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A SIMPLE ILLUSTRATIVE OPTIMAL GROWTH MODEL

A. From Descriptive to Optimal Growth

Recall the following relation describing the change in the capital-labor ratio k(t) ≡

K(t)/L(t) for the per-capita version of the basic Solow-Swan descriptive growth (BSSDG)

model developed in an earlier section of the course:

Dk+(t) = f(k(t))− [g + δ]k(t)− c(t) , t ≥ 0 . (1)

Here c(t) denotes per capita consumption at time t, g > 0 denotes the growth rate of labor,

δ ≥ 0 denotes the capital depreciation rate, and f(k) denotes the per-capita production

function satisfying the standard neoclassical production function assumptions in per-capita

form.1

Let θ ≡ [g + δ] > 0, and let i(t) denote per capita gross investment in period t, i.e.,

i(t) = [D+K(t) + δK(t)]/L(t) = [D+k(t) + θk(t)]. (2)

Relation (1) can then be re-expressed as a “production possibility frontier” tradeoff between

consumption and gross investment taking the output level f(k(t)) as given:

c(t) + i(t) = f(k(t)) . (3)

1More precisely, f(0) = 0, f(k) is continuous over all k ≥ 0 and twice continuously differentiable over all
k > 0 with f ′(k) > 0 and f ′′(k) < 0, limk→∞ f ′(k) = 0, and limk→0 f

′(k) =∞.
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Such a trade-off curve for time t might be as depicted in Fig. 1.

Figure 1: Investment-consumption trade-offs at time t, conditional on k(t)

For the BSSDG model, a point on this time-t consumption-investment production pos-

sibility frontier is determined by the direct specification of a consumption demand function

for c(t). For example, we considered the particular case in which consumption demand was

assumed to be a fixed proportion [1− s] of net income [y− δk]. More generally, however, the

relevant trade-off for society at any time t might not be time-t consumption versus time-t

investment, but rather the utility of an addition to time-t consumption versus the utility of

an addition to time-t investment.

A completely myopic society interested only in the maximization of current instantaneous

utility would never invest, because investment does not directly enter the instantaneous

utility function. However, if current consumption is increased at the expense of current

investment, the maximum attainable level of consumption in each future period is decreased.

For example, referring to Fig. 1, the relatively high consumption point P1 at time t looks

more desirable than the low consumption point P2 if the only concern is currently attainable

utility. Yet the choice of P1 rather than P2 results in lower future capital levels and hence a

contraction inward of all future consumption-investment trade-off curves. Consequently, the

utility attainable from future consumption is decreased.
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In the “optimal growth” version of the BSSDG model, the choice of consumption in any

period t is assumed to take into account the affects of this choice on the utility attainable

from future consumption. A simple illustration of an optimal growth model will now be

given.

B. The Basic Optimal Growth Problem as a Social Planning Problem

B.1 Overview

Consider an economy managed by a social planner that exists over the time interval [0, T ].

The economy has an initial endowment of capital that depreciates at a fixed positive rate

and an initial population of one-period-lived agents, each with the same labor endowment

and preferences. The population of these agents is growing at a fixed positive rate, implying

aggregate labor is growing at this same fixed positive rate. Each agent is assumed to supply

their entire labor endowment inelastically in each period.

Production possibilities in the economy are represented by an aggregate production func-

tion exhibiting constant returns to scale, and agents are assumed to attain utility from the

consumption of the output from this production. Since labor is supplied inelastically, leisure

does not appear as an argument of the utility function; agents do not make trade-offs be-

tween output consumption and consumption of leisure. Finally, there is a given capital-labor

ratio target for the final time T .

The basic optimal growth problem faced by the social planner is then as follows: Allocate

production in each period between consumption and capital investment so as to maximize

the discounted sum of the utility levels achieved by representative agents in each successive

generation of agents while satisfying the given capital-labor ratio target for the final time T .

The first economist to investigate this basic optimal growth problem was apparently

Frank Ramsey (1928). His work was largely ignored at the time by the economics profession,

presumably due both to its technical nature and to the disruption caused by the Great
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Depression and World War II. Interest in the basic optimal growth problem was revived in the

nineteen fifties, notably by Jan Tinbergen, and it was solved by Tjalling C. Koopmans and

David Cass. For extensive bibliographical references to this early literature, see Burmeister

and Dobell (1970).

B.2 Analytical Formulation

Suppose the welfare of a representative one-period-lived agent in the economy is measured

by a utility function u:R++ → R that is twice continuously differentiable with u′ > 0 and

u′′ < 0. The discount rate measuring the degree to which future utility is discounted relative

to current utility is given by an exogenous constant ρ ≥ 0.

Let θ ≡ [g+ δ], where g > 0 denotes an exogenously given growth rate of labor and δ ≥ 0

denotes an exogenously given capital depreciation rate. Let k0 and kT denote exogenously

given values for the initial and final per-capita capital ratios (equivalently, capital-labor

ratios), the first value interpreted as an historically given value and the second value inter-

preted as a target value the society desires to attain in period T . Finally, let the sequences

of real-valued per-capita capital and consumption levels over [0, T ] be denoted by

k = (k(t) : t ∈ [0, T ]) ; (4)

c = (c(t) : t ∈ [0, T ]) . (5)

Consider the following intertemporal utility maximization problem:

max
c,k

∫ T

0

u(c(t))e−ρtdt (6)

subject to

c(t) = f(k(t))− θk(t)−D+k(t) , 0 ≤ t ≤ T ; (7)

k(0) = k0 ; (8)

k(T ) = kT . (9)
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Problem (6)-(9) will now be expressed in a more compact reduced form.

Let K denote the collection of all twice differentiable2 functions k taking the form

k:[0, T ] → R with boundary conditions k(0) = k0 and k(T ) = kT . In particular, then,

given any k ∈ K, one can in principle determine a value for Dk(t) as well as for k(t) at each

time t ∈ [0, T ]. Using the first constraint appearing in (6) to substitute out for c(t) in the

objective function, one obtains a representation for this objective function as a function only

of k, as follows:

J(k) =

∫ T

0

[u(f(k(t))− θk(t)−Dk(t))]e−ρtdt . (10)

Problem (6)-(9) then takes the compact form

max
k∈K

J(k) . (11)

Under the assumptions set out in Section B.1, the optimization problem (11) is a social

planning problem to be solved by some unmodelled policy maker in charge of society.3 The

social welfare function J(k) gives the discounted sum of the instantaneous utilities for repre-

sentative agents in successive generations t ∈ [0, T ], where each generation t consists of L(t)

newly born agents with identical tastes. Many commentators — for example, Kirman (1992)

— have argued that it is not clear either intuitively or mathematically who the “representa-

tive” agent in each generation t is meant to represent. Under what conditions do consumers

in the aggregate act as if they were one individual with preferences well represented by a

single utility function?4

Another issue is the specification of the social discount rate ρ. If ρ > 0, later generations

are being discounted relative to earlier generations, a form of welfare function that Ramsey

2This admissibility restriction on k is unnecessarily strong. It is made to simplify the analytical treatment
below. Given this assumption, note that one can write Dk(t) instead of D+k(t) for the time-derivative of
k(t).

3Another possible approach, not pursued here, is to assume g = 0 and to interpret J(k) as the total
discounted lifetime utility attained by a representative consumer in the society when he selects the per-
capita capital sequence k over his lifetime [0, T ].

4The more usual form of this question is as follows: Can a flock of birds be modeled as one big bird?
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found objectionable. However, if ρ = 0 and T = ∞, the integral in (10) generally fails to

exist (it “blows up”), implying some alternative representation is needed.

If T is finite, the specification of the terminal boundary value kT is problematic. Pre-

sumably kT then constitutes some form of socially planned bequest to unmodeled future

generations, but no guidance is given for setting this bequest.5 On the other hand, if T =∞,

then the only plausible value for kT from a social planning point of view is kT = 0; for why

would society want to leave any positive capital at the end of time?

Often the horizon length T is set equal to +∞ to avoid the problem of specifying kT .

Although a model with an infinite planning horizon is clearly unrealistic, requiring the deter-

mination of consumption levels for all generations until the end of time, in some situations

it might provide a better benchmark than a finite planning horizon model incorporating an

arbitrary terminal boundary condition.

Finally, note that the social preference ordering over the sequences k induced by J(k)

is only invariant up to a positive linear affine transformation of the instantaneous utility

function u (i.e., u(·)→ au(·) + b for some a > 0). Thus, the social welfare function J(·) has

more cardinality properties than the welfare functions typically appearing in deterministic

static micro theory studies.

As elaborated in Aghion and Durlauf (2005), the basic optimal growth problem (11) has

been generalized in numerous directions since the nineteen sixties. Some economists have

extended the model to include constraints imposed on growth by limited resource availability

and ecological deterioration. Others, following the influential papers by Romer (1986, 1994)

and Lucas (1988), have explored “endogenous growth” extensions of the model in which

the long-run growth rate of the economy is endogenously determined by the physical and

5In more general versions of the optimal growth problem, discussed below in Section G, the social planner
is assumed to make an optimal (utility maximizing) choice for both T and kT over some specified set B of
possible terminal boundary points (T, kT ). The first order necessary conditions for this choice to be optimal
are referred to as “transversality conditions.”
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human capital investment decisions of private agents rather than exogenously determined

by postulated growth rates in population and/or technology. Still others have introduced

various types of stochastic shocks, along with limited forms of market frictions and price

rigidities, in an attempt to achieve improved fits to empirical data. The latter types of

models are now typically referred to as Dynamic Stochastic General Equilibrium (DSGE)

models, sometimes with the additional qualifier “New Keynesian” to indicate the presence

of frictions and price stickiness; see Sbordone et al. (2010).

C. Solution Characterization for the Basic Optimal Growth Problem

Recall that a necessary condition for a point y∗ in Rn to maximize a continuously differ-

entiable function F :Rn → R is that the gradient vector

∂F

∂y
(y∗) = (F1(y

∗), . . . , Fn(y∗)) (12)

of F (·) evaluated at y∗ vanish. The trick in solving the optimal growth problem (11) (or any

“calculus of variations” problem of this type) is to reduce the maximization of J(k) with

respect to k to a finite dimensional maximization problem for which this necessary condition

can be applied.

It will now be shown how this can be done. Suppose k∗ is a trajectory in K which

maximizes J(k) over K. Let h:[0, T ]→ R denote any twice differentiable function satisfying

h(0) = h(T ) = 0. For each ε ∈ R, consider the variation kε of k∗ defined by

kε(t) = k∗(t) + εh(t) , t ∈ [0, T ]. (13)

Note, by construction, that each of these variations is also an element of the admissible set

K. Several such variations of k∗ are depicted in Fig. 2.

Now define a function F :R→ R by

F (ε) = J(kε) , ε ∈ R . (14)
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Figure 2: Variations of the optimal solution k∗

As ε varies over R, kε varies over a subset of K which includes k∗, since k0 = k∗. By

definition of k∗, it must hold that

F (0) = max
ε∈R

F (ε) ; (15)

that is, F (ε) attains a maximum at ε = 0. It follows that the gradient of F (ε) must vanish

at 0:

0 =
dF

dε
(0) . (16)

As we shall now see, condition (16) provides the well-known “Euler-Lagrange equation” for

the maximization of J(k) over K.

Define a function I:R3 → R by

I(k,Dk, t) = [u(f(k)− θk −Dk)]e−ρt . (17)

Note that I(k(t), Dk(t), t) is the integrand of J(k) in (10). Next, define a composite function

f :[0, T ]×R→ R by

f(t, ε) = I(kε(t), Dkε(t), t) = [u(f(kε(t))− θkε(t)−Dkε(t))] e−ρt . (18)
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It then follows from (10) and (14) that

F (ε) =

∫ T

0

f(t, ε)dt . (19)

Note also that, by construction, f(·, ε) is continuous over [0, T ], with continuous first partial

derivative with respect to ε given by

∂f

∂ε
(t, ε) = I1(k

ε(t), Dkε(t), t) · [h(t)] + I2(k
ε(t), Dkε(t), t) · [Dh(t)] . (20)

Using (18) and (19), it follows by the interchange theorem6 that

0 =
dF

dε
(0) =

∫ T

0

[
∂f

∂ε
(t, 0)

]
dt . (21)

Applying integration by parts7 to the integral of the right-hand-side term in (20), the integral

in (21) can equivalently be expressed as∫ T

0

[
I1(k

∗(t), Dk∗(t), t)− d

dt
[I2(k

∗(t), Dk∗(t), t)]

]
h(t)dt + [I2(k

∗(t), Dk∗(t), t) · h(t)] |T0 .

(22)

The last term in (22) clearly vanishes since h(0) = h(T ) = 0; hence, it follows from (21)

that the integral in (22) must also vanish. Since the function h appearing in this integral

is an arbitrarily selected twice differentiable function of the form h:[0, T ] → R with h(0) =

h(T ) = 0, it follows by the Fundamental Lemma of the Calculus of Variations8 that the inner

bracketed expression in the integral in (22) must then vanish at each point t in the interval

[0, T ], i.e.,

I1(k
∗(t), Dk∗(t), t) =

d

dt
[I2(k

∗(t), Dk∗(t), t)] , ∀t ∈ [0, T ] . (23)

Relation (23) is the famous Euler-Lagrange equation for the problem at hand – by construc-

tion, it is a necessary condition for a per-capita capital trajectory k∗ ∈ K to maximize J(k)

6The interchange theorem provides sufficient conditions permitting the interchange of integration and
differentiation operations. See any basic text on real analysis for a rigorous statement of this theorem.

7Given certain regularity conditions satisfied by two functions f :[a, b] → R and g:[a, b] → R, one has∫ b
a
fdg = f(b)g(b) − f(a)g(a) −

∫ b
a
gdf ; see any basic text on real analysis for a rigorous statement of this

theorem. For the application at hand, let f = I2, g = h, b = T , and a = 0.
8For a rigorous statement of this famous lemma, see Takayama (1985, Chapter 5, p. 414).
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over K. Indeed, with x in place of k, it constitutes the Euler-Lagrange equation for the

general calculus of variations problem

max
x∈X

∫ T

0

I(x(t), Dx(t), t)dt , (24)

where I(·) is an arbitrary twice continuously differentiable function taking R3 into R, and

X is the collection of all twice differentiable functions over [0, T ] with or without boundary

conditions at times 0 and T .

What does the Euler-Lagrange equation (23) reduce to for the optimal growth problem

(11)? Using (17), together with the relation

c∗(t) = f(k∗(t))− θk∗(t)−Dk∗(t) , (25)

the Euler-Lagrange equation takes the form

Dc∗(t) = − u′(c∗(t))

u′′(c∗(t))
[f ′(k∗(t))− θ − ρ] . (26)

By construction, the relation (26) with c∗ defined as in (25) is a necessary condition for k∗

to solve the optimal growth problem (11).

Additional necessary conditions for k∗ to solve the basic optimal growth problem can be

obtained from the second-order necessary condition that the second derivative of F (ε) be

nonpositive at ε = 0, implying local concavity of F (ε) at ε = 0. If the second derivative

of F (ε) is non-positive for all ε, implying F (ε) is a concave function of ε, the first order

condition (16) is both necessary and sufficient for ε = 0 to globally maximize F (ε). If the

second derivative of F (ε) is strictly negative for all ε, implying that F (ε) is a strictly concave

function of ε, then the first-order condition (16) is necessary and sufficient for ε = 0 to be

the unique point at which F (ε) achieves a global maximum.

It can be shown by straightforward differentiation (using the interchange theorem) that

F (·) given by (14) is strictly concave if u(·) and f(·) are twice continuously differentiable
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functions with u′ > 0, u′′ < 0, f ′ > 0, and f ′′ < 0. The following theorem therefore holds:9

THEOREM 1: Let ρ ≥ 0 and θ ≡ [g + δ] > 0 be given. Suppose the utility function

u:R++ → R is twice continuously differentiable with u′ > 0 and u′′ < 0. Suppose the

production function f :R+ → R is continuous over R+ and twice continuously differentiable

with f ′ > 0 and f ′′ < 0 over R++. Let K denote the set of all twice differentiable functions

k of the form k:[0, T ] → R with k(0) = k0 and k(T ) = kT . Then, in order for a function

k∗ in K to be the unique solution for the optimal growth problem (11), it is necessary and

sufficient that k∗ solve the following system of differential equations:

Dk∗(t) = f(k∗(t))− θk∗(t)− c∗(t) , t ∈ [0, T ] ; (27)

Dc∗(t) = − u′(c∗(t))
u′′(c∗(t))

[f ′(k∗(t))− θ − ρ] , t ∈ [0, T ] . (28)

Note that Theorem 1 does not guarantee the existence of a solution to the optimal growth

problem (11). It only gives necessary and sufficient conditions for existence. It could happen,

for example, that conditions (27) and (28) are not satisfied by any admissible trajectory k.

Note, also, that equation (27) coincides with the equation (1) previously derived for

the rate of change of the capital-labor ratio k in the per-capita version of the basic Solow-

Swan descriptive growth model. However, the characterization (28) for the optimal (utility

maximizing) per-capita consumption trajectory is new; it replaces the descriptive growth

model specification for per-capita consumption as a proportion of net per-capita income,

c(t) = [1− s][y(t)− δk(t)]. Using relation (27) to substitute out for c(t) in (28), one obtains

the basic Euler-Lagrange equation (23).

9For a proof of this famous theorem with accompanying discussion, see Theorem 5.B.4 (page 429) in
Takayama (1985).

11



D. Economic Interpretation of the Solution

Recalling that θ = [g+ δ], where g is the growth rate of labor and δ is the capital depre-

ciation rate, equation (28) can equivalently be expressed in the following form, sometimes

referred to as the “Ramsey-Keynes’ Formula”:

f ′(k(t))− δ = g + ρ +

(
−u

′′(c(t))

u′(c(t))

)
Dc(t)

= g − d

dt
[ln(e−ρtu′(c(t)))] . (29)

Relation (29) asserts that the marginal rate of return at time t to investment in per-capita

capital, net of depreciation expenditures, must equal the biological growth rate g plus the

marginal rate of return at time t to per-capita consumption.

Relation (29) can also be written in an alternative interesting form. Let the rate of

growth of consumption at time t be denoted by

v(t) =
Dc(t)

c(t)
, (30)

and let the “elasticity of marginal utility” function e(·) be defined by

e(c) = − du′(c)

dc
· c

u′(c)
. (31)

Then relation (29) can be written as

f ′(k(t))− δ = g + ρ + v(t)e(c(t)) . (32)

The “optimal” savings rate s for the per-capita version of the BSSDG model is typically

taken to be the golden rule savings rate, that is, the savings rate that yields the maximum

stationary level ĉ for long-run per-capita consumption. It follows from relation (1), which

gives time-t consumption for the per-capita BSSDG model, that the long-run (stationary)

level k̂ for per-capita capital that supports the golden-rule consumption level ĉ for the per-

capita BSSDG model is characterized by the relation [f ′(k̂)− δ] = g.
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Comparing this finding with relation (32) for the optimal growth model, note that the

latter relation provides an explicit expression for the optimal (utility maximizing) time-t

rate of return on per-capita capital, f ′(k(t))− δ, at each time t along any solution path for

the optimal growth problem (11). In general, this optimal rate is endogenously determined

within the model due to the far-right term in (32). However, at any stationary solution (c̄, k̄)

for the optimal growth model, v = 0 in (30), which implies that [f ′(k̄)− δ] = [g+ ρ] in (32).

Comparing this finding with the finding for the per-capita BSSDG model, it is seen that the

discount rate ρ introduced in the optimal growth model (11) can significantly affect both

the short-run and the long-run return to capital.

E. Phase Diagram Depiction of Euler-Lagrange Solution Trajectories

Qualitative properties that must be exhibited by any consumption and capital solution

trajectories for the Euler-Lagrange differential equations (27) and (28) can be examined by

means of a phase diagram analysis. For the moment, we will concentrate on the family

of general solutions for this two-equation differential system, ignoring boundary conditions.

Throughout this discussion, the following admissibility restrictions on exogenous variables

and functional forms will be assumed to hold. Note that these restrictions are slightly

stronger than the admissibility restrictions assumed for Theorem 1.

Phase Diagram Admissibility Restrictions:

� u(·) and f(·) are twice continuously differentiable over R++, with u′ > 0, u′′ < 0,

f ′ > 0, and f ′′ < 0;

� f(0) = 0;

� limk→∞ f
′(k) = 0, and limk→0 f

′(k) =∞ ;

� ρ > 0, g > 0, and δ ≥ 0 .
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The first step in the construction of the phase diagram for the Euler-Lagrange differential

equations (27) and (28) is to graph separately the collection Vk of points (k, c) where Dk = 0

and the collection Vc of points (k, c) where Dc = 0. Starting with the easiest case, Vc, it

follows from (28), from the positivity of θ + ρ, and from the restrictions imposed above on

u(·) and f(·), that Vc consists of all points (k, c) such that k = k̄, where k̄ is the unique

solution to f ′(k̄) = θ + ρ. Consequently, in graphical terms, Vc is a vertical straight line

through the particular k-value k̄; see Fig. 3.

Figure 3: Phase-diagram depiction of solution trajectories for the Euler-Lagrange differential
equations (27) and (28) assuming the phase diagram admissibility restrictions hold.

Now consider Vk. Define a function ψ:R → R by ψ(k) = f(k) − θk. Then, by (27), Vk

consists of all points (k, c) for which c = ψ(k). By the restrictions imposed above on f(·),

ψ(k) is a strictly concave function that satisfies ψ(0) = ψ(k′′) = 0 and ψ′(0) > 0, where

k′′ > 0 satisfies f(k′′) = θk′′. Moreover, ψ(k) attains its maximum value at the golden rule

point k̂ satisfying f ′(k̂) = θ, where k̂ < k′′. Finally, k̄ < k̂ if ρ > 0 and k̄ = k̂ if ρ = 0. See
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Fig. 3 for a depiction of the case in which ρ > 0.

By definition of a stationary solution, a constant pair of values k̄ and c̄ for k(t) and c(t)

constitutes a stationary solution for the Euler-Lagrange differential equations (27) and (28)

if and only if Dk and Dc both vanish at (k̄, c̄), that is, if and only if10

0 = f(k̄)− θk̄ − c̄ ; (33)

0 = f ′(k̄)− θ − ρ . (34)

Equivalently, (k̄, c̄) is a stationary solution for (27) and (28) if and only if (k̄, c̄) lies in the

intersection of the sets Vk and Vc.

As noted above, equation (34) has a unique positive solution k̄. From equation (33) one

then obtains a unique solution for consumption, c̄ = f(k̄)− θk̄, where 0 < c̄ < f(k̄).11 Note

that the capital stock level K(t), the consumption level C(t), the income level Y (t), and the

labor force L(t) are all growing at the same constant rate g along the stationary solution

path characterized by (k̄, c̄).

Now suppose that (k, c) is any solution for the Euler-Lagrange differential equations (27)

10Recall that the utility function u(c) used in these notes is assumed to satisfy u′(c) > 0 and u′′(c) < 0 for
all c > 0. An example is the constant absolute risk aversion (CARA) utility function u(c) = A− exp(−βc),
where A and β are positive constants. It follows that −u′(c(t))/u′′(c(t)) on the right side of (28) is positive
for all c > 0, implying that Dc(t) = 0 if and only if condition (34) holds. In contrast, the optimal growth
sections of D. Romer (2001) and Barro and Sala-i-Martin (2003) assume a constant relative risk aversion
(CRRA) utility function, u(c) = c1−α/[1− α] with 0 < α, for which relative risk aversion −c · u′′(c)/u′(c) is
equal to the constant α for all c > 0. Given this CRRA utility function, by multiplying the numerator and
denominator of the right side of (28) by c(t) one sees that Dc(t) = 0 is then also satisfied when c(t) = 0;
that is, Dc(t) = 0 also holds everywhere along the k-axis. The use of this CRRA utility function thus results
in two additional stationary limit points in Fig. 3, at (0, 0) and (k′′, 0), and all trajectories entering into
quadrant III then converge to (k′′, 0) at time t goes to infinity instead of crossing over the k-axis. Thus,
the requirement that c(t) remain nonnegative for all t can no longer be used to rule out these trajectories
as optimal solutions for the economic growth problem in the case T = ∞. On the other hand, all such
trajectories result in strictly lower consumption to the consumer at each time t than trajectories lying along
the stable manifold and hence cannot be optimal solutions. A formal proof of suboptimality can be given
by showing that these quadrant III trajectories fail to satisfy the needed transversality condition at infinity;
see Barro and Sala-i-Martin (2003, p. 75.) Thus, the phase diagram changes that result from the use of a
CRRA utility function do not materially change any of the conclusions reached in the present notes.

11Since k̄ > 0 and θ > 0, it follows from (33) that c̄ = f(k̄)− θk̄ < f(k̄), and c̄ > 0 if and only if f(k̄)/k̄ >
θ. Since f(·) is a strictly concave function satisfying f(0) = 0, one has f(k)/k > f ′(k) for each k. It follows
from (34) and the admissibility condition ρ ≥ 0 that f(k̄)/k̄ > f ′(k̄) = θ + ρ ≥ θ > 0.
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and (28). Using the definition of (k̄, c̄), it can be shown that

Dc(t) > 0 if and only if [f ′(k(t))− θ − ρ] > 0 if and only if k(t) < k̄ ; (35)

Dc(t) = 0 if and only if [f ′(k(t))− θ − ρ] = 0 if and only if k(t) = k̄ ; (36)

Dc(t) < 0 if and only if [f ′(k(t)− θ − ρ] < 0 if and only if k(t) > k̄ . (37)

Similarly,

Dk(t) > 0 if and only if c(t) < f(k(t))− θk(t) ; (38)

Dk(t) = 0 if and only if c(t) = f(k(t))− θk(t) ; (39)

Dk(t) < 0 if and only if c(t) > f(k(t))− θk(t) . (40)

As illustrated in Fig. 3 for ρ > 0, the k-c plane can thus be partitioned into the four regions

I, II, III, and IV in which (Dk(t), Dc(t)) takes on the four distinct sign configurations (-,+),

(-,-), (+,-), and (+,+), respectively. These four regions are simply the four partition cells

created by the graphs of Vk and Vc in the k − c plane.

If the trajectory (k, c) in the k-c plane ever intersects the unique stationary point (k̄, c̄),

all motion in k and c ceases. At all other points in the k-c plane, either Dk 6= 0 or Dc 6= 0.

The instantaneous directional change of the trajectory (k, c) as it hits a boundary of region I,

II, III, or IV is determined by the nonzero component of (Dk,Dc) at that point. Thereafter

it is determined by a vector sum of (Dk, 0) and (0, Dc). This is indicated in Fig. 3 by the

perpendicular and horizontal arrows appearing in each region which indicate the directions

of change in k and c in the region.

In particular, note that any trajectory that enters region I remains in region I forever, and

similarly for region III. In contrast, every trajectory initiating in regions II or IV eventually

enters and remains in either region I or III for sufficiently large horizon length T , unless

it converges to the unique stationary point (k̄, c̄). Indeed, as indicated in Fig. 3, there are

unique trajectories—often together referred to as the stable manifold—that approach the
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stationary point from the left and from the right. More precisely, for each admissible level k

for per-capita capital, there is a unique corresponding level c(k) for per-capita consumption

such that, given k(t) = k and c(t) = c(k) at any time t, the economy henceforth proceeds

along the stable manifold toward the stationary point. Given an infinite horizon economy,

(k(t), c(t)) ultimately converges to (k̄, c̄). Note, also, that all solution trajectories in Fig. 3

are depicted as arching toward the stationary solution, a feature referred to as the turnpike

property of the optimal growth model (11).

F. Solution Trajectories with Boundary Conditions Imposed

So far we have said nothing about the boundary conditions k(0) = k0 and k(T ) = kT

appearing in the optimal growth problem (11). If T =∞, the only economically meaningful

solution trajectories are those that converge to the stationary solution point (k̄, c̄); for all

other solution trajectories eventually either blow up or go negative. [Note that a solution

trajectory cannot converge to any limit point in the k − c plane except (k̄, c̄), for any such

limit point must by construction be a stationary solution for (27) and (28); and limit cycles

are ruled out by (35) through (40).] Consequently, if T = ∞, then either the terminal

boundary condition for per-capita capital coincides with k̄ or no economically meaningful

optimal solution exists.

Suppose T is finite, and suppose kT is an arbitrary positive terminal boundary value

for k(T ). In Fig. 3, given any initial value k0 for k(0), there may exist many different

trajectories that traverse from k0 to kT while satisfying the Euler-Lagrange equations (27)

and (28). However, given the regularity conditions that have been imposed on preferences

and technology, there is at most one trajectory that takes on the value kT at the desired time

T . Such a trajectory cannot be determined from Fig. 3, alone, since actual motion through

time is not represented in this phase diagram. Moreover, there may be no trajectories that

traverse from k0 to kT in the finite time from 0 to T . For example, if kT is extremely large
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relative to the initial per capita capital level k0, it might not be technologically feasible for

the economy to reach kT by time T . In this case the optimal growth problem (11) with

initial and terminal boundary conditions k0 and kT has no solution.

The point (k̂, ĉ) depicted on the phase diagram is referred to in the literature as the golden

rule point for the basic optimal growth model (11) because, by construction, ĉ yields the

greatest constant level of per-capita utility u(ĉ) that could be sustained for all generations.

In particular, using (27), ĉ is supported by the per-capita capital level k̂ satisfying f ′(k̂) = θ,

implying that ĉ yields the largest possible value for c = [f(k) − θk]. Note, however, that if

ρ > 0, then the golden rule point (k̂, ĉ) is not a solution for the optimal growth problem (6)

even if the boundary conditions k(0) = k0 and k(T ) = kT are ignored. This follows since, by

construction, the golden rule point (k̂, ĉ) does not satisfy the Euler-Lagrange equation (28)

if ρ > 0.

If the discount rate ρ is strictly positive, the unique admissible stationary solution (k̄, c̄)

for equations (27) and (28) lies strictly to the left of the point (k̂, ĉ) along Vk. As earlier

explained, if problem (11) entails an infinite planning horizon T = ∞, an initial boundary

condition k(0) = k0 > 0, and a terminal boundary condition k(T ) = kT = k̄ at T =∞, then

the unique economically meaningful solution to (11) is given by that portion of the stable

manifold that traverses from (k0, c(k0)) to the stationary point (k̄, c̄). Consequently, the

optimal solution entails convergence to a limit point which yields strictly lower per capita

consumption than the golden rule point. How can this be?

The answer to this seeming paradox is that utility along the optimal solution path is

discounted over time if ρ > 0. That is, consumption for earlier generations is weighted more

heavily than consumption for later generations. For example, under the conditions of the

previous paragraph, suppose k0 = k̂. Then the “impatient” social planner would choose a

trajectory that starts at (k̂, c(k̂)), so the economy is on the stable manifold. Note, however,

that c(k̂) > ĉ. Moreover, the economy eventually converges to (k̄, c̄), where c̄ is a strictly
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lower consumption level than ĉ. Consequently, even though it is technologically feasible

to support the consumption level ĉ in each period t, the optimal growth solution entails a

consumption level that starts higher than ĉ at time 0 and that strictly declines over time to

a level that is lower than ĉ.

G. Generalization: Transversality Conditions

So far we have assumed that initial and terminal boundary conditions (0, k0) and (T, kT )

are given exogenously for the optimal growth problem. More generally, these initial and

terminal points could be included as additional choice variables for the social planner.

Figure 4: Two-stage method for determination of transversality conditions

For example, suppose the initial boundary conditions are given—the economy starts at

time 0 at some exogenously determined level k0 for k(0)—but the only restriction on the

terminal time T and the terminal per-capita capital level k(T ) is that (T, k(T )) must lie in

some exogenously given subset B of R2
+. The optimal growth problem thus takes the form

max
k∈K(B)

J(k) , (41)
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where K(B) denotes the set of all twice differentiable functions of the form k:[0, b1] → R

with k(0) = k0 and (b1, k(b1)) ∈ B. See Fig. 4(a).

In principle, the extended optimal growth problem (41) can be approached in two stages.

First, for each given b = (b1, b2) ∈ B, define K(b) to be the subset of all functions in K(B)

of the form k:[0, b1]→ R with k(0) = k0 and k(b1) = b2; see Fig. 4(b). Consider the problem

max
k∈K(b)

J(k) . (42)

Problem (42) is entirely analogous to the basic optimal growth problem (11) with given

initial and terminal boundary conditions. Thus, by Theorem 1, it holds as before that a

necessary and sufficient condition for k in K(b) to solve (42) is that k solve the Euler-

Lagrange differential equations (27) and (28).

For each b ∈ B, suppose there exists a unique function in K(b) that solves the optimiza-

tion problem (42). Let this solution be denoted by k(b). The second stage of the extended

optimal growth problem (41) then consists in selecting the optimal terminal point b ∈ B,

a finite-dimensional maximization problem. In particular, letting H:B → R be defined by

H(b) = J(k(b)) for each b ∈ B, this second-stage optimization problem takes the form

max
b∈B

H(b) . (43)

By construction, given any point b∗ ∈ B that solves (43), the corresponding trajectory k(b∗)

is a solution for the extended optimal growth problem (41).

The first-order necessary conditions for a point b∗ ≡ (T ∗, k∗T ) ∈ B to solve the maxi-

mization problem (43) are known as transversality conditions. In particular, if B takes the

form {(T, kT ) ∈ R2
+ | G(T, kT ) ≥ 0}, where G:R2

+ → R2 satisfies certain regularity condi-

tions, then problem (43) has the standard form of a nonlinear programming problem with

inequality constraints and the transversality conditions are simply the Karush-Kuhn-Tucker

conditions for this problem.
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For example, suppose the terminal time T is required to satisfy T = T ∗ for some ex-

ogenously given value T ∗ < ∞, and the terminal value k(T ∗) is simply restricted to be

nonnegative; that is, suppose

B = {(T, kT ) ∈ R2 | T = T ∗, kT ≥ 0} (44)

For this special case, it can be shown that the transversality condition for the choice of k(T ∗)

reduces to k(T ∗) = 0. This is intuitively sensible. Capital derives its value, in the problem

at hand, only through its effects on future consumption, hence planning to hold a positive

quantity of capital at the final time T ∗ would be a waste of resources.

In summary, an optimal solution k(b∗) for the extended optimal growth problem (41)

that requires choice of a terminal point b = (T, k(T )) ∈ B can in principle be determined by

the successive solution of the two finite-dimensional maximization problems (42) and (43).

The first-order necessary conditions for problem (42) yield the Euler-Lagrange differential

equations (27) and (28) as necessary restrictions on k(b∗), and the first-order necessary con-

ditions for problem (43) provide additional necessary restrictions on k(b∗) that are referred

to as transversality conditions.
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