Agent-Based Computational Economics

Overview of the
Santa Fe Artificial Stock Market Model

Leigh Tesfatsion
Professor of Economics
Courtesy Professor of Mathematics &
Electrical and Computer Engineering (ECpE)
Iowa State University
Ames, IA 50011-1070

15 April 2009
Basic References (See the Econ 308 Syllabus for Links)

https://www2.econ.iastate.edu/tesfatsi/syl308.htm

Ref.[1] ** L. Tesfatsion, "Stock Market Basics"

Ref.[2] ** L. Tesfatsion, "Rational Expectations, the Efficient Market Hypothesis, and the Santa Fe Artificial Stock Market Model"

Ref.[3] * L. Tesfatsion, "Detailed Notes on the Santa Fe Artificial Stock Market Model" (NOTE: Ref.[3] contains a detailed glossary of terms. Also, the equation numbers appearing below in this slide-set are the same as in Ref.[3].)

https://www2.econ.iastate.edu/tesfatsi/BuildingTheSFASM.BLeBaron.pdf
Introduction to the Santa Fe Artificial Stock Market (SF-ASM) Model

• Originated in work at the Santa Fe Institute (SFI) in the late 1980s and early 1990s.

• **Five Developers of the SF-ASM:**
 - Blake LeBaron (economics);
 - W. Brian Arthur (economics);
 - John Holland (psychology/EE/CS, and father of GAs);
 - Richard Palmer (physics);
 - Paul Taylor (computer science).
• **Seminal Research:** One of the earliest attempts to develop and implement a *computational financial market model with heterogeneously learning traders*.

• Relatively simple model that attempts to address several important and controversial questions in financial economics.

• Many modeling issues not satisfactorily resolved by the SF-ASM model have been taken up in later research; see, for example, ref. [4].
Basic Objectives of the Authors

- Provide a test-bed for exploring the rational expectations hypothesis (REH, Ref.[2])
- Consider a traditional stock market model with traders assumed to satisfy the REH
- Replace traditional REH traders with traders who learn to forecast stock prices over time
- Study dynamics around a well-studied REH equilibrium (fundamental pricing, Ref.[1])
Basic Author Objectives ... Continued

• Examine whether the introduction of trader learning helps to explain empirical observations.

• In particular, does it help to explain well-documented financial anomalies, such as deviations of stock prices from “fundamental values”?

• Compare statistical characteristics of price and trading volume outcomes (model outcomes vs. actual empirical outcomes).
Basic Model Features (cf. Ref.[3])

- Discrete-time model: $t = 0, 1, 2, \ldots$
- Market participants consist of N stock market traders plus an “auctioneer”
- **KEY ASSUMPTION:** Traders are identical except that each trader individually forms expectations over time through inductive learning.
- Each trader has same initial wealth W_0 in the initial time period.
Basic Model Features... Continued

- Financial assets available for purchase at beginning of each period $t = [t,t+1)$:
 - **Risk-free asset F** (∞ supply) paying a **constant** known 1-period net return rate r
 - **N shares of a risky stock A**. Each share
 - pays an **uncertain** dividend d_{t+1} at the end of each period t (beginning of each period $t+1$);
 - has an **uncertain** one-period net return rate R_t over each holding period t.
• Let p_t denote the price of a share of the risky stock A at time t

• The expected net return rate R_t on this share over period t (i.e. from time t to time $t+1$) is defined as

$$R_t = \frac{p_{t+1}^e - p_t + d_{t+1}^e}{p_t}$$

• This definition implies that

$$p_t = \frac{d_{t+1}^e + p_{t+1}^e}{1 + R_t}$$
Basic Model Features ... Continued

• The expected net return rate R_t on a share of the risky stock A over period t satisfies:

$$p_t = \frac{p_{e_{t+1}} + d_{e_{t+1}}}{1 + R_t}$$

• Basic rule of thumb for an investor in period t:

Given $r =$ net return rate on the risk-free asset, **SELL** shares of A in period t if $R_t < r$ because this implies p_t is **GREATER** THAN the current fundamental value of these shares:

$$p_{f_t} = \frac{p_{e_{t+1}} + d_{e_{t+1}}}{1 + r}$$
Basic Model Features... Continued

• **Stock Dividend** d_t paid at beginning of each period $t = [t, t+1)$ is generated by a random process unknown to the traders (see equ.(1) in Ref.[3])

• Wealth-seeking traders have identical utility of **wealth function** $U(W)$ exhibiting constant absolute risk aversion.
• In beginning of each period \(t \), each trader chooses a portfolio \((X,Y)\), where \(X = \) holdings of risky stock \(A \) and \(Y = \) holdings of risk-free asset \(F \).

• Each trader’s objective in period \(t \) is to maximize his expected utility of wealth \(E(U(W_{t+1})) \) subject to the constraint

\[
(2) \quad W_{t+1} = \text{Value in period } t+1 \text{ of the asset portfolio } (X,Y) \text{ purchased in period } t
\]
• In beginning of each period t, each trader has a set of K if-then forecasting rules.

• Each forecasting rule forecasts the expected sum $[p_{t+1} + d_{t+1}]$ and generates an update of the rule’s “forecast variance.”

Forecast variance = a weighted average of a rule’s past squared forecast errors (deviations between actual and forecasted price-plus-dividend sums).
Basic Model Features ... Continued

- Form of an *if-then* forecasting rule:

Let \(VAR =: \) Updated forecast variance

\[
E[p_{t+1} + d_{t+1}] = a[p_t + d_t] + b.
\]

<table>
<thead>
<tr>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market state is in condition (C')</td>
<td>Set values (VAR', a', b')</td>
</tr>
</tbody>
</table>
Basic Model Features ... Continued

- The **specificity** of a forecasting rule = number of specific conditions incorporated into its “if” condition statement C.

- A forecasting rule is **activated** if its “if” condition statement C matches the trader’s current market state information.

- The **fitness** of a forecasting rule depends *inversely* on the rule’s forecast variance (error rate) and *inversely* on its specificity (thus encouraging parsimonious info use).
Time Line of Activities in Period t

- Period-t dividend d_t^* is publicly posted.
- Each trader $i=1,...,N$ determines a forecast
 \[E[p_{t+1} + d_{t+1}] = a'[p_t + d_t] + b' \]
 as a function of the \textit{yet-to-be determined} period-t market price p_t.
- He then generates a \textbf{demand function} giving his expected-utility-maximizing share holdings X_i as a function of p_t:
 \[X_i = X_i(p_t) \]
Each trader $i = 1, \ldots, N$ submits his demand function to the Auctioneer, who determines the *period-t market clearing price* p_t^*:

\[
\sum X_i = \sum X_i(p_t)
\]
The Auctioneer publicly posts p_t^*.

Each trader i purchases $X_i(p_t^*)$.

Each trader i uses (p_t^*,d_t^*) to update the fitness of the forecasting rule he used in period $t-1$ to generate a forecast $E[p_t + d_t]$.

Each trader i with probability p_u then updates his entire forecasting rule set via a genetic algorithm involving recombination, elitism, and mutation operations.
GA Classifier Learning

• Each trader $i = 1, ..., N$ updates his set of forecasting rules with an exogenously given probability p_u in each period t, making use of a Genetic Algorithm (GA).

• Thus, updating of forecasting rule sets happens in different time periods for different traders.

• p_u is a very important model parameter since it determines the traders’ “speed of learning”.
GA Classifier Learning ... Continued

- Current market state \rightarrow 12-bit array

- Each bit position in this 12-bit array corresponds to a distinct possible feature of the current market state:
 - Bit in kth position takes on value 1 if kth feature is true
 - Bit in kth position takes on value 0 if kth feature is false
GA Classifier Learning...Continued

- **12-bit array** used to describe market state

- **First six bit positions** ➔ *Fundamental Features*

 Is the current market price above or below the fundamental price level in the previous time period? *(six different possible discrepancy values)*
GA Classifier Learning ... Continued

- Next four bit positions
 - Technical Features
 Is the current market price above an n-period moving average of past prices? (four different values of n)

- Last two bit positions
 - Fixed Bit Values (no information)
12-Bit Array for GA Classifier Learning

<table>
<thead>
<tr>
<th>Bit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Price * interest/dividend > 1/4</td>
</tr>
<tr>
<td>2</td>
<td>Price * interest/dividend > 1/2</td>
</tr>
<tr>
<td>3</td>
<td>Price * interest/dividend > 3/4</td>
</tr>
<tr>
<td>4</td>
<td>Price * interest/dividend > 7/8</td>
</tr>
<tr>
<td>5</td>
<td>Price * interest/dividend > 1</td>
</tr>
<tr>
<td>6</td>
<td>Price * interest/dividend > 9/8</td>
</tr>
<tr>
<td>7</td>
<td>Price > 5-period MA</td>
</tr>
<tr>
<td>8</td>
<td>Price > 10-period MA</td>
</tr>
<tr>
<td>9</td>
<td>Price > 100-period MA</td>
</tr>
<tr>
<td>10</td>
<td>Price > 500-period MA</td>
</tr>
<tr>
<td>11</td>
<td>On: 1</td>
</tr>
<tr>
<td>12</td>
<td>Off: 0</td>
</tr>
</tbody>
</table>

Note on Rules 7-10:

MA := Moving Average

= Weighted average of past observed prices

Note on Rules 1-6:

pr/d > 1 if and only if p > [p+d]/(1+r), i.e., if and only if the current price p for a share of the risky stock A exceeds the “fundamental” value of this share realized in the previous time period. *(Refer back to slide 10.)*
GA Classifier Learning ... Continued

Why this market state description?

* Permits testing for the possible emergence of

 fundamental trading (heavy reliance on first six bit positions)

 versus

 technical trading (heavy reliance on next four bit positions)

 versus

 uninformed trading (heavy reliance on last two bit positions).
• Each forecast rule, taking form $\text{if}[C]\text{-then[forecast this]}$, is conditioned on a 12-bit market state C.

• Each bit in C has one of three possible values: 1 (true), 0 (false), or # (I don’t care).

• Specificity of C =: Number of 1 and 0 bits in C

• C is said to “match” the actual 12-bit market state if:
 (a) C has a 1 or # symbol in every position for which the actual market state has a 1;
 (b) C has a 0 or # symbol in every position for which the actual market state has a 0.
Experimental Design

- **Key Treatment Factor: “Speed of Learning”** Prob \(p_u \)
 Controls when each trader updates their forecasting rule set in any given time period

- **Slow-Learning Regime:** \(p_u = 1/1000 \)
 (GA learning invoked every 1000 trading periods on average for each trader)

- **Medium-Learning Regime:** \(p_u = 1/250 \)
 (GA learning invoked every 250 trading periods on average for each trader)
Experimental Findings

• **Slow-Learning Regime:** $p_u = 1/1000$
 Simulated data resemble data generated for a *rational expectations equilibrium (REE)* benchmark, for which 100% market efficiency holds by assumption.

• **Medium-Learning Regime:** $p_u = 1/250$
 Complex outcomes -- market does not settle down to a recognizable equilibrium. Simulated data in accordance with many empirical “anomalies” (deviations from REH) seen in actual stock markets.
Frequency of Use of “Technical Trading” Bits 7-10 in REE vs. Complex Regimes

Figure 3. Number of technical-trading bits that become set as the market evolves, (median over 25 experiments in the two regimes).
Final Remarks

- For a balanced detailed critique of the Santa Fe Artificial Stock Market (SF-ASM), see the working paper by Blake LeBaron that appears below as Ref. [5].

- In this working paper, LeBaron discusses the advantages and disadvantages of various design aspects of the SF-ASM, including the use of “classifier systems” for the representation and evolution of forecasting rules.

https://www2.econ.iastate.edu/tesfatsi/BuildingTheSFASM.BLeBaron.pdf