
Implementing Per Bak’s Sand Pile Model

as a Two-Dimensional Cellular Automaton

Leigh Tesfatsion

21 January 2009
Econ 308

Presentation Outline

• Brief review: What is a Cellular Automaton?

• Sand piles and “self-organized criticality”

• Algorithmic description of Per Bak’s sand pile model

as a two-dimensional cellular automaton

(checkerboard model)

• Pseudo-code description of Per Bak’s sand pile model

(Winslow, 1997)

• Is the resulting CA model consistent with empirical

data? If not, what might be done to “fix up” the

CA model?



As described in previous notes...

A Cellular Automaton (CA) is:

• An array of cells in m dimensions

(generally m=1 or m=2)

• In each cell, a finite state machine (FSM)

• A FSM can be in only one of a finite number of states

at any given time.

• Transitions between states from one time step to the

next for an FSM are governed by a rule (of behavior)

in the form of a state-transition table.

• Given the current input and the current internal state

of the FSM, the rule specifies the state to be adopted

by the FSM at the next time step.



Simple One-Dimensional CA Illustration:

• CA = Row of six FSMs, each representing rule R

• Rule R: Die (turn or stay white) if at least one of

your neighbors is dead (white); otherwise turn or

stay alive (black).

Time Step 1:

Time Step 2:



Per Bak’s Sand Pile Model

and Self-Organized Criticality

Basic References:

1. Batten (2000, pp. 10-12, 19-22) (Chapters/entire book posted at

the On-Line Econ 308 Syllabus)

2. Nathan Winslow (1997), “Introduction to Self-Organized

Criticality and Earthquakes”, discussion paper, Depart-

ment of Geological Sciences, University of Michigan.

https://www2.econ.iastate.edu/classes/econ308/tesfatsion/SandpileCA.Winslow97.htm

• When you first start building a sand pile on a tabletop, the

system is weakly interactive. A sand grain drizzled from above

onto a randomly chosen location on the tabletop has little effect

on sand grains at other locations.

• However, as you keep dribbling sand grains from above onto ran-

domly chosen tabletop locations, eventually the sand pile at one

or more locations reaches a “critical state” where the pile cannot

grow any higher without a breakdown of the pile occurring.

• These breakdowns can be of various sizes depending on the exact

configuration of the sand pile at the time the breakdown occurs.

• Bak refers to these critical states as states of self-organized crit-

icality (SOC), i.e., states in which the system has self-organized

to a point where it is just barely stable.



What does it mean to say that “breakdowns of all dif-

ferent sizes” can happen at an SOC state?

• The dribbling of one more grain of sand onto a location in an

SOC state can result in an “avalanche” or “sand slide,” i.e., a

cascade of sand down the edges of the sand pile and (possibly)

off the edge of the table.

• The size of this avalanche can range from one grain to catas-

trophic collapses involving large portions of the sand pile.

• Bak conjectured that the size distribution of these avalanches

obeys a “Power Law” over any specified period of time T.

• That is, he conjectured that the average frequency of a given size

of avalanche is inversely proportional to some power of its size,

implying that big avalanches are rare and small avalanches are

frequent.



So what’s the formal definition of a “Power Law”?

(See “Notes on Batten Chapter 1,” Glossary, p. 13.)

Two positively-valued variables N and C are said to satisfy a POWER

LAW relationship if there exist positive constants K and s such that

N = KC−s = K

 1

Cs

 . (1)

Letting n=ln(N), k=ln(K) and c=ln(C), where ln denotes the “nat-

ural” (base e) logarithm, it can be shown that equation (4) implies

the linear relationship

n = k − sc . (2)



EXAMPLE:

Over 24 hours you might observe one avalanche involving 1000 sand

grains, 10 avalanches involving 100 sand grains, and 100 avalanches

involving 10 sand grains.

This is consistent with a power law of the form

N = 1000 ·
 1

C

 , (3)

where N = number of avalanches and C = number of sand grains

involved in the avalanche.

YOU CHECK!!



An Algorithmic Description of Bak’s Sand Pile Model

Nathan Winslow (1997) gives an algorithmic description of Bak’s

sand pile model, summarized below, but no actual code.

The following pages translate Winslow’s model description first into a

verbally expressed “flow diagram” giving the logical flow of activities

within the model and then into pseudo-code that could be fleshed

out into an actual working program.

• A sand pile on a tabletop can be modelled as a two-dimensional

“cellular automaton” (checkerboard grid).

• Each cell (checkerboard square) keeps numerical track of the “av-

erage gradient” G of the sand pile in that cell as successive sand

grains are added to the sand pile.

• Each cell is assigned a common user-specified critical value CV ,

which can be any number greater than or equal to 3.

• Starting from some initial distribution of G values across the en-

tire automaton (e.g., all G values set to 0), SMax grains of sand

are dropped on SMax randomly selected cells, which activates

the cells.



• Each time a cell B is activated, its G value is increased by one.

• If the new G value for cell B exceeds the critical value for cell B,

then the G value for cell B is decreased by 4 and the G values

of the four neighbors of cell B (north, east, south, and west) are

each increased by 1.

• If the new G value for any of these neighboring cells – say cell

B* – now exceeds the critical value for cell B*, then the new G

value for cell B* is decreased by 4 and the G values of the four

neighbors of cell B* are each increased by 1. And so forth and

so on.

• Winslow (1997) claims that a plot of the avalanche size C versus

the average frequency of occurrence N(C) of avalanches of size

C for his sand pile model obeys a power law distribution,

N(C) = K

 1

C

 . (4)

where C is the number of cells whose G value is changed as a

result of the avalanche. See his figures 2 and 3.



Pseudo-Code for Winslow’s Sand Pile Model

on an 8 × 8 Tabletop

A. The Main Program

int main () {
int SMax; //Number of dribbled grains of sand

Construct a SandDribbler agent;

Construct 64 SandPileCell agents on 8 × 8 checkerboard;

Construct and fill SandPileCell array B[8,8];

SandDribbler.StartSim(SMax,B);

}



B. Pseudo-Code for the SandDribbler Agent

class SandDribbler {
StartSim(SMax,B); // Start the simulation

}

void StartSim(SMax,B) {
int U;

int V;

//Randomly dribble SMax grains of sand

//on the sand pile.

For (int S = 0; S < SMax; S++) {
U = Rand{1,...,8}; // Randomly select location (U,V)

V = Rand{1,...,8};
B[U,V].Activate(); //Activate agent at (U,V)

}
}



C. Pseudo-Code for the SandPileCell Agent

class SandPileCell {
int A ; // Active (A=1) or inactive (A=0) agent

int G; // G = Average gradient value of agent

int CV; // CV = Critical value of agent

int X; // X-coordinate for the agent

int Y; // Y-coordinate for the agent

Activate(); // Activation rule for the agent

Update(); // Update rule for the agent

}

void Activate() {
A = 1; // Activate myself

Update(); // Implement my update rule

}

void Update() {
G = G+1;

If (G > CV) { // Does my G exceed my CV?

G = G-4; // If yes, roll 4 of my grains “down hill”

// Activate my north, east, south, and west neighbors

B[X,Y+1].Activate();

B[X+1,Y].Activate();

B[X,Y-1].Activate();

B[X-1,Y].Activate();

}
A = 0; // De-activate myself

}



This pseudo-code is deficient on several counts.

• First, it is logically incomplete.

(a) For example, the pseudo-code makes no allowance for Sand-

PileCell agents located at the “edge” of the table who do not

have four neighbors.

(b) Also, if two SandPileCell agents are activated “at the same

time,” and the activation results in two sand grains “rolling

down” on a third SandPileCell agent C “at the same time,”

the program has to handle the implementation of these mul-

tiple effects on C.

(c) Currently the coding of the Update() function for the Sand-

PileCell agents only handles one rolled-down sand grain at a

time, but nothing in the code explains how multiple possible

sand-grain effects on C “at the same time” are ordered into

a sequence of single-grain effects.

• Second, currently the SMax grains of sand are dribbled “all at

once.” presumably one would want to control the time between

the dribbling of the SMax grains of sand. For example, one might

want to wait until all avalanche activity (if any) resulting from

the dribbling of grain S has come to a stop before grain S+1 is

dribbled, so that the avalanches do not interfere with each other.



• Third, it is not clear that it captures the empirical aspects of

sand piles and sand pile avalanches in an intuitively compelling

manner.

(a) Consider what you would see, for example, if you graphically

visualized the agents in the sand pile model as currently rep-

resented by this pseudo-code.

(b) Would you see something that “looks like” a real sand pile

subject to the type of sand dribble mechanism originally en-

visioned by Per Bak?



FOR THOSE WITH PROGRAMMING SKILLS

AND INTEREST:

• What about trying your hand at writing complete code for imple-

menting Bak’s sand pile model that better captures the empirical

attributes of actual sand piles!

• Do you think this would be easy to do?

• How might you go about it?



Actually, Winslow (1997) discusses the difficulties that experimenters

have had in trying to get actual sand piles to behave in the idealized

way captured in Per Bak’s theory and implemented through simple

computer models.

Winslow (1997) cites interesting attempts by Nagel (1992) and Bretz

(1992) to conduct experiments with real sand piles.

These researchers were UNABLE to obtain SOC results with AC-

TUAL sand piles unless the experimental conditions were rather del-

icately tuned, leading Winslow to question whether actual sand piles

can legitimately be said to have self -organizing critical states even

when critical slope values are found.


