EXERCISE 5: INDIVIDUAL (20 Points Total)
${ }^{* *}$ CAUTION: Late assignments will not be accepted - no exceptions.
Introductory Exercise on the Basic Optimal Growth Model

Basic Reference:

- [1] (**) "A Simple Illustrative Optimal Growth Model," posted online at Econ 502 Syllabus Section III.D
http://www2.econ.iastate.edu/classes/econ502/tesfatsion/OptGrow.pdf
Background Materials from Ref. [1]:
As in [1], let $\rho \geq 0$ be an exogenously given discount rate. Let $g>0$ denote the exogenously given growth rate of labor, and let $\delta \geq 0$ denote the exogenously given capital depreciation rate. Let $\theta \equiv[g+\delta]>0$. Finally, let sequences of real-valued per-capita capital and consumption levels over $[0, T]$ be denoted by

$$
\begin{align*}
\mathbf{k} & =(k(t): t \in[0, T]) \tag{1}\\
\mathbf{c} & =(c(t): t \in[0, T]) . \tag{2}
\end{align*}
$$

Consider the following intertemporal utility maximization problem:

$$
\begin{equation*}
\max _{\mathbf{c}, \mathbf{k}} \int_{0}^{T} u(c(t)) e^{-\rho t} d t \tag{3}
\end{equation*}
$$

subject to

$$
\begin{align*}
c(t) & =f(k(t))-\theta k(t)-D_{+} k(t), \quad 0 \leq t \leq T \tag{4}\\
k(0) & =k_{0} \tag{5}\\
k(T) & =k_{T} . \tag{6}
\end{align*}
$$

Let \mathbf{K} denote the collection of all twice differentiable functions \mathbf{k} taking the form $k:[0, T] \rightarrow$ R with boundary conditions $k(0)=k_{0}$ and $k(T)=k_{T}$. Using equation (3) to substitute out for $c(t)$ in the objective function, one obtains a representation for this objective function as a function only of \mathbf{k}, as follows:

$$
\begin{equation*}
J(\mathbf{k})=\int_{0}^{T}[u(f(k(t))-\theta k(t)-D k(t))] e^{-\rho t} d t \tag{7}
\end{equation*}
$$

Problem (3)-(6) then takes the compact form

$$
\begin{equation*}
\max _{\mathbf{k} \in \mathbf{K}} J(\mathbf{k}) . \tag{8}
\end{equation*}
$$

THEOREM [20, pp. 10-11]: Let $\rho \geq 0$ and $\theta \equiv[g+\delta]>0$ be given. Suppose the utility function $u: R_{++} \rightarrow R$ is twice continuously differentiable with $u^{\prime}>0$ and $u^{\prime \prime}<0$. Suppose the production function $f: R_{+} \rightarrow R$ is continuous over R_{+}and twice continuously differentiable with $f^{\prime}>0$ and $f^{\prime \prime}<0$ over R_{++}. Let \mathbf{K} denote the set of all twice differentiable functions \mathbf{k} of the form $k:[0, T] \rightarrow R$ with $k(0)=k_{0}$ and $k(T)=k_{T}$. Then, in order for a function \mathbf{k}^{*} in \mathbf{K} to be the unique solution for the optimal growth problem (8), it is necessary and sufficient that \mathbf{k}^{*} solve the following differential system:

$$
\begin{align*}
D k^{*}(t) & =f\left(k^{*}(t)\right)-\theta k^{*}(t)-c^{*}(t), \quad t \in[0, T] \tag{9}\\
D c^{*}(t) & =-\frac{u^{\prime}\left(c^{*}(t)\right)}{u^{\prime \prime}\left(c^{*}(t)\right)}\left[f^{\prime}\left(k^{*}(t)\right)-\theta-\rho\right], \quad t \in[0, T] \tag{10}
\end{align*}
$$

PART A (5 Points): Provide a careful economic interpretation for the maximization problem (8).

PART B (10 Points): Reference [1] (Section E, Figure 3) develops a phase diagram portrait for the Euler-Lagrange equations (9) and (10) for generally specified utility and production functions $u(c)$ and $f(k)$. Redo this phase diagram portrait using the following more precisely specified utility and production functions:

$$
\begin{array}{cl}
u: R_{++} \rightarrow R & \text { given by } u(c)=B-\exp (-\beta c), B>1, \beta>0 \\
f: R_{+} \rightarrow R & \text { given by } f(k)=k^{\alpha} \quad, \quad 0<\alpha<1 \tag{12}
\end{array}
$$

Be sure to show your work, step by step, justifying carefully each step. Also, be sure your resulting phase diagram portrait is carefully labeled and carefully explained.

PART C (5 Points): What additional dynamic properties (if any) can be deduced from your phase diagram portrait in Part B in comparison to the general phase diagram portrait developed in [1] (Section E, Figure 3)? Explain carefully.

