Introductory Notes on the Structural and Dynamical Analysis of Networks

Leigh Tesfatsion
Prof of Econ, Courtesy Professor of Mathematics and ECpE, Iowa State University, Ames, IA 50011

Important Acknowledgement:

These notes are based (with edits/corrections) on an on-line "Complex Networks" slide presentation by

Changsong Zhou
AGNLD, Institute für Physik
Universität Potsdam
Last Revised: 15 April 2009

What is a Network?

- Anetwork is a (finite) collection of entities together with a specified pattern of relationships among these entities.
- Three main tools have been used for the quantitative study of networks:
- graph theory;
- statistical and probability theory;
- algebraic models.

1. INTRODUCTION

Technological Networks

World-Wide Web

Internet

Power Grid

Social Networks

Friendship Net

Citation Networks

Movie Actors
Sexual Contacts

Collaboration Networks

1. INTRODUCTION

Transportation Networks

Airport Networks

Road Maps

Local Transportation

Biological Networks

Protein interaction

Neural Networks

Genetic Networks

Metabolic Networks
2. NETWORKS...
GOAL: A unified approach
2. NETWORKS...
GOAL: A unified approach

Example: Food Web

 enabling analysis of the underlying a wide variety of Complex Systems

connection topology

 Complex Systems2. NETWORKS...

Graphical Approach: Vertices and Edges

Example: Simple graph G with Vertex Set $\mathrm{V}(\mathrm{G})=\{\mathrm{V} 1, \ldots, \mathrm{~V} 8\}$
$\mathrm{A}_{\mathrm{ij}}=1$ iff (i, j) is in the Edge Set E(G)

Symmetrical Adjacency Matrix A for the Simple Graph G

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	0	1	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	0	1	1	0
6	0	0	1	0	1	0	0	1
7	0	0	0	1	1	0	0	1
8	0	0	0	0	0	1	1	0

2. NETWORKS...

Graphical Approach...

Directed Graph G
Simple Graph

$A_{i j}=1$ iff (i, j) is in the edge set $\mathrm{E}(\mathrm{G})$

Non-Symmetrical Adjacency Matrix A for the DiGraph

	1	2	3	4	5	6	7	8
1	0	0	1	0	0	0	0	0
2	1	0	0	1	0	0	0	0
3	1	1	0	0	0	1	0	0
4	0	0	0	0	0	0	1	0
5	0	1	0	1	0	1	1	0
6	0	0	0	0	1	0	0	1
7	0	0	0	0	0	0	0	1
8	0	0	0	0	0	0	1	0

2. NETWORKS...

Graphical Approach...

Simple Graph

DiGraph

Weighted DiGraph

2. NETWORKS...

Structural Characterization

Vertex Degree: $k(v)$
Simple Graph

e.g., Trade Network

$$
k(\cdot)=3
$$

2. NETWORKS...

Structural Characterization...

Clustering Coefficient: $C(v)$

Simple Graph

e.g., Trade Network

Structural Characterization...

Clustering Coefficient: $C(v)$

Simple Graph

e.g., Trade Network

- Degree of vertex • (number of directly connected vertices): $\mathrm{k}(\bullet)=3$

Structural Characterization...

Clustering Coeficient: $C(v)$

Simple Graph

e.g., Trade Network

- Degree of vertex •: $k(\bullet)=3$
- Total number of possible connections among these 3 neighbors:

$$
1 / 2 \cdot \mathrm{k}(\mathrm{v}) \cdot[\mathrm{k}(\mathrm{v})-1]=1 / 2 \cdot[3 \cdot 2]=3
$$

Structural Characterization...

Clustering Coefficient: $C(v)$

Simple Graph

e.g. Trade Network

- Number of actual connections among the three neighbors $=1$
- Total number of possible connections:

$$
1 / 2 \cdot \mathrm{k}(\mathrm{v}) \cdot[\mathrm{k}(\mathrm{v})-1]=1 / 2 \cdot[3 \cdot 2]=3
$$

- $C(v)=1 / 3=0.33333$
- Measures how well my neighbors are connected to each other!

2. NETWORKS...

Structural Characterization...

Simple Connected Graph
"Distance" vi to vj?

e.g., Trade Network
2. NETWORKS...

Structural Characterization ...

Simple Connected Graph
Length of this path vi to $v j=4$

e.g., Trade Network

2. NETWORKS...

Structural Characterization...

Simple Connected Graph
Length of this path vi to $\mathrm{vj}=3$

e.g., Trade Network

2. NETWORKS...

Simple Connected Graph
e.g., Trade Network

[^0]Distance vi to $v j=$ Shortest path length vi to vj , here equal to 3

Structural Characterization...

0

2. NETWORKS...

Structural Characterization...

Simple Connected Graph

e.g., Trade Network

Distance from vertex vi to each other vertex v?

2. NETWORKS...

Structural Characterization...

Simple Connected Graph
Distance-1 Vertices from Vertex vi

e.g., Trade Network

2. NETWORKS...

Structural Characterization...

Simple Connected Graph
Distance-2 Vertices from Vertex vi

e.g. Trade Network

2. NETWORKS...

Characterization

Distance 3-Vertices from Vertex vi

Simple Connected Graph

Distance $\boldsymbol{L}_{i j}:$ Length of the shortest path(s) from vi to vj
2. NETWORKS...

$L(G)=$ Characteristic Path Length of Graph G

- All-to-all distance matrix:
$\boldsymbol{L}_{i j}$ Length of the shortest path(s)

	1	2	3	4	5	6	7	8	9
1	0	1	1	2	2	2	3	3	4
2	1	0	1	1	1	2	2	3	4
3	1	1	0	2	2	1	3	2	3
4	2	1	2	0	1	2	1	2	3
5	2	1	2	1	0	1	1	2	3
6	2	2	1	2	1	0	2	1	2
7	3	2	3	1	1	2	0	1	2
8	3	3	2	2	2	1	1	0	1
9	4	4	3	3	3	2	2	1	0

$L(\boldsymbol{G})=$ Average of L_{ij} over all vertices vi and $\mathrm{vj}(\mathrm{i} \neq \mathrm{j})$ in $\mathrm{V}(\mathrm{G})=1.94$
2. NETWORKS...

E-R Random Graph Model

Paul Erdös \& Alfréd Rényi (Hungarian Academy of Sciences, 1960):

Start with a collection of N unconnected vertices.

Then, for each distinct pair of vertices, connect them by an edge with probability p.

Denote the resulting graph as $\mathrm{G}=\mathrm{G}(\mathrm{N}, \mathrm{p})$

2. NETWORKS...

E-R Random Graph Model...Continued

- Degree distribution: $\mathrm{P}_{\mathrm{G}}(\mathrm{k})$

$\mathrm{N}=1020$
$p=0.2$

Poissonian!
$\mathrm{P}_{\mathrm{G}}(\mathrm{k})=$ Probability that a randomly selected vertex in G will have degree k
$\mathrm{P}_{\mathrm{G}}(\mathrm{k}) \sim\left[\mathrm{e}(-\mathrm{z}) \mathrm{z}^{\mathrm{k}}\right] / \mathrm{k}$! for $\mathrm{G}=\mathrm{G}(\mathrm{N}, \mathrm{p})$
where $\mathrm{z}=$ mean k (depends on N, p)
2. NETWORKS...

Graph G for a Regular Ring Lattice

- Regular $=$ Every vertex has the same degree
- $|\mathrm{V}(\mathrm{G})|=$ No. of Vertices $=16$
- Degree $\mathrm{k}=4$
- Clustering: $\mathrm{C}(\mathrm{G})=1 / 2$
- Characteristic Path Length:

$$
\mathrm{L}(\mathrm{G})=36 / 15=12 / 5
$$

2. NETWORKS...

Small-World Network (SWN) Models

Duncan Watts \& Steven Strogatz (Nature, 1998):
Construction of $\operatorname{SWN} \mathrm{G}(\mathrm{p}), 0 \leq \mathrm{p} \leq 1$

Choose a vertex v and edge e^{*} that connects v to its nearest neighbor v^{*} in clockwise direction.

With probability p , reconnect edge to a vertex $v^{* *}$ chosen uniformly at random over the ring but with duplicate edges forbidden.

Continue process clockwise around ring until 1 lap is complete.

SWN Models...Continued

Watts-Strogatz 1998: Construction of Small-World Network G(p)
Next consider edges e' at distance 2
 from from each v in clockwise direction, and randomly rewire with probability p .

Moving clockwise, complete a full lap of distance-2 rewiring.

In general, for a ring of any even degree k , successively rewire ALL edges with probability p by completing k/2 laps around ring.

Rewired edges are called "SHORT-CUTS"

2. NETWORKS...

SWN Models...Continued

Watts-Strogatz 1998: Construction of Small-World Network G(p)

- For a range of p's with $0<p<1$, the SWN G(p) is characterized by
- High clustering C(p)/C(0)
- Short path length L(p)/L(0)

Watts, Strogatz. Nature 393/4, 1998

2. NETWORKS...

SWN Models...Continued

Albert-Lázló Barabási (A-B) Scale-Free Network (Science, 1999):

- At each step add new vertex v to graph and connect it to 2 randomly selected existing vertices v_{i} using "preferential attachment" prob's

- Results:
- "Richer-Get-Richer"
- $P_{\boldsymbol{G}^{(}}(k) \sim k^{-3}$ (Power Law =Scale Free)

2. NETWORKS...

Properties of the Network Models

	Regular	WS Small-World AB Small-World	E-R Random	
Path length	Long	Short	Short	Short
Clustering	Large	Large	Large	Small

Small-world networks fall "between" regular and E-R random networks!
2. NETWORKS...

Properties of the Network Models...

Regular Lattice

$$
\mathrm{P}_{\mathbf{G}}(\mathrm{k})=\delta(\mathrm{k} ; \mathrm{kTrue})
$$

where $\delta(\mathrm{k}$; kTrue) equals 1 if $\mathrm{k}=\mathrm{kTrue}$ and 0 for all other k

E-R Random Graph

$\mathrm{P}_{\mathbf{G}}(\mathrm{k}) \sim k^{-3}$
power law

$\mathrm{P}_{\mathbf{G}}(\mathrm{k}) \sim\left[\mathrm{e}(-\mathrm{z}) \mathrm{z}^{\mathrm{k}}\right] / \mathrm{k}!$
$\mathrm{z}=$: mean k
2. NETWORKS...

Small-World Nets: Robustness to Shocks

- Network Resilience:
- Highly robust against RANDOM failures of vertices, e.g., vertex v^{*} shown above

2. NETWORKS...

Small-World Nets: Significant Impacts

- Highly robust against RANDOM failures of vertices, e.g., vertex v^{*} shown on previous slide
-

However,

orld Nets: Significant Impacts

- Network Resilience:

2. NETWORKS...

Small-World Nets: Significant Impacts

- Network Resilience:

- Highly robust against RANDOM failures of vertices, such as vertex v^{*} shown above
- However, highly vulnerable to deliberate attacks on HUBS (i.e., vertices having a relatively high degree k), such as vertex v’ shown above.

2. NETWORKS...

Small-World Nets: Significant Impacts

- Network Resilience:

- Highly robust against RANDOM failures of vertices, such as vertex v* shown above
- However, highly vulnerable to deliberate attacks on HIUBS, e.g., vertex v' shown on previous slide

2. NETWORKS...

So how well do YOU know Kevin Bacon?

2. No how well do YOU

- Small-World Effect = Hypothesis that every two people in the world are connected by a surprisingly short chain of social acquaintances.
- Example: The trivia game Six Degrees of Kevin Breon
 .

Six Degrees of Kevin Bacon...

- Name taken from 1990 stage play by American playright John Guare: Six Degrees of Separation
- Play loosely based on 1967 small-world experiment by Stanley Milgrom suggesting random pairs of U.S. citizens were connected on average by a chain of six social acquaintances (people on a first-name basis).
- Pick any film actor A, then try to link this actor to Bacon via a chain of films.
- Actor set for first film in chain must include A, each successive film must include an actor from previous film, and final film must include Bacon among its actors.

2. NETWORKS...

Six Degrees of Kevin Bacon....
Excample: (from Wikipedia, accessed 4/8/07)
https://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon

- Blvis Presley was in Change of Habit (1969) with

Edward Asner

- Edward Asner was in JFK (1991) with Kevin Bacon
- Therefore, Elvis Presley has a Bacon Number = 2 .

2. NETWORKS...

What's the average distance between Kevin Bacon and all other actors? (from Albert-Lázló Barabási, https://barabasi.com/book/network-science)

No. of movies : $46 \quad$ No. of actors : 1811
Average separation: 2.79

	Rank
	1
Is Kevin Bacon	2
the most	4
connected actor?	5
	7
	8
	9
	10
11	
	12

Name
Rod Steiger
Donald Pleasence
Martin Sheen
Christopher Lee
Robert Mitchum
Charlton Heston
Eddie Albert
Robert Vaughn
Donald Sutherland
John Gielgud
Anthony Quinn
James Earl Jones

Average distance	\# of movies	\# of links
2.537527	112	2562
2.542376	180	2874
2.551210	136	3501
2.552497	201	2993
2.557181	136	2905
2.566284	104	2552
2.567036	112	3333
2.570193	126	2761
2.577880	107	2865
2.578980	122	2942
2.579750	146	2978
2.584440	112	3787

876
Kevin Bacon
2.786981
$46 \quad 1811$

[^0]:

