given quantity of

good. Reflecting this increased input substitutability, the firm’s isoquants become increas-
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Figure 2: Isoquants for convex combinations of fixed-coefficient production processes

ingly “bowl-shaped” with constant returns to scale continuing to hold; see Fig. 2(b). In the

limit, as the number of available production processes approaches infinity, the isoquants for

the firm take on the usual neoclassical form of a smooth downward-sloping convex curve.

The Solow-Swan growth model takes this limiting production process as its starting point.

More precisely, it is assumed that the production function Y = F (K,L) in (1) satisfies the

following Standard Neoclassical Production Function Assumptions in Level Form:3

1. F (K,L) exhibits constant returns to scale;

2. F (K,L) is continuous over (K,L) ≥ 0;

3. F (K,L) is twice continuously differentiable and concave, with FKK(K,L) < 0, over all

(K,L) > 0;

4. FK(K,L) > 0 and FL(K,L) > 0 for all (K,L) > 0;

5. F (0, L) = 0 for all L ≥ 0;

3Given properties 1, 2, and 6, it can be shown that property 5 holds if FL(K,L) → 0 as L → ∞ for
each K > 0; see Barro and Salai-i-Martin (2003, p. 77). To see this, use F (K,L)/L = F (K/L, 1) converges
to F (0, 1) as L → ∞, but F (K,L)/L approaches 0 as L → ∞ either because F (K,L) remains bounded as
L → ∞ or by L’Hospital’s Rule. Hence F (0, 1) = 0 = LF (0, 1) = F (0, L) for all L ≥ 0. Some textbooks
impose this condition on FL(K,L) instead of assuming property 5.
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6. (Inada Conditions in Level Form):4 For each L > 0, FK(K,L) → ∞ as K → 0, and

FK(K,L)→ 0 as K →∞.

An example of a production function satisfying all of these conditions is the well-known

Cobb-Douglas production function:

Y = F (K,L) = KαL[1−α] , 0 < α < 1 . (14)

So far, no behavioral motivation has been given for the determination of the consumption

level C(t). The descriptive growth literature generally follows Keynes in postulating that

consumption is determined as a fixed proportion [1 − s] of net income (i.e., income Y net

of capital depreciation δK), where s denotes an exogenously given marginal (and average)

propensity to save. Thus, suppose that consumers behave in accordance with the following

consumption function:

C(t) = [1− s][Y (t)− δK(t)] . (15)

Remark: Equation (15) presumes that capital depreciation δK(t) is subtracted

from total income Y (t) and consumption is then determined as a fraction [1− s]
of the remaining income [Y (t)− δK(t)]. As will be seen below, consumer saving

s[Y (t) − δK(t)] then finances net capital investment D+K(t). An alternative

possibility (seen in some textbooks on economic growth) is that consumption is

determined as a fraction [1− s] of total income Y (t) and consumer saving sY (t)

then finances gross capital investment D+K(t) + δK(t). The dynamics of the

Solow-Swan model are qualitatively the same under either treatment.

By appending the consumption function (15) to the previously derived model equations

(3) through (6), an implicit assumption is being made that the market for consumption good

continuously clears; for the same variable C(t) is used both in the per capita national income

accounting identity (5) to denote the realized supply of consumption goods and in relation

(15) to denote the demand for consumption goods.

4The first systematic study of the role played by these conditions in ensuring the existence and uniqueness
of stationary solutions in neoclassical growth models is typically attributed to Ken-ichi Inada (1963).
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Basic Solow-Swan Descriptive Growth Model in Level Form

Model Equations: t ≥ 0:

Y (t) = F (K(t), L(t)) (16)

I(t) = D+K(t) + δK(t) (17)

Y (t) = C(t) + I(t) (18)

C(t) = [1− s][Y (t)− δK(t)] (19)

D+L(t) = g · L(t) (20)

Classification of Variables:

Time-t Endogenous Variables (t ≥ 0) : Y (t), I(t), C(t), D+K(t), D+L(t)

Time-t Predetermined (State) Variables (t > 0):

K(t) =

∫ t

0

D+K(τ)dτ + K(0) (21)

L(t) =

∫ t

0

D+L(τ)dτ + L(0) (22)

Admissible Exogenous Variables and Functional Forms:

K(0), L(0), s, δ, and g, satisfying 0 < K(0), 0 < L(0), 0 < s < 1, 0 ≤ δ, and

0 < g, plus a function F (K,L) that satisfies the Standard Neoclassical Production

Function Assumptions in Level Form

3 Basic Solow-Swan Descriptive Growth Model

in Per-Capita Form

Given a constant-returns-to-scale production function (1), the level model described by equa-

tions (16) through (20) can be transformed into a “per capita” model. Let per-capita output,

8



capital, gross investment, and consumption be denoted, respectively, by

y(t) = Y (t)/L(t) ; (23)

i(t) = I(t)/L(t) ; (24)

k(t) = K(t)/L(t) ; (25)

c(t) = C(t)/L(t) . (26)

Using the constant returns to scale relation (10) with b = [1/L(t)], note that

F (K(t), L(t))/L(t) = F (K(t)/L(t), 1) = F (k(t), 1) . (27)

Given the restrictions on the original production function F (·), it can be shown that the per

capita production function f :[0,+∞) → R defined by f(k) = F (k, 1) is strictly increasing

and strictly concave over k ≥ 0 and differentiable over k > 0.5 An example of such a function

is the well-known per capita Cobb-Douglas production function,

y = f(k) = kα , 0 < α < 1 . (28)

Dividing equation (16) by L(t), and using the notation introduced above, one obtains

y(t) = f(k(t)) . (29)

Dividing equation (17) by L(t), per capita gross invesment i(t) is given by

i(t) =
D+K(t) + δK(t)

L(t)
. (30)

Finally, dividing equation (18) by L(t), one obtains

f(k(t)) = i(t) + c(t) . (31)

Recall that the (percentage) rate of change of a ratio is the difference in the (percentage)

rates of change of the numerator and denominator terms. Thus,

D+k(t)/k(t) = D+K(t)/K(t) − D+L(t)/L(t) . (32)

5To see this, take the first and second derivatives of F (K,L) = Lf(k) with respect to K.
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Combining (6), (25), and (32), one obtains

D+K(t)/L(t) = D+k(t) + gk(t) . (33)

Thus, using equation (30) to substitute out for i(t) in equation (31), using (33) to substitute

out for D+K(t)/L(t), and rearranging terms, one obtains the following differential equation

for the per capita capital stock:

D+k(t) = f(k(t))− [g + δ]k(t)− c(t) . (34)

The investment-consumption trade-off facing the economy at time t, conditional on k(t),

is depicted in Fig. 3. The economy must choose between consuming resources now, and

investing resources now in order to enhance consumption later. A choice for more con-

sumption today, hence less investment, results in a smaller capital stock tomorrow, and

hence a tradeoff line tomorrow that lies closer to the origin. More generally, the choice of

consumption today affects the placement of the tradeoff line for all future periods. A spec-

ification of a behavioral relation for consumption is in effect a rule for choosing a point on

the investment-consumption tradeoff line in each period t.

Figure 3: Investment-consumption trade-off at time t, conditional on k(t)

As seen in (19), consumption is determined as a fixed proportion [1 − s] of net income

(i.e., income net of capital depreciation), where s denotes an exogenously given marginal
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(and average) propensity to save. The per-capita form of (19) is given by

c(t) = [1− s][y(t)− δk(t)] . (35)

The fact that consumption is directly specified (“described”) in (35) rather than derived as

the solution to an optimization problem is why the Solow-Swan growth model is referred to

as a descriptive growth model rather than an optimal growth model.

Substituting relation (35) into relation (34), and letting λ = [g+ sδ] for ease of notation,

one obtains the following fundamental equation describing the growth of per capita capital:

D+k(t) = sf(k(t))− λk(t) . (36)

Finally, given (35), note that per capita (net) savings s(t) take the form

s(t) = [y(t)− δk(t)]− c(t) = s[y(t)− δk(t)] . (37)

It is common in the descriptive growth literature to work with per capita savings rather than

with per capita consumption.

The per capita Solow-Swan descriptive growth model will now be stated in summary form.

Basic Solow-Swan Descriptive Growth Model in Per-Capita Form:

Model Equations: For each time t ≥ 0,

y(t) = f(k(t)) ; (38)

s(t) = s[y(t)− δk(t)] ; (39)

D+k(t) = sf(k(t))− λk(t) . (40)

Classification of Variables:

Time-t Endogenous Variables (t ≥ 0): y(t), s(t), D+k(t) ;

Time-t Predetermined (State) Variable (t > 0): k(t) =
∫ t
0
D+k(τ)dτ + k(0) ;

Admissible Exogenous Variables and Functional Forms:

k(0), s, and λ = [g + sδ] , with 0 < k(0), 0 < s < 1, 0 < g, and 0 ≤ δ ;
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Also, f(k) ≡ F (k, 1) satisfies the following Standard Neoclassical Production

Function Assumptions in Per-Capita Form: f(k) is continuous over k ≥ 0, and

f(k) is twice continuously differentiable with f ′(k) > 0 and f ′′(k) < 0 over k > 0;

f(0) = 0; and f ′(k)→ +∞ as k → 0 and f ′(k)→ 0 as k → +∞.

REMARK: The admissibility conditions assumed here for the per-capita produc-

tion function f(k) follow from the admissibility conditions earlier assumed for

the production function F (K,L) in level form. To see this, use the fact that

F (K,L) = Lf(k), where k = K/L, (41)

which implies that

FK(K,L) = ∂F (K,L)/∂K = f ′(k); (42)

FL(K,L) = ∂F (K,L)/∂L = f(k)− f ′(k)k; (43)

FKK(K,L) = ∂2F (K,L)/∂K2 = f ′′(k)/L. (44)

The reason for imposing these conditions on the production function will become

apparent in the following discussion on the existence, uniqueness, and stability

of stationary solutions for the per-capita Solow-Swan descriptive growth model.

4 Existence, Uniqueness, and Stability of Stationary

Solutions for the Per-Capita Growth Model

A state-space model in initial value form will be said to have a Basic Causal System (BCS)

if it is possible in each period t to substitute out for all period-t endogenous variables except

for the rate of change D+x(t) of the period-t state vector x(t), resulting in a reduced-form

model of the form D+x(t) = f(α(t), x(t)) where α(t) consists only of period-t exogenous

variables. See Tesfatsion[Section 4.6](2016) for additional discussion of the BCS concept.

Given any admissible specifications for s, λ, and f(·), the BCS for the per capita Solow-

Swan descriptive growth model can be represented in the following form:
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Basic Causal System:

D+k(t) = sf(k(t))− λk(t) , t ≥ 0 ; (45)

k(0) = u .

Classification of Variables:

Time-t Endogenous Variable (t ≥ 0): D+k(t)

Time-t Predetermined (State) Variable (t > 0): k(t) =
∫ t
0
D+k(τ)dτ + k(0)

Admissible Exogenous Variables and Functional Forms:

u, s, and λ = [g + sδ] , with 0 < u, 0 < s < 1, 0 < g, and 0 ≤ δ.

Also, f(k) ≡ F (k, 1) satisfies the following Standard Neoclassical Production

Function Assumptions in Per-Capita Form: f(k) is continuous over k ≥ 0, and

f(k) is twice continuously differentiable with f ′(k) > 0 and f ′′(k) < 0 over k > 0;

f(0) = 0; and f ′(k)→ +∞ as k → 0 and f ′(k)→ 0 as k → +∞.

By construction, any solution derived for the BCS (45) will be functionally dependent on

(s, λ, f(·)) as well as on u. For ease of exposition, the dependence on (s, λ, f(·)) will hereafter

be supressed when no changes for these variables are under consideration.

Suppose a unique solution exists for the BCS for each u > 0. Let this unique solution be

denoted by

k(u) = {k(t;u) | t ≥ 0} , (46)

and let

V = {k(u) | u > 0} (47)

denote the set of all admissible solutions for the BCS, conditional on (s, λ, f(·)). It will now

be shown that V contains a solution that is “distinguished” from all others in the sense that

it characterizes the long-run behavior of the Solow-Swan economy.

A solution k(k∗) in V corresponding to a positive initial value k∗ for k(0) is said to be a

stationary solution if

k(t; k∗) = k∗ , t ≥ 0 . (48)
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A stationary solution thus constitutes a rest-point for the per-capita Solow-Swan descriptive

growth model in the sense that the state of the modeled economy remains constant over

time. Several questions about such solutions will now be addressed. First, does a stationary

solution necessarily exist for the BCS? Second, if such a solution exists, is it necessarily

unique? Finally, do such stationary solutions have any particular economic meaning apart

from being rest points?

It will first be shown that the BCS for the per-capita Solow-Swan descriptive growth

model necessarily has a unique admissible stationary solution for any given admissible spec-

ification for (s, λ, f(·)). For notational simplicity, let any stationary solution k(k∗) in V be

abbreviated by the constant state value k∗ > 0. It then follows from (48) that a stationary

solution k∗ > 0 exists if and only if the state k(t) takes on the constant value k∗ for all t ≥ 0.

By (45), this is true if and only if k∗ satisfies

0 = sf(k∗)− λk∗ . (49)

Letting z = [λ/s]k and x = f(k), it follows from (49) that k∗ > 0 is an admissible stationary

solution for the BCS if and only if the graphs of z and x as functions of k intersect at k∗;

see Fig. 4.

Figure 4: Existence of a unique admissible stationary solution k∗ for the basic causal system
derived for the per-capita Solow-Swan descriptive growth model, given s, λ, and f(·)

In Fig. 4, a unique intersection point k∗ is depicted. The existence of a unique intersection
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point is a necessary consequence of the conditions imposed on the production function f(·)
along with the assumed positivity of s and λ. In particular, whatever positive finite value

λ/s takes on, the graph of x = f(k) must rise above the graph of z = [λ/s]k near 0 since

f(0) = 0, f ′(k) > 0 for all k > 0, and f ′(k) approaches +∞ as k approaches 0. Moreover,

the graph of x must eventually cross over the graph of z at some positive k value since f ′(k)

approaches 0 as k approaches +∞. Finally, the strict concavity of f(k) guarantees that x

and z have one and only one intersection point k∗ over the interval k > 0.6

Keep in mind, however, that k∗ is by construction a function of the exogenously given

specifications (s, λ, f(·)). This is clear from Fig. 4; for a change in either λ/s or in f(·)
affects the graphs of z or x, respectively, which in turn changes the placement of the unique

intersection point. For example, recalling that λ = [g+ δs], it is easily seen that an increase

in s results in a decreased value for λ/s and hence in an increased value for the intersection

point k∗.

What economic interpretation can be provided for the stationary solution k∗? Recalling

that λ = [g + δs], it follows from (49) that k∗ satisfies the relation

s/v∗ − sδ = g , (50)

where v∗ = k∗/f(k∗) denotes the stationary capital-output ratio along the stationary solution

path. The right side of (50) gives the natural rate of growth for the Solow-Swan economy,

i.e., the growth rate of the labor supply L(t). It will now be shown that the left side of

(50) gives the warranted rate of growth for the Solow-Swan economy, i.e., the rate of growth

of the capital stock K(t). Consequently, k∗ is the unique admissible initial state value for

which the warranted rate of growth equals the natural rate of growth.

Using the basic equations of the Solow-Swan growth model in level form, it can be shown

that D+K(t) = S(t) must hold along any solution path, i.e., net investment D+K(t) must

equal net savings S(t) = s[Y (t)− δK(t)]. Consequently, at each time t along a solution path

6A stationary solution need not exist for the Solow-Swan model if the restrictions on the production
function are relaxed to permit the marginal product of capital f ′(k) to be bounded away from zero as k
approaches +∞. However, the latter assumption has the unattractive implication that labor is nonessential
in production, i.e., F (K, 0) > 0 for all K > 0. Also, multiple stationary solutions become possible for the
Solow-Swan model if f ′(k) does not decline monotonically to zero as k approaches +∞.

15



it must hold that

D+K(t)/K(t) = S(t)/K(t) = s[Y (t)− δK(t)]/K(t) = s/v(t)− sδ , (51)

where v(t) = k(t)/f(k(t)). The left side of (50) is a special case of (51) with k(t) = k∗. An

even easier way to see that the warranted and natural rates of growth must be equal at any

stationary solution for the per-capita Solow-Swan growth model is as follows. Note that the

existence of a stationary solution k∗ implies k(t) = k∗ for all t ≥ 0. Consequently, recalling

that k = K/L, it holds for each t ≥ 0 that

0 = D+k(t)/k(t) = D+K(t)/K(t) − D+L(t)/L(t) (52)

= D+K(t)/K(t) − g . (53)

In summary, at any stationary solution for the per-capita Solow-Swan growth model,

both K(t) and L(t) are growing at the same constant rate g. Thus, a stationary solution for

the per-capita Solow-Swan descriptive growth model corresponds to a (balanced) steady-state

growth solution for the Solow-Swan descriptive growth model in level form, in the sense that

the state variables K and L for the level-form model grow at the same constant rate. Since

y = f(k), another implication is that — in this stationary solution — the income level Y (t)

must be growing at this same constant rate g as well.

Can any additional economic interpretation be provided for k∗? Using “Notes on Differ-

ential Equations,” it will first be shown that k∗ is “locally stable” relative to V, meaning

that all solutions k(u) in V with u sufficiently close to k∗ must ultimately converge to k∗ over

time. Using phase diagram techniques, it will then be shown that k∗ is actually “globally

stable” relative to V, meaning that all solutions k(u) in V ultimately converge to k∗ over

time no matter how far the initial state value u is from k∗. Thus, k∗ describes the long-run

capital-labor ratio for the Solow-Swan economy, regardless of the particular admissible value

u > 0 specified for the initial state k(0). Recall, however, that k∗ by construction is actu-

ally a function k∗(s,λ,f(·)) of the exogenously given specifications for (s, λ, f(·)). Hence, a

change in any one of these specifications will lead to a change in the long-run outcome k∗.

Let (s, λ, f(·)) be any admissible exogenously given specifications, and let k∗ > 0 de-

note the unique stationary solution in the admissible solution set V, conditional on these
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specifications. Define a function ψ:R+ → R by

ψ(k) = sf(k) − λk , (54)

where R+ = {k ∈ R : k ≥ 0}. It then follows from the admissibility conditions imposed on

(s, λ, f(·)) and the definition of k∗ that ψ(k) satisfies the following properties:7

ψ(0) = ψ(k∗) = 0 ; (55)

ψ′(k) = sf ′(k) − λ, with ψ′(k∗) < 0 ; (56)

ψ′(0) = +∞ ; (57)

ψ′′(k) = sf ′′(k) < 0 . (58)

The graph of ψ(k) is schematically depicted in Fig. 5.

Figure 5: Linear approximation for the basic causal system D+k = ψ(k)

The “linear approximation system” for the BCS is then constructed as follows. Using

7To establish that ψ′(k∗) < 0, consider the following useful fact that holds for any strictly concave twice
differentiable function h:R → R. By a simple Taylor’s expansion argument, expanding h(0) around h(k),
and using h′′(k) < 0, it can be shown that h′(k) < [h(k) − h(0)]/k at each nonzero k. See any good real
analysis textbook for details.
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Taylor’s Theorem, expand ψ(k) about the stationary solution k∗ to get

ψ(k) = ψ(k∗) + ψ′(k∗)[k − k∗] + Remainder Term (59)

= 0 + ψ′(k∗)[k − k∗] + Remainder Term (60)

≈ ψ′(k∗)[k − k∗] for k ≈ k∗ . (61)

As seen in Fig. 5, the function h(k) = ψ′(k∗)[k − k∗] is a good linear approximation to the

original nonlinear function ψ(k) in a sufficiently small neighborhood of k∗.

Now define the linear approximation system (LAS) for the BCS by

D+x(t) = Ax(t) , t ≥ 0 ; (62)

x(0) = w ,

where A = ψ′(k∗) < 0 and x(t) = [k(t) − k∗]. Let x(w) = {x(t;w) : t ≥ 0} denote any

solution to (62), and let

Vapp = {x(w) | w ∈ R} (63)

denote the set of all admissible solutions for the LAS (62). Note that 0 is the unique

stationary solution for the LAS.

As detailed in the earlier Course Packet reading titled “Notes on Differential Equations,”

the stationary solution 0 is stable relative to the admissible solution set Vapp if and only

if all of the eigenvalues of A have negative real parts. However, as established earlier, A

is a negative real number. Hence, trivially, A is its own unique eigenvalue and it clearly

has a “negative real part.” Thus 0 is a stable stationary solution for (62) relative to Vapp.

Moreover, 0 is a stable stationary solution relative to Vapp only if k∗ is a locally stable

solution for the BCS (45) relative to the admissible solution set V. This completes the proof

of the local stability of k∗.

Although this proof is a useful illustration of local linear approximation techniques for

nonlinear differential systems, for the special nonlinear differential system at hand—the one-

dimensional BCS for the per capita Solow-Swan descriptive growth model—it is actually

possible to use “phase diagram techniques” to establish the global stability of k∗ relative to

V. Refer to the graph of D+k = ψ(k) in Fig. 6. The arrowheads on the graph indicate the

direction of motion in k at each domain point k > 0.
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Figure 6: Phase diagram for the basic causal system D+k = ψ(k), where v = k/f(k)

Note, in particular, that D+k > 0 if and only if k < k∗, D+k = 0 if and only if k = k∗,

and D+k < 0 if and only if k > k∗. Thus, given any u > 0 for the initial state k(0), with u

6= k∗, the direction of motion is always in the direction of k∗. It follows that k∗ is a globally

stable stationary solution relative to the admissible solution set V.

As a corollary of this argument, note from Fig. 6 that the Solow-Swan descriptive growth

model predicts that D+k tends to be larger for smaller values of k. The latter finding is the

source of the prediction that, all else equal, poorer countries should exhibit faster rates of

growth than richer countries.

Why, on intuitive economic grounds, does the per capita Solow-Swan model exhibit global

stability? Recall from (50) and (51) that a stationary solution k∗ is characterized as a point

of equality for the warranted rate of growth [s/v(t)]−δs = D+K(t)/K(t) and the natural rate

of growth g = D+L(t)/L(t). Suppose the economy is at a point in time where the warranted

rate of growth exceeds the natural rate of growth, so that capital is accumulating at a faster

rate than labor. Thus, firms must be substituting capital for labor in the production process,

i.e., k(t) must be increasing, which implies (using the conditions imposed on f(k)) that the

average product of capital f(k(t))/k(t) is decreasing. It follows that v(t) ≡ k(t)/f(k(t)) is

increasing, hence [s/v(t)]− δs is decreasing — i.e., it is tending back towards g. Conversely,

whenever the economy is at a point where the natural rate of growth exceeds the warranted

19



rate, a similar economic argument can be given for why the warranted rate should then be

increasing. Consequently, as indicated in Fig. 6, the direction of motion in k(t) is always

towards a point of equality between the warranted and natural rates of growth, i.e., towards

the stationary solution k∗.

By construction, the long-run stationary solution value k∗ is the solution for equation

(50) and hence a function k∗ = k∗(s,λ,f(·)) of the exogenously specified factors (s, λ, f(·))
appearing in equation (50). Although the solution trajectories for the nonlinear BCS are

guaranteed to converge in the long run to k∗(s,λ,f(·)), given any initial state value u >

0, their dependence in the short run on u, s, λ, and f(·) can take a rather complicated

form. For example, suppose the per-capita production function f(·) takes the commonly

used Cobb-Douglas form

f(k) = kβ (64)

for some β ∈ (0, 1). Given (64), the solution to the BCS (45) is8

k(t;u) =
([

(u)1−β − s/λ
]
e−[1−β]λt + s/λ

)1/[1−β]
, t ≥ 0. (65)

Note that (65) is a highly nonlinear function of the initial state value u as well as the model

parameters (s, λ, β). Nevertheless, for each given parameter vector (u, s, λ, β), the solution

value (65) for the time t capital-labor ratio k(t;u) converges as t approaches infinity to the

stationary solution value

k∗(s, λ, β) =
( s
λ

)1/(1−β)
. (66)

5 Incorporating Technological Change

Recall the first four stylized growth facts [SF1]-[SF4] listed in Section 1:9

8Given (64) and u > 0, it follows from a simple phase diagram argument that k(t;u) > 0 for all t ≥ 0 along
the solution path for the BCS. Introduce the variable transformation a(t; û) = k(t;u)/f(k(t;u)) = k(t;u)1−β ,
with û = u1−β . Using the BCS, it is straightforward to show that D+a(t; û)/a(t; û) = [1−β]D+k(t;u)/k(t;u).
In terms of a(t; û), the BCS thus reduces to a nonhomogeneous linear differential equation with constant
coefficients: D+a(t; û) = ma(t; û) + b with m = −[1 − β]λ, b = [1 − β]s, and a(0; û) = û. The solution to
this reduced BCS can be represented as the sum of the homogenous solution aH(t) = c · exp(mt) (for some
constant c) and the particular stationary solution ā = s/λ, with aH(0) + ā = c+ ā = û (implying c = û− ā).
The reduced BCS solution thus takes the form a(t; û) = [c exp(−[1− β]λt) + s/λ], where c = [û− s/λ]. The
solution (65) for k(t;u) is then directly obtained by an inverse transformation.

9The fifth stylized fact will not be addressed in these notes since it involves difficult cross-country empirical
estimation issues. See Temple (1999) for a detailed discussion of this fifth stylized fact in relation to the
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[SF1 ] The ratio K/Y of physical capital K to output Y is nearly constant over time.

[SF2 ] The shares of labor and physical capital in national income, wL/Y and rK/Y , are

nearly constant over time, where w and r denote the real wage rate of labor and the

real rental rate of capital, respectively;

[SF3 ] Per capita output y = Y/L grows over time without a tendency to converge to a

constant value.

[SF4 ] Per-capita physical capital k = K/L grows over time without a tendency to converge

to a constant value.

It is straightforward to show that the first stylized fact [SF1] is consistent with the long-

run predictions of the per-capital Solow-Swan descriptive growth model as developed to date.

Moreover, if the real wage w is given by the marginal product of labor FL(K,L) = [f(k)−
f ′(k)k] and the real rental rate r is given by the marginal product of capital FK(K,L) =

f ′(k), then the second stylized fact [SF2] is also consistent with the long-run predictions of

this model.

On the other hand, the stylized facts [SF3] and [SF4] are not consistent with the long-

run predictions of the per-capita Solow-Swan descriptive growth model as developed to date.

The latter model predicts that y and k will converge to constant levels y∗ and k∗ over time,

a contradiction of [SF3] and [SF4].

Consequently, in order for consistency to be achieved, the production relations have to

be modified. In particular, this modification must permit y and k to each vary over time

(without convergence) while, at the same time, k/y is essentially constant over time.

As will be seen below, a modification that ensures the model’s predictions are in con-

formity with stylized facts [SF1] through [SF4] while retaining much of its elegantly simple

structure is the introduction of labor-augmenting technological change.10 The aggregate pro-

duction function for the Solow-Swan descriptive growth model, extended to include labor-

Solow-Swan descriptive growth model.
10Apart from special circumstances, such as when the production function takes the Cobb-Douglas form,

the only type of technological change (at a constant rate) that is compatible with the existence of a stationary
solution in per-capita terms for the Solow-Swan descriptive growth model is labor-augmenting technological
change. See, for example, Barro and Sala-i-Martin (2003, pp. 51-53).
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augmenting technological change, generally takes the form

Y = A · F (K,N) , (67)

where: Y measures real output (GDP); A is a constant (time-invariant) measure of total

factor productivity (TFP); F (·) is a strictly increasing concave function exhibiting constant

returns to scale; K denotes capital inputs; and N = B · L denotes effective labor inputs,

where B measures the skill level of the labor force (due to embodied technological change)

and L measures raw labor inputs. An additional standard assumption is that B and L grow

at exogenously given rates µ and g over time.

Suppose the basic Solow-Swan descriptive growth model is appropriately extended to

include the production function (67) in place of F (K,N), a defining relation N = BL for

effective labor, and a relation D+B(t) = µB(t) determining the growth in labor skill over

time. The complete model, hereafter referred to as Model M, is appended at the end of these

notes.

As a first step towards establishing that Model M is in conformity with [SF1] through

[SF4], consider the per-capita version of this model, hereafter referred to as Model M*, that

is also appended at the end of this packet. It will next be shown, step by step, how the

three equations for Model M* can be derived from the six equations for Model M using

the following definitions that link the two models: k̂(t) = K(t)/N(t); ŷ(t) = Y (t)/N(t);

ŝ(t) = S(t)/N(t); and f(k̂) = F (k̂, 1).

First note that the admissibility conditions for Model M imply that B(0) > 0 and L(0) >

0, hence N(0) = B(0)L(0) > 0. It can then be shown either by direct solution11 of equations

(107) and (108), or by a forward recursion argument, that N(t) = B(t)L(t) > 0 for all t ≥ 0.

Now let t ≥ 0 by given. Divide the first three equations (104),(105), and (106) of Model

M by N(t), and use constant returns to scale for F (K,N), to get

ŷ(t) = Af(k̂(t)) (68)

ŝ(t) = s[Af(k̂(t))− δk̂(t)] (69)

D+K(t)/N(t) = ˆs(t) (70)

11For any linear homogenous differential equation of the form D+x(t) = ax(t) with initial condition
x(0) = u, the solution is given by x(t) = ueat. Consequently, if u > 0, it follows that x(t) > 0 for all t ≥ 0.
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Using equations (107), (108), and (109) of Model M, it follows that

D+N(t)

N(t)
=

D+[B(t)L(t)]

B(t)L(t)
(71)

=
D+B(t)

B(t)
+

D+L(t)

L(t)
= µ+ g .

Thus,

D+k̂(t)

k̂(t)
=

D+K(t)

K(t)
− µ− g (72)

=
[D+K(t)
N(t)

− µk̂(t)− gk̂(t)]

k̂(t)

Hence,

D+K(t)/N(t) = D+k̂(t) + [µ+ g]k̂(t) (73)

Substituting equation (73) into equation (70), using equation (69), and manipulating terms,

one gets

D+k̂(t) = sAf(k̂(t))− θk̂(t) (74)

where

θ = [µ+ g + sδ] (75)

Equations (68), (69), and (74) are the three equations of Model M*, as desired.

It will next be shown that Model M* has a unique admissible stationary solution k̂∗ > 0,

given any admissible specification for (A, s, δ, θ, f(k̂)).

Let an admissible specification for (A, s, δ, θ, f(k̂)) in Model M* be given. Given this

specification, k̂∗ > 0 is an admissible stationary solution for Model M* if and only if k̂∗

satisfies

0 = sAf(k̂∗)− θk̂∗ (76)

Define two functions of k̂ as follows: x(k̂) = sAf(k̂) and z(k̂) = θk̂. Then k̂∗ > 0 is an

admissible stationary solution for Model M* if and only if x(k̂) and z(k̂) intersect at k̂ = k̂∗.

The admissibility conditions for Model M* imply that s > 0, A > 0, and θ > 0. They

also imply that x(0) = 0, x′(k̂) = sAf ′(k̂) > 0, x′′(k̂) = sAf ′′(k̂) < 0, x′(k̂) approaches +∞
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as k̂ approaches 0, and x′(k̂) approaches 0 as k̂ approaches +∞. It follows that x(k̂) and z(k̂)

have one and only one intersection point k̂∗ over the admissible range k̂ > 0. This could be

illustrated using a carefully labeled graph, analogous to Fig. 4 for the original Solow-Swan

descriptive growth model in per-capita form.

Next, let an admissible specification (A, s, δ, θ, f(k̂)) for Model M* be given. Let k̂∗ > 0

denote the unique admissible stationary solution for Model M* corresponding to this admis-

sible specification, whose existence has just been established. A graphical analysis will now

be used to establish the global stability of k̂∗ relative to the family of all possible admissible

solutions for Model M* conditional on the admissible specification (A, s, δ, θ, f(k̂)).

Define a function ψ:R+ → R by ψ(k̂) = sAf(k̂) − θk̂. The admissibility conditions

imposed on f(k̂) in Model M* then imply that

ψ(0) = ψ(k̂∗) = 0 (77)

ψ′(k̂) = sAf ′(k̂) − θ (78)

ψ′(0) = +∞ (79)

ψ′′(k̂) = sAf ′′(k̂) < 0 (80)

ψ′(k̂∗) <
[ψ(k̂∗)− ψ(0)]

[k̂∗ − 0]
= 0 , (81)

where relation (81) follows from the analysis in Footnote 7. If a plot for ψ(k̂) in the R2 plane

is graphically depicted, with “phase diagram” arrows indicating the direction of motion in k̂

at each admissible point (k̂, ψ(k̂)), the resulting phase diagram will look very much like the

one depicted in Fig. 6 for the basic Solow-Swan descriptive growth model in per-capita form.

In particular, starting at any admissible initial state value k̂ > 0, the direction of motion in

k̂ is always towards the unique stationary solution k̂∗. It follows that k̂∗ is globally stable

relative to the family of all admissible solutions for Model M*, conditional on the admissible

specification (A, s, δ, θ, f(k̂)).

Using the above findings, it will next be explained how the stylized facts [SF1] through

[SF4] are satisfied in the long run by any admissible solution for Model M.

Let an admissible specification (K(0), B(0), L(0), A, s, δ, µ, g, F (K,N)) for Model M be

given, which implies an admissible specification (k̂(0), A, s, δ, µ, g, f(k̂)) for Model M*. By
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previous developments,
K(t)

N(t)
= k̂(t) → k̂∗ as t→ +∞ (82)

It follows that
K(t)

Y (t)
=

k̂(t)

ŷ(t)
=

k̂(t)

f(k̂(t))
→ k̂∗

f(k̂∗)
as t→ +∞ (83)

Thus, [SF1] holds in the long run for any Model M admissible solution.

Next, recall that f(k̂) = F (k̂, 1), which implies that ANf(k̂) = AF (K,N). Suppose the

real wage w(t) is given by the marginal product of raw labor, i.e.,

w(t) =
∂AF (K(t), N(t))

∂L
= AFN(K(t), N(t))B = [Af(k̂(t))− Af ′(k̂(t))k̂(t)]B (84)

and the real rental rate r(t) is given by the marginal product of capital, i.e.,

r(t) =
∂AF (K(t), N(t))

∂K
= Af ′(k̂(t)) (85)

Thus,

wL

Y
=

(w/B) ·N
(Y/N) ·N

=
[Af(k̂)− Af ′(k̂)k̂]

Af(k̂)
(86)

rK

Y
=

r[K/N ]

[Y/N ]
=

[Af ′(k̂)]k̂

Af(k̂)
(87)

It then follows from (82), (86), and (87) that stylized fact [SF2] holds in the long run for

any admissible solution of Model M.

Another implication of (82) is that

ŷ(t) =
Y (t)

N(t)
=

AF (K(t), N(t))

N(t)
= Af(k̂) → Af(k̂∗) as t→ +∞ (88)

Using (88) together with (71), it follows that

D+ŷ(t)

ŷ(t)
= [D+Y (t)

Y (t)
− D+N(t)

N(t)
] (89)

= [D+Y (t)
Y (t)

− µ− g]

→ 0 as t→ +∞
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Note also that (82), together with (71), implies

D+k̂(t)

k̂(t)
= [D+K(t)

K(t)
− D+N(t)

N(t)
] (90)

= [D+K(t)
K(t)

− µ− g]

→ 0 as t→ +∞

Let y(t) = Y (t)/L(t) and k(t) = K(t)/L(t) denote per-capita output and per-capita

capital calculated in terms of raw labor L(t). It then follows from (89) that

lim
t→∞

D+y(t)/y(t) = [ lim
t→∞

D+Y (t)/Y (t)− lim
t→∞

D+L(t)/L(t)] = µ > 0 (91)

Similarly, it follows from (90) that

lim
t→∞

D+k(t)/k(t) = [ lim
t→∞

D+K(t)/K(t)− lim
t→∞

D+L(t)/L(t)] = µ > 0 (92)

Consequently, per-capita output y(t) = Y (t)/L(t) and per-capita capital k(t) = K(t)/L(t)

now grow over time without a tendency to converge to constant values, in conformity with

stylized facts [SF3] and [SF4]. Note, however, that the long-run growth in y(t) and k(t) is

due solely to the exogenously given (and hence unexplained) rate µ of technological progress

embodied in the effective labor force N(t) = B(t) · L(t).

6 The Solow Growth Accounting Equation

Another important contribution by Solow is his decomposition of the growth in output by

source, resulting in his now-famous “growth accounting equation.” This section derives this

famous relation in four steps under successively stronger assumptions. However, it should

be noted that even step 1, which presumes the existence of an aggregate production function

of the form Y = AF (K,L), involves very strong assumptions; see, e.g., Tesfatsion (2015).

Step One: Suppose A varies over time.

Consider the aggregate production function (67) given by Y = AF (K,N), with N

= B · L = effective labor. Suppose F (K,N) is differentiable over the domain R2
++ =

{(K,N) ∈ R2 | K > 0, N > 0}. Suppose, also, that A(t), K(t), B(t), and L(t) are
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right differentiable functions of time t over t > 0. Then, taking the (right) total differential

of Y (t) = A(t)F (K(t), N(t)) at some time t > 0, and suppressing time arguments for ease

of representation, one has

D+Y = [A · FK ·D+K] + [A · FN ·D+N ] + [D+A · F ] . (93)

Note that constant returns to scale is not required to obtain (93). Dividing (93) by Y =

AF (K,N), and manipulating terms, one then obtains

D+Y/Y = βKD+K/K + βND+N/N + D+A/A, (94)

where:

D+A/A = Total Factor Productivity (TFP) growth rate ; (95)

βK =
∂Y

∂K
· K
Y

= [A · FK ·K]/Y = elasticity of output with respect to K; (96)

βN =
∂Y

∂N
· N
Y

= [A · FN ·N ]/Y = elasticity of output with respect to N. (97)

Step Two: Suppose, also, that input markets are competitive.

Suppose, in addition, that input markets are perfectly competitive in the sense that the

real rental rate r = R/P equals the marginal product of capital A · FK and the real wage

w = W/P equals the marginal product of raw labor A · FN ·B. In this case (94) reduces to

the famous Solow growth accounting equation with

βK = r ·K/Y = capital share of GDP; (98)

βN = w · L/Y = labor share of GDP. (99)

Step Three: Suppose the production function exhibits constant returns.

Suppose, in addition, that F (K,N) exhibits constant returns to scale. It then satisfies

the Euler Theorem (exhaustion of product)12 F (K,N) = FK ·K + FN ·N . In this case the

coefficients (98) and (99) satisfy βK + βN = 1.

Step Four: Suppose the production function has a Cobb-Douglas form.

12Recall definition (10) for constant returns to scale. Replacing L by N in (10), differentiating each side
with respect to b, and then setting b equal to 1, the result is F (K,N) = FK(K,N) ·K + FN (K,N) ·N .
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Finally, suppose in addition that the production function takes a Cobb-Douglas form.

That is, suppose

Y = AF (K,N) = A ·Kα ·N [1−α] , 0 < α < 1 (100)

In this case it is straightforward to show that βK = α and βN = [1− α]. Thus, relation (94)

reduces to

D+Y/Y = α ·D+K/K + [1− α] ·D+N/N + D+A/A , (101)

or equivalently,

[D+Y/Y −D+N/N ] = α · [D+K/K −D+N/N ] + D+A/A . (102)

Defining ŷ ≡ Y/N and k̂ ≡ K/N , relation (102) can equivalently be expressed as follows:

D+ŷ

ŷ
= α · D+k̂

k̂
+

D+A

A
. (103)

7 Concluding Remarks

Many studies have attempted to estimate a relation such as (94) or (101) in order to mea-

sure the separate contributions of K, N , and A to the growth rate in per capita real GDP.

Typically, these studies have found that estimates for DA/A are relatively large and strongly

positively correlated with DY/Y . Moreover, in tests of (101), the capital share α is consis-

tently found to be only about 1/3, implying that very large changes in capital are needed to

have any significant effect on the growth rate of Y (t).

Consequently, in the Solow-Swan descriptive growth model with labor-augmenting tech-

nological change, the growth in Y (t) is largely driven by forces not explained within the

model itself. These forces are the growth rate of raw labor, L(t), and technological change

as embodied in the exogenously determined growth rates for labor skill B(t) and total factor

productivity A(t).

It is for this reason that many “endogenous growth” theorists such as Gary Becker,

Paul Romer, Gene Grossman, and Elhanen Helpman, among others, claim that the Solow-

Swan descriptive growth model with or without labor-augmenting technological change is an

exogenous growth model that does not actually explain long-run growth. See, for example,

Aghion and Howitt (2008).
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MODEL M
SOLOW-SWAN DESCRIPTIVE GROWTH MODEL WITH

LABOR-AUGMENTING TECHNOLOGICAL CHANGE

Model Equations: t ≥ 0:

Y (t) = AF (K(t), N(t)) (104)

S(t) = s · [Y (t)− δK(t)] (105)

D+K(t) = S(t) (106)

D+B(t) = µ ·B(t) (107)

D+L(t) = g · L(t) (108)

N(t) = B(t)L(t) (109)

Classification of Variables:

Time-t Endogenous Variables (t ≥ 0) : Y (t), S(t), D+K(t), D+B(t), D+L(t), N(t)

Time-t Predetermined (State) Variables (t > 0):

K(t) =

∫ t

0

D+K(τ)dτ + K(0) (110)

B(t) =

∫ t

0

D+B(τ)dτ + B(0) (111)

L(t) =

∫ t

0

D+L(τ)dτ + L(0) (112)

Admissible Exogenous Variables and Functional Forms:

K(0), B(0), L(0), A, s, δ, µ, and g, satisfying 0 < K(0), 0 < B(0), 0 < L(0),
0 < A, 0 < s < 1, 0 ≤ δ, 0 < µ, and 0 < g, plus a function F (K,N) that satisfies
the following Standard Neoclassical Production Function Assumptions in Level
Form:

a. F (K,N) exhibits constant returns to scale;

b. F (K,N) is continuous over (K,N) ≥ 0;

c. F (K,N) is twice continuously differentiable and concave, with FKK(K,N) <
0, over all (K,N) > 0;

d. FK(K,N) > 0 and FL(K,N) > 0 for all (K,N) > 0;

e. F (0, N) = 0 for all N ≥ 0;

f. [Inada Conditions ] For each N > 0, FK(K,N) → +∞ as K → 0 and
FK(K,N)→ 0 as K → +∞ .
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MODEL M*
PER-CAPITA VERSION OF MODEL M

Model Equations: For each time t ≥ 0,

ŷ(t) = Af(k̂(t)) ; (113)

ŝ(t) = s[ŷ(t)− δk̂(t)] ; (114)

D+k̂(t) = sAf(k̂(t))− θk̂(t) . (115)

Classification of Variables:

Time-t Endogenous Variables (t ≥ 0): ŷ(t), ŝ(t), D+k̂(t) ;

Time-t Predetermined (State) Variable (t > 0):

k̂(t) =

∫ t

0

D+k̂(τ)dτ + k̂(0) (116)

Admissible Exogenous Variables and Functional Forms:

k̂(0), A, s, δ, and θ = [µ + g + sδ], where 0 < k̂(0), 0 < A, 0 < s < 1, 0 ≤ δ,
0 < µ, and 0 < g.

Also, f(k̂) ≡ F (k̂, 1) satisfies the following Standard Neoclassical Production
Function Assumptions in Per-Capita Form: f(k̂) is continuous over k̂ ≥ 0, and
f(k̂) is twice continuously differentiable with f ′(k̂) > 0 and f ′′(k̂) < 0 over k̂ > 0;
f(0) = 0; and f ′(k̂)→ +∞ as k̂ → 0 and f ′(k̂)→ 0 as k̂ → +∞.
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