
1

Learning Algorithm Illustrations:
From Simple to Deep

Leigh Tesfatsion

Professor Emerita of Economics
Courtesy Research Professor of Electrical & Computer Engineering

Iowa State University, Ames, IA 50011-1054

https://www2.econ.iastate.edu/tesfatsi/

tesfatsi@iastate.edu

Last Revised: 28 November 2023

http://www2.econ.iastate.edu/tesfatsi/
mailto:tesfatsi@iastate.edu

2

References & Acknowledgement

Main References:

[1] “Notes on Learning”

https://www2.econ.iastate.edu/classes/econ308/tesfatsion/learning.Econ308.pdf

[2] “Learning and the Embodied Mind”

https://www2.econ.iastate.edu/tesfatsi/aemind.htm

Important Acknowledgement:

Some of the following slides are adopted from the following
great online slide presentations:

Andrew Barto, “Searching in the Right Space”

Bill Smart, “Reinforcement Learning: A User’s Guide”

Bill Tomlinson, “Biomorphic Computing”

Wendy Williams, “GA Tutorial”

Nicolas Galoppo von Borries, “Intro To ANNs”

http://www2.econ.iastate.edu/classes/econ308/tesfatsion/learning.Econ308.pdf
http://www2.econ.iastate.edu/tesfatsi/aemind.htm

3

Presentation Outline

❑ 1. Overview

❑ 2. Reactive Reinforcement Learning (RL)

 Example 1: Deterministic reactive RL

(e.g., Derivative-Follower)

 Example 2: Stochastic reactive RL

(e.g., Roth-Erev algorithms)

❑ 3. Belief-Based Learning

 Example 1: Fictitious play

 Example 2: Hybrid forms

(e.g., Camerer/Ho EWA algorithm)

4

Presentation Outline…Continued

❑ 4. Anticipatory Learning

(Example: Q-Learning)

❑ 5. Evolutionary Learning

(Example: Genetic Algorithms - GAs)

❑ 6. Connectionist Learning

(Example: Artificial Neural Nets - ANNs)

5

1. Overview

 So far, we have worked with strategies for very simple one-stage
and iterated (multi-stage) games

 The strategies we have seen to date for iterated games have been
adaptive in the following sense:

➔ The action dictated by the strategy at any given time is conditioned on the
current (information) state of the player.

❑ However, this adaptation has been determined by a fixed rule in
advance of any actual game play.

Example: Fixed rule defining the Tit-For-Tat (TFT) strategy

Play `cooperate’ in the first stage. Then, in each successive

stage, play the same move (`cooperate’ or `defect’) that your

rival played in the previous stage.

6

Axelrod Tournament Demo
Basic Tournament by R. Axelrod; Demo developed by C. Cook

https://www2.econ.iastate.edu/tesfatsi/acedemos.htm

 User-specified strategies for
playing a specified type of
game (e.g., PD, Chicken, Stag
Hunt) are pitted against one
another in repeated round-
robin play.

 KEY ISSUE

What types of strategies
perform best over time?

Will nasty or cooperative
types prevail?

http://www2.econ.iastate.edu/tesfatsi/acedemos.htm

7

Overview … Continued

 In the next part of the course, we will investigate adaptive
strategies for more complicated types of iterated market
games.

 We will also investigate the possibility of learning in iterated
market games.

 That is, we will want to permit one or more players to
structurally modify their strategies (rules for play) during
successive game iterations based on sequentially observed
events.

8

Overview … Continued

Learning means …. for example:

❑ A player starts an iterated game with an initial
strategy (“policy”) π dictating an action a to be
taken in each state s:

State s ➔ Action a

❑ But, after observing the payoff (“reward”) r from

using this state-action association, the player

eventually decides to change this association:

State s ➔ Action a*

9

Caution: Intrinsic Ambiguity in the Distinction
between Adaptation and Learning

❑ Suppose an agent is acting in accordance with a
particular state-action association s → a in a general
environment e.

❑ Suppose something happens (e changes to e*) that
convinces the agent to change this association to
some other association s → a*.

❑ If the definition of “state” is expanded from s to (s,e),
the associations (s,e) → a and (s,e*) → a* have not
changed.

10

General Types of Learning

 Unsupervised Learning

◼ Update structure based on intrinsic motivation (curiosity,
enjoyment, moral duty, …)

 Reinforcement Learning (RL)

◼ Update structure in response to successive rewards
attained through actions taken

 Supervised Learning

◼ Update structure on basis of examples of desired (or
required) state-action associations provided by an expert
external supervisor

11

Reinforcement Learning (RL)

 Policy : Maps each state s to an action choice a

 Reward r: Immediate value of state-action pairing

 Transition model T(s,a)=s’: Maps current state-action
pairing (s,a) to a next state s’

Agent

Environment

State s Action a

Policy

 sss 221100 r a

2

r a

1

r a

0 ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯
:::

reward r

❑ Elements of traditional RL:

12

Elements of Traditional RL …

RL

System
input (s,a) next state s’

reward r (“utility”, “score”, “payoff”, “penalty”)

Basic Intuition: The tendency to take an action a in
state s should be strengthened (reinforced) if it produces
favorable results and weakened if it produces
unfavorable results.

13

Traditional RL in More Detail

1

1

 :statenext resulting and

 :reward resulting gets

)(: stepat action produces

 : stepat state observesAgent

,2,1,0 :steps timediscreteat interact t environmen andAgent

+

+

=

t

t

tt

t

s

r

sAat

Sst

t

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

action atstate st

X

reward rt

Agent

Environment
rt+1

s

st+1

t = 0, 1, 2, …

14

Environment

actionstate

reward
Agent

Traditional RL View of
Agent Action Choice

States and rewards are modeled as external forces
determining an agent’s choice of actions.

15

In Accord with Human Motivation?

Factors that energize a person to act and that
direct his or her activity:

 Extrinsic Motivation: Being moved to act in hopes of
receiving some external reward ($$, prize, praise, etc.)

 Intrinsic Motivation: Being moved to act because it is
perceived to be inherently desirable, enjoyable, moral,
…

16

external
environmental

state se

memory

intrinsic
state si

intrinsic needs
and preferences

RL
policy

A More Modern Extrinsic/Intrinsic View
of Agent Action Choice

intrinsic beliefs

externally
expressed
action a
= π(se,si)

se

AGENT

17

Intrinsic Motivation: Questions

 An activity is intrinsically motivated if an agent does it
for its own sake rather than to receive specific rewards
(or avoid specific penalties)

 Curiosity, exploration, moral duty, . . .

 Can a computational learning system be intrinsically
motivated?

 Specifically, can a computational RL agent be
intrinsically motivated?

(Cf. Work by Andrew Barto and Satinder Singh)

18

2. Reactive RL

Asks…

Given past events, what action

should I take now?

19

Example 1: Deterministic Reactive RL
Derivative-Follower (DF) Adaptation

(Greenwald and Kephart, 1999)

❑ Originally developed as a simple way for computational agents
to repeatedly modify a scalar decision d.

❑ The DF agent experiments with incremental increases or
decreases in d of a given magnitude ∆d > 0.

❑ An external reward is attained after each change in d.

❑ The DF agent continues to move d in the same direction
(increases or decreases) until the reward level falls, at which
point the direction of movement in d is reversed.

❑ Letting states s = ∆reward and actions a = ± ∆d, the associations
s → a are in fact fixed in advance.

20

DF Adaptation:
A Simple Market Example

❑ Each day a firm produces b* pounds of beans.

❑ On the first day the firm selects a unit price po

($’s per pound) at which to sell b*.

❑ The firm then posts successively higher daily prices p
for beans of the form po+∆p, po+2∆p, … with ∆p > 0
until profits are observed to fall

❑ The firm then reverses course and starts to decrease p
by step-size ∆p. And so on…

❑ Question: When will this work well (if ever)?

21

When will DF adaptation
work well (if ever)?

 Suppose profits are a concave function of the price p

Profits

Bean Price p0
po po +∆p

p*

DF agent will end here

po’

po - ∆p

22

But suppose profits are NOT a
concave function of the price p?

 Can end up on the wrong peak!

Profits

Bean Price p0
po po+∆p p*

DF agent could end here

True max
profit point

23

Or suppose a profit-seeking firm must set
BOTH price AND quantity levels?

 Where to start, which direction to search in, and how far to
search in this direction?

Bean Price p

Beans b0

?

?

?

?

?

24

A profit-seeking firm should try to stay on or above
its marginal production cost function MC

 KEY ISSUE: Correlated ∆p and ∆b choices needed to stay above
MC and move in desirable directions

Bean Price p

Beans b0

?

?

?

?

?
MC

25

Example 2: Stochastic Reactive RL
Roth-Erev Algorithms

 Developed by Alvin E. Roth & Ido Erev (Games & Economic

Behavior, 1995, AER 1998)

◼ Based on observations of people’s behavior in iterated game
play with multiple strategically interacting players in various
game contexts

◼ Two extensions found necessary relative to RL methods
developed earlier by psychologists for individuals learning in
fixed environments:

 Need to “forget” rewards received in distant past

 Need for “spillover” of reward attributions across actions in early game
play to encourage experimentation and avoid premature fixation on a
suboptimal chosen action.

26

Roth-Erev Algorithm: Outline

1. Initialize propensities q for choosing actions.

2. Generate action choice probabilities Prob from

current action propensities q.

3. Choose an action a in accordance with current

action choice probabilities Prob.

4. Update action propensity values q using the reward

r received after the last chosen action a.

5. Repeat from step 2.

27

Roth-Erev Algorithm Structure

 Action choice a leads to a reward r, followed by updating of all
action choice propensities q based on this reward, followed by a
transformation of these propensities into action choice
probabilities “Prob”.

Action Choice a1

Action Choice a2

Action Choice a3

Choice Propensity q1 Choice Probability Prob1

Choice Propensity q2

Choice Propensity q3

Choice Probability Prob2

Choice Probability Prob3

r

updatechoose transform

28

Updating of Action Propensities

Parameters:
• qj(1) Initial propensity
• Experimentation

• φ Recency (forgetting)

Variables:
• aj Current action choice
• qj Propensity for action aj

• ak Last action chosen
• rk Reward for action ak

• t Current time step
• N Number of actions

Xxxx

xxxx

Xxx

xxx

Xxx
xxx

Ej(ε,N,k,t)

Ej(ε,N,k,t) =

ε

29

From Propensities to Probabilities

 Example A: Probability of choosing action j at time t
= Relative propensity for action j

q
j
(t)

Prob
j
(t) =

∑[q
m
(t)]

nn=1

N

30

Example B: Gibbs-Boltzmann Probability

 Handles negative propensity values qj(t)

 T = Temperature (“cooling”) parameter

 T affects dynamic shaping of Prob distributions

N

n=1

e q
n

(t)/T

Xxx

xxxx
Probj(t)

31

More on the Updating
of Action Propensities - 1

 Specification of the initial propensity levels qj(0) for an agent’s
feasible action choices aj, j =1,…,N

◼ Initial propensity levels act as “aspiration levels”

◼ High initial propensity levels ➔ Agent is disappointed with

the rewards resulting from his early chosen actions, which

encourages continued experimentation.

◼ Low initial propensity levels ➔ Agent is happy with the
rewards resulting from his early chosen actions, which
encourages premature fixation on one of these actions

32

More on the Updating
of Action Propensities - 2

 Might want to “forget” rewards r received in the distant
past in time-changing environments:

◼ Controlled by recency (forgetting) parameter φ lying between
0 and 1

◼ As φ approaches 1, heaviest weight placed on most recently
received rewards r

◼ As φ approaches 0, approximately equal weight placed on all
rewards r received to date

(exactly equal weight when φ = 0 and ε = 0)

33

More on the Updating
of Action Propensities - 3

 Need for “spillover” of reward attributions across
actions in early game play to encourage
experimentation and to avoid premature fixation on
a suboptimal chosen action ak.

◼ Controlled by experimentation parameter ε lying between
0 and 1

◼ As ε increases, more “spillover” of reward resulting from
chosen action ak to other actions aj, resulting in smaller
divergence among propensities qk and qj

◼ As ε approaches 0, reward resulting from chosen action ak

is attributed only to ak, implying only ak’s propensity qk is
updated

34

Modified Roth-Erev RL

 Nicolaisen, Petrov and Tesfatsion (IEEE TEC, 2001) modified the
response function Ej so propensity updating occurs even with
zero-valued rewards r, as follows: Letting aj = any feasible
action choice and ak = currently chosen action,

Xxx

xxx

Ej(ε, N, k, t)

 The NPT electricity traders typically achieved 90% or higher market efficiency
using Modified Roth-Erev RL.

35

Modified Roth-Erev RL

 NPT* electricity traders typically achieved market efficiency
levels ≥ 90% using Modified Roth-Erev RL and much lower market
efficiency levels (e.g. 20%) using Original Roth-Erev RL.

*Nicolaisen, J., Petrov, V., and Tesfatsion, L., “Market Power and Efficiency in a

Computational Electricity Market with Discriminatory Double-Auction Pricing”. IEEE
Transactions on Evolutionary Computing 5, 5 (October 2001), 504–523.

 See also Mridul Pentapalli, "A Comparative Study of Roth-Erev and Modified
Roth-Erev Reinforcement Learning Algorithms for Uniform-Price Double
Auctions,” M.S. Thesis Talk, March 2008

https://www2.econ.iastate.edu/tesfatsi/MridulPentapalli.MSThesisTalk2008.pdf

http://www2.econ.iastate.edu/tesfatsi/MridulPentapalli.MSThesisTalk2008.pdf

36

Illustration: A Bean Firm in a
Computational Market Economy

 Strategic learning agent

 Gains profit by producing and selling beans b, a

perishable (nonstorable) good measured in lbs

 Adjusts bean production and price level in each

trading period t using Modified Roth-Erev RL

— Period t Action = Choice of supply offer of form

(Production Level b, Unit Price p)

 Marginal cost of production = $2 per lb

 Production limit in each period t: 100 lbs

37

Bean Firm: Structural Conditions

 Action Domain AD: Set of N=10 feasible action choices

{ (b1,p1), …, (bN,pN) } = {a1,…,a10}

Bean Price p

Beans b
O

MC

p1

b1

$2

a1

100

Production
capacity
limit

38

Bean Firm Learning Method:
Modified Roth-Erev RL – Step 1

 Initial propensity levels for actions a1,…,a10:

qj(0) = 20, j = 1,….,10

 Initial probability distribution for choosing among the

feasible actions a1,…,a10:

Probj(0) = exp(qj(0)/T)/ ∑ exp(qn(0)/T)

= 1/10 , j = 1, 2, …, 10

n=1

10

39

Bean Firm Learning Method:
Modified Roth-Erev RL – Step 2

 Recency (forgetting) parameter: φ = 0.04

 Experimental (spillover) parameter: ε = 0.96

 Reward rk(t) in trade period t ≥ 0 consists of profits

(+ or -) resulting from chosen action ak(t) = (bk(t) , pk(t))

and actual bean sales b(t):

rk(t) = [pk(t) ° b(t)] - [$2 ° bk(t)]

Actual revenues
from sale of b(t)

Actual costs of
producing bk(t)

40

Bean Firm Learning Method:
Modified Roth-Erev RL – Step 3

Xxx

xxx

Ej(ε, N, k, t)

Xxx

xxxx
Ej(ε, N, k, t)

Updating of propensities after receipt of reward rk(t) in period t ≥ 0:

41

From Propensities to Probabilities
for the Bean Firm – Step 4

The probability of choosing an action j is an increasing function
of its current propensity value, all else equal:

10

Probability of choosing action j at time t, for j = 1,…,10

Probj(t)

42

Illustrative Pseudo-Code Implementation of Action Choice in
Accordance with Action Probabilities

for j = 1,…,10:

pj = probability of choosing action j (previous formula);

p = Random.nextDouble(); //uniformly distributed double value between

0.0 and 1.0 (Java). For NetLogo: “let p random-float 1.0”

sum = 0.0;

for j = 1,…,9:

sum = sum + pj ; // form cdf assessment sum=[p1+…+pj]

If p ≤ sum, return j; // returned j is index of action choice

return 10; //returns action choice 10 if no previous return activated

NOTE: Then pj≅ probability that “return j” is activated, j = 1,…,10

43

JReLM: Java Reinforcement Learning Module
(Includes MRE Reinforcement Learning)

(Charles J. Gieseler, S05 Econ 308 Student, CS M.S. Thesis, 2005)

Market Simulation

Learning Agent

44

3. Belief-Based Learning

Asks…

What different rewards might I have received

in the past if I had acted differently?

And how can I use these “opportunity cost”

assessments to help choose a better action now?

45

Belief-Based Learning …

❑ In belief-based learning, the presence of other decision-making
agents in the learning environment is explicitly considered.

❑ Variants of belief-based learning currently in use by economists
include:
 Cournot (naïve) belief learning – the belief that rivals will act today in the

same way they acted in the immediate past

 Fictitious play – the belief that rivals will act today in accordance with the
historical frequencies of all their past action choices.

 Experience-weighted attraction learning (Camerer/Ho 1999) – hybrid of
reactive RL and fictitious play learning

46

Belief-Based Learning: Example 1
Fictitious Play Learning (FPL)

❑ An agent A assumes each other agent in its choice
environment chooses its actions in accordance with an
unknown but time-invariant “probability distribution
function (PDF)”.

❑ Agent A estimates these PDFs based on the historical
frequencies with which other agents have been observed
to choose different actions.

❑ At each time t, Agent A chooses a “best response” action
conditional on its current PDF estimates for other agents.

47

Concrete FPL Illustration:
Matching Pennies Game

Heads

Tails

Heads Tails

Player 2

Player 1

(1,-1) (-1,1)

(-1,1) (1,-1)

48

Concrete FPL Illustration:
Matching Pennies…Continued (1)

 The one-shot matching pennies game has NO Nash equilibrium
in “pure strategies”.

 That is, none of the four feasible action pairs (H,H), (H,T), (T,H),
or (T,T) is a Nash equilibrium.

 However, suppose Player 1 is choosing its actions H and T in
accordance with a mixed strategy, i.e., a probability distribution
function (PDF) over the action domain {H,T} of the form
[Prob1(H), Prob1(T)].

 Then Player 2 can calculate a “best response” mixed strategy
[Prob2(H),Prob2(T)] to Player 1’s mixed strategy that maximizes
Player 2’s expected payoff.

49

Concrete FPL Illustration:
Matching Pennies…Continued (2)

 Player 2 is said to engage in Fictitious Play Learning (FLP) in the
matching pennies game if the following conditions hold:

 The game is played in successive periods t=1,2,…, and Player 2 in each
period t > 1 knows the actions that have been chosen by Player 1 in all
past periods.

 In each period t > 1, Player 2 forms an estimate of the mixed strategy
(PDF) it thinks is being used by Player 1 based on the frequencies with
which Player 1 has been observed to choose H and T in past game plays.

 In each period t > 1, Player 2 chooses a “best response” mixed strategy
for its own action choice conditional on its current estimate for the
mixed strategy being used by Player 1.

50

Concrete FPL Illustration:
Matching Pennies…Continued (3)

 EXAMPLE: Suppose Player 1 has selected H and T with the following
frequencies over the PAST ten periods t= 1,…,10
- Action H: 5 times

- Action T: 5 times

 Then Player 2’s CURRENT (t=11) estimate for the mixed strategy (PDF)
being used by Player 1 to choose an action is
- Prob1(H) = 5/10 = 1/2

- Prob1(T) = 5/10 = 1/2

 Player 2’s best response to the estimated PDF (1/2,1/2) for Player 1 is the
mixed strategy Prob2(H) = 1/2, Prob2(T) = 1/2.

 NOTE: It can be shown that this pair of mixed strategies is the unique
Nash equilibrium for the one-shot matching pennies game.

51

Open Issues for FPL

 Calculation of estimated PDFs (frequencies) for the
action choices of other players is straightforward if
all past action choices are observed.

 But how, practically, to calculate a “best response”
PDF (mixed strategy) in each time period, given
realistic time and cost constraints?

 And what happens if other players are NOT using
time-invariant PDFs to choose their action choices?

52

Example 2: Experience-Weighted Attraction (EWA) Algorithm
(Camerer and Ho, Econometrica, 1999)

❑ Reactive RL assumes agents only consider actual past
rewards, ignoring foregone rewards that might have
been obtained had different actions been taken
(opportunity costs)

❑ FPL assumes agents form opportunity cost estimates to
select best-response mixed strategies.

❑ EWA is a hybrid form that combines Reactive RL and FPL.

53

EWA Algorithm…

❑ The EWA Algorithm assumes propensities (“attractions”) and
probabilities (“logit responses”) for (mixed) strategy choices are
sequentially generated as follows:

54

4. Anticipatory Learning

Asks…

If I take this action now, what

might happen in the future?

55

Key AL Concept: Value Function

Let the optimum total future reward obtainable by
a decision-making agent, starting at time t in some
state s’, be denoted by

Vt(s’)

56

Value Function Illustration

Time-t state s’

Value function Vt gives Vt(s’) = 20
if the decision tree ends at [t+3]

(Total reward = Sum of all intermediate rewards r)

20

Optimal path,
starting in s’
at time t

4

7

9

8 1

5

6

4 3 5 26 1

13101816151318Total reward
at time t+3

7

Intermediate
rewards r

57

Key Idea: Derive a Recursive Relationship
Among Successive Value Functions

❑ Suppose I am currently in state s’ at time t.

❑ Suppose I take an action a’, get a reward r’ = R(s’,a’),
and transit to a new state s’’ = T(s’,a’).

❑ Then, the best I can do starting from time t+1 is

Vt+1(s’’)

❑ Consequently, the best I can do starting from time t is

Vt(s’) = maxa [R(s’,a) + Vt+1(T(s’,a))]

58

More Formally Stated:
Richard Bellman’s Famous Principle of Optimality

(Dynamic Programming, 1950s)

 Let t denote the “current time” and let S = {s,s’,…} denote the
collection of all possible states of the world at time t.

 For each state s in S, let A(s) = {a,a’,…} denote the collection of
all feasible actions that an agent can take in state s at time t.

 For each state s in S, let W denote the collection of all possible
total rewards w an agent can attain over current and future
times t,…,TMax.

 Let the value function Vt:S→W be defined as follows: For each s
in S, Vt(s) gives the optimum total reward w in W that can be
attained by the agent over current and future times t,…,TMax
starting in state s at time t.

59

Principle of Optimality…Continued

 Let π* denote the optimal policy function giving the optimal action a’ as

a function a’=π*(t,s’) of the current time t and state s’.

 Let T denote the transition function that determines the next state s’’ as

a function s’’=T(s’,a’) of the current state s’ and the current action choice a’.

 Let R denote the intermediate return function that determines the
immediate reward r’’ as a function r’’=R(s’,a’) of the current state s’ and
current action choice a’’.

 Then for each state s’ in S:

Vt(s’) = R(s’,π*(t,s’)) + Vt+1(T(s’,π*(t,s’))

= Max a [R(s’,a) + Vt+1(T(s’,a))]

60

Practical Difficulties

❑ How practically to compute the optimal policy
function π* ?

❑ What if the transition function T is not known? And

what if state transitions depend on actions chosen by

MANY agents, not just by me?

❑ What if the return function R is not known?

❑ How practically to compute the value function V?

61

One Approach:
Replace V-values by Q-values

▪ Suppose the final time TMax is infinite and suppose that π*, T, R,

and V are independent of time t (Note: These are strong assumptions)

▪ For each s in S and each a in A(s), define

Q*(s,a) = [R(s,a) + V(T(s,a))]

▪ If these Q*-values can be learned, the optimal policy function π*
can be found without knowing the T, R, and V functions, as follows:
For any s’ in S,

π*(s’) = action a’ that maximizes Q*(s’,a) over a in A(s’)

▪ But will π* result in good action choices if state/reward outcomes

in fact depend on actions of multiple agents?

62

expected return for taking
action a in state s and
following an optimal policy
thereafter

Let current estimate of

For any state s, any action a* that maximizes Q*(s,a) is
called an optimal action:

a* = [optimal action in state s]

Q valuess

a
Q

),(asQ

Q(s,a) = Q

(s,a)

= argmax
a

Q

(s, a)

Q-Learning in More Detail: Watkins, 1989;
Criterion Filtering (https://www2.econ.iastate.edu/tesfatsi/cfhome.htm)

https://www2.econ.iastate.edu/tesfatsi/cfhome.htm

63

Q-Learning …

Q-learning in its simplest form iteratively determines
estimates Q(s,a) for Q*(s,a) conditional on a user-specified
learning rate a , 0 ≤ a ≤ 1 .

◼ Q-learning avoids direct calculation of T, R, V

◼ The Q-value estimates Q(s,a) are stored in a table

◼ The Q-value estimates are updated after each new observation is
obtained.

◼ The Q-value estimates depend on observation history but not
directly on the particular method used to generate action choices.

64

Basic Q-Learning Algorithm

1. Initialize Q(s,a) to a random value for each state s in S
and each action a in A(s).

2. Observe actual state s’.

3. Pick an action a’ in A(s’) and implement it.

4. Observe next state s’’ and next reward r’’.

5. Update Q(s’,a’) value as follows:

Q(s’,a’) ← [1 – a]Q(s’,a’) + a[r’’ + maxaQ(s’’,a)]

6. Loop back to step 2.

65

Does not need a
probability model
for either learning or
performance
evaluation

T T T TT

T T T T T

 s
r

s
a

Q-Learning Update Process

()),(max),(1),(bsQrasQasQ
b

++−

66

Picking Actions for Q-Learning

 Just as in reactive RL, an agent might want to pick “optimal”
actions most of the time but also do some exploration.

◼ An agent can exploit its current information state s to choose a “greedy”
action a in A(s) that currently appears to be optimal.

◼ But the agent might also choose an action for exploratory purposes, to
learn more about its choice environment.

◼ Exploring might permit the agent to learn a better policy π:s→a(s) for
determining future action choices.

◼ This is called the exploration/exploitation problem

67

Picking Actions for Q-Learning …

 e-Greedy Approach

◼ Given state s, choose an action a in A(s) with the highest value
Q(s,a) with probability 1-e and explore (pick a random action)
with probability e

 Gibbs-Boltzmann (soft-max) approach
◼ Given state s, pick action a in A(s) with probability

where τ = “temperature”

=

a'

)a' Q(s,

a) Q(s,

e

e
 s) | P(a

68

5. Evolutionary Learning

Asks…

Given all the actions that have been taken to date by
myself (and possibly by others), together with
observations on the rewards that have resulted,
what NEW actions might I devise to try to do better?

69

Evolutionary Learning Algorithms

EXAMPLES:

 Genetic Algorithm (GA) – John Holland 1970s

 Genetic Programming (GP) – John Koza 1990s

 Evolutionary Strategy (ES) – Rechenberg 1970s

 Evolutionary Program (EP) … Etc.

Basic Idea: Devise learning algorithms for complex
environments that mimic effective adaptive and evolutionary
processes found in nature.

70

Evolutionary Processes in Nature:
Mitosis vs. Meiosis

❑ Mitosis: one cell

becomes two cells

with the same DNA

(cloning)

❑ Meiosis: one cell

becomes four cells

with one strand

each (basis for

sexual reproduction)

Replication as in Axelrod Evolutionary Tournament

Permits “Genetic Evolution”!

71

Crossover (Recombination)

 Meiosis -> production of germ cells

 Parts of two

chromosomes

get swapped.

 Also called recombination

72

Mutation

 Occasional misfiring of the replication process.

 Almost always harmful.

 However, on occasion, it results in a “fitter” entity.

73

Differential Survival

 Once there is variability (through sexual reproduction,
crossover, & mutation) in a population, the environment
culls some members of the population while others
survive.

 This process is termed Natural Selection.

74

Evolutionary Learning Algorithm Example:

Genetic Algorithms (GAs)

 Directed search algorithm based on the mechanics
of biological evolution

 Developed by John Holland, University of Michigan
(1970’s)

 Original Goal:

To use adaptive and evolutionary processes found in
natural systems as a metaphor for the design of effective
search algorithms suitable for complex environments

75

Basic Steps of a Simple GA

Step 0: Construct/configure an initial population of members
(agents, strategies, candidate solutions to a problem, …).

Step 1: Evaluate the “fitness” of each member of the current
population, and discard least fit members.

Step 2: Apply “genetic operations”(e.g., mutation, recombination,…)
to the remaining (parent) population to generate a new (child)
population to replace discarded least-fit population members.

Step 3: Loop back to Step 1 and repeat.

76

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted
members

parents

children

modified
children

evaluated children

77

What Might “Fitness” Mean?

EXAMPLES….

❖ The ability to solve a particular type of problem

(e.g. a particular form of math problem)

❖ The ability to repeatedly perform some task

(e.g., facial recognition)

❖ The ability to survive and prosper in some

real or computational environment

78

Representation of
Population Members

EXAMPLE: Bit-String Representation (String of 0’s & 1’s)

 Population Members = PD Game Strategies

 One Possible Strategy S
◼ State = (My last play, Rival’s last play)
◼ Two Possible Actions: Cooperate=1, Defect=0
◼ Four Possible States: 1=(1,1), 2=(1,0), 3=(0,1), 4=(0,0)
◼ Strategy S = TFT:

Start by choosing Action 1
If State 1, then choose Action 1
If State 2, then choose Action 0
IF State 3, then choose Action 1
IF State 4, then choose Action 0

 Bit-string representation of Strategy S: (1 | 1 | 0 | 1 | 0)

79

Crossover (Recombination)

Parent 1 (0 1 1 0 1) (0 1 0 1 1) Child 1

Parent 2 (1 1 0 1 1) (1 1 1 0 1) Child 2

Crossover is a potentially critical feature of GAs:

◼ It can greatly accelerate search early in the evolution of a
population

◼ It can lead to discovery and retention of effective
combinations (blocks, schemas,…) of S → A associations

0 1 1) 1 0 1)
1 0 1) 0 1 1)

80

Mutation of Population Members
Example: String Mutations

Before: (1 0 1 1 0)

After: (1 0 1 0 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

 Causes local or global movement in search space

 Can restore lost information to the population

81

Issues for GA Practitioners

 Basic implementation issues
◼ Representation of population members

◼ Population size, mutation rate, ...

◼ Selection, deletion policies

◼ Crossover, mutation operators

 Termination criteria
◼ When is a solution good enough?

 Fitness Function Specification
◼ “Solution” depends heavily on the fitness function (specification of

“fitness” often the hardest part)

82

Types of GA Applications

Domain Application Types

Control gas pipeline, pole balancing, missile evasion, pursuit

Design semiconductor layout, aircraft design, keyboard
configuration, communication networks

Scheduling manufacturing, facility scheduling, resource allocation

Robotics trajectory planning

Machine Learning designing neural networks, improving classification
algorithms, classifier systems

Signal Processing filter design

Game Playing poker, checkers, prisoner’s dilemma

Combinatorial

Optimization

set covering, travelling salesman, routing, bin packing,
graph colouring and partitioning

83

6. Connectionist Learning

Asks…

Does the learning of state-act associations s → a (“if s, then
a”) require a centralized information processor, or can it
proceed through some form of decentralized information
processor?

And can the appropriate specification of the conditioning
states s be learned along with the appropriate specification

of the associations s → a ?

84

Connectionist Learning Example

Artificial Neural Networks (ANNs):

Decentralized information processing paradigm
inspired by biological nervous systems, such as the
human brain

85

Inspiration from Neurobiology

 Neuron : A many-inputs/one-output
unit forming basis of human central
nervous system

 Output can be excited or not excited

 Incoming signals from other neurons
determine if the neuron shall excite
("fire")

 Output subject to attenuation in the
synapses (small gaps) that separate a
neuron from other neurons at the
juncture of its axon with their dendrites

86

Connections Among Neurons

87

Structure of ANNs

 Collection of interconnected processing units working
together

 Structure = (1) Unit configuration (numbers of input

units, hidden units, and output units); (2) Unit connections;
& (3) Connection weights

 Structure can be updated via unsupervised learning,
RL, or supervised learning

88

Example: Feedforward ANN
(No recurrent loops)

Weights

Weights

NOTE: Here only one hidden layer is depicted. In general, a feedforward ANN can include
multiple hidden layers, thus permitting deep(er) learning.

89

Hidden Unit Representation

Example: The hidden unit depicted below calculates a weighted sum x of
inputs Ij and compares it to a threshold T. If x is higher than the threshold T,
the output S is set to 1, otherwise to -1.

Non-linearity

90

ANN Supervised Learning
(Learn from a set of examples via error-correction)

Inputs Outputs

Training Examples = Desired Input-Output Associations

Error = [Desired Output – Actual Output]

Supervised Learning

System

91

ANN Supervised Learning
via “Back Propagation”

 Desired input-output associations provided by
supervisor through training examples

 Error = Difference between desired and actual
output for any given input

 Weights updated relative to error size

 Start by calculating output layer error and weight
correction, then “propagate back” through previous
layers

92

Example: “Adaline” Learning Rule

input pattern

desired
output

Widrow and Hoff, 1960

z =+
adjust weights

actual output

+

–

x2

xn

x1

wn

w1

w
2

Dwi = z − y xi

yt = wt

T
xt

y = wTx

93

Illustrative ANN Applications

 Prediction: Learning from past experience

◼ pick the best stocks in the market

◼ predict weather

◼ identify people with cancer risk

 Classification

◼ Image processing

◼ Predict bankruptcy for credit card companies

◼ Risk assessment

94

ANN Applications…Continued

 Recognition

◼ Pattern recognition: SNOOPE (bomb detector in U.S.
airports)

◼ Character recognition

◼ Handwriting recognition (processing checks)

 Data Association

◼ Identify scanned characters AND detect if scanner is
working properly

95

ANN Applications…Continued

 Data Conceptualization
◼ infer grouping relationships

e.g., extract from a database the names of those most likely to buy a
particular product.

 Data Filtering
e.g., take the noise out of a telephone signal

 Planning
◼ Evolve “best” decisions for unknown environments

◼ Evolve “best” decisions for highly complex environments

◼ Evolve “best” decisions given highly noisy input data

