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Presentation Outline

❑ 1. Overview 

❑ 2. Reactive Reinforcement Learning (RL) 

 Example 1: Deterministic reactive RL 

(e.g., Derivative-Follower)

 Example 2: Stochastic reactive RL 

(e.g., Roth-Erev algorithms)

❑ 3. Belief-Based Learning 

 Example 1: Fictitious play 

 Example 2: Hybrid forms 

(e.g., Camerer/Ho EWA algorithm)
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Presentation Outline…Continued

❑ 4. Anticipatory Learning  

(Example: Q-Learning)

❑ 5. Evolutionary Learning   

(Example: Genetic Algorithms - GAs)

❑ 6. Connectionist Learning

(Example: Artificial Neural Nets - ANNs) 
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1. Overview

 So far, we have worked with strategies for very simple one-stage 
and iterated (multi-stage) games

 The strategies we have seen to date for iterated games have been 
adaptive in the following sense:

➔ The action dictated by the strategy at any given time is conditioned on the 
current (information) state of the player.

❑ However, this adaptation has been determined by a fixed rule in 
advance of any actual game play.

Example: Fixed rule defining the Tit-For-Tat (TFT) strategy

Play `cooperate’ in the first stage.  Then, in each successive

stage, play the same move (`cooperate’ or `defect’) that your

rival played in the previous stage. 
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Axelrod Tournament Demo
Basic Tournament by R. Axelrod; Demo developed by C. Cook

https://www2.econ.iastate.edu/tesfatsi/acedemos.htm

 User-specified strategies for 
playing a specified type of 
game (e.g., PD, Chicken, Stag 
Hunt) are pitted against one 
another in repeated round-
robin play.

 KEY ISSUE 

What types of strategies 
perform best over time?

Will nasty or cooperative
types prevail?

http://www2.econ.iastate.edu/tesfatsi/acedemos.htm
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Overview … Continued

 In the next part of the course, we will investigate adaptive 
strategies for more complicated types of iterated market
games.

 We will also investigate the possibility of learning in iterated 
market games.

 That is, we will want to permit one or more players to 
structurally modify their strategies (rules for play) during 
successive game iterations based on sequentially observed 
events.
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Overview …  Continued

Learning means …. for example:

❑ A player starts an iterated game with an initial 
strategy (“policy”) π dictating an action a to be 
taken in each state s: 

State s ➔ Action a

❑ But, after observing the payoff (“reward”) r from 

using this state-action association, the player 

eventually decides to change this association:

State s ➔ Action a*
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Caution: Intrinsic Ambiguity in the Distinction 
between Adaptation and Learning

❑ Suppose an agent is acting in accordance with a 
particular state-action association s → a in a general 
environment e.

❑ Suppose something happens (e changes to e*) that 
convinces the agent to change this association to 
some other association s → a*.

❑ If the definition of “state” is expanded from s to (s,e), 
the associations (s,e) → a and (s,e*) → a* have not 
changed. 
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General Types of Learning

 Unsupervised Learning

◼ Update structure based on intrinsic motivation (curiosity, 
enjoyment, moral duty, …)

 Reinforcement Learning (RL)

◼ Update structure in response to successive rewards 
attained through actions taken                       

 Supervised Learning

◼ Update structure on basis of examples of desired (or 
required) state-action associations provided by an expert 
external supervisor
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Reinforcement Learning (RL)

 Policy : Maps each state s to an action choice a

 Reward r: Immediate value of state-action pairing

 Transition model T(s,a)=s’: Maps current state-action 
pairing (s,a) to a next state s’

Agent

Environment

State s Action a

Policy 

 sss 221100 r  a

2

r  a

1

r  a

0 ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯
:::

reward r

❑ Elements of traditional RL:
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Elements of Traditional RL …

RL

System
input (s,a) next state s’

reward r (“utility”, “score”, “payoff”, “penalty”)

Basic Intuition: The tendency to take an action a in 
state s should be strengthened (reinforced) if it produces 
favorable results and weakened if it produces 
unfavorable results.
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Traditional RL in More Detail
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Environment

actionstate

reward
Agent

Traditional RL View of 
Agent Action Choice 

States and rewards are modeled as external forces 
determining an agent’s choice of actions.
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In Accord with Human Motivation?

Factors that energize a person to act and that 
direct his or her activity:

 Extrinsic Motivation: Being moved to act in hopes of 
receiving some external reward ($$, prize, praise, etc.)

 Intrinsic Motivation:  Being moved to act because it is 
perceived to be inherently desirable, enjoyable, moral, 
…
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external 
environmental 

state se

memory

intrinsic
state si

intrinsic needs 
and preferences

RL 
policy

A More Modern Extrinsic/Intrinsic View 
of Agent Action Choice

intrinsic beliefs 

externally
expressed
action a
= π(se,si)

se

AGENT
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Intrinsic Motivation: Questions

 An activity is intrinsically motivated if an agent does it 
for its own sake rather than to receive specific rewards 
(or avoid specific penalties)

 Curiosity, exploration, moral duty, . . .

 Can a computational learning system be intrinsically 
motivated?

 Specifically, can a computational RL agent be 
intrinsically motivated?

(Cf.  Work by Andrew Barto and Satinder Singh)
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2. Reactive RL

Asks…

Given past events, what action

should I take now?
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Example 1: Deterministic Reactive RL
Derivative-Follower (DF) Adaptation

(Greenwald and Kephart, 1999)

❑ Originally developed as a simple way for computational agents  
to repeatedly modify a scalar decision d.

❑ The DF agent experiments with incremental increases or 
decreases in d of a given magnitude ∆d > 0.  

❑ An external reward is attained after each change in d.

❑ The DF agent continues to move d in the same direction 
(increases or decreases) until the reward level falls, at which 
point the direction of movement in d is reversed.

❑ Letting states s = ∆reward and actions a = ± ∆d, the associations  
s → a are in fact fixed in advance.
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DF Adaptation: 
A Simple Market Example

❑ Each day a firm produces b* pounds of beans.

❑ On the first day the firm selects a unit price po

($’s per pound) at which to sell b*.

❑ The firm then posts successively higher daily prices p 
for beans of the form po+∆p, po+2∆p, …  with ∆p > 0 
until profits are observed to fall

❑ The firm then reverses course and starts to decrease p 
by step-size ∆p.   And so on…

❑ Question: When will this work well (if ever)?  
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When will DF adaptation 
work well (if ever)?

 Suppose profits are a concave function of the price p

Profits

Bean Price p0
po po +∆p



p*



DF agent will end here

po’



po - ∆p
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But suppose profits are NOT a 
concave function of the price p?

 Can end up on the wrong peak!

Profits

Bean Price p0
po po+∆p p*

DF agent could end here

True max    
profit point
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Or suppose a profit-seeking firm must set
BOTH price AND quantity levels?

 Where to start, which direction to search in, and how far to 
search in this direction?

Bean Price p

Beans b0

?

?

?

?

?
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A profit-seeking firm should try to stay on or above 
its marginal production cost function MC

 KEY ISSUE: Correlated ∆p and ∆b choices needed to stay above 
MC and move in desirable directions

Bean Price p

Beans b0

?

?

?

?

?
MC
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Example 2: Stochastic Reactive RL
Roth-Erev Algorithms

 Developed by Alvin E. Roth & Ido Erev (Games & Economic  

Behavior, 1995, AER 1998)

◼ Based on observations of people’s behavior in iterated game 
play with multiple strategically interacting players in various 
game contexts

◼ Two extensions found necessary relative to RL methods 
developed earlier by psychologists for individuals learning in 
fixed environments:

 Need to “forget” rewards received in distant past

 Need for “spillover” of reward attributions across actions in early game 
play to encourage experimentation and avoid premature fixation on a 
suboptimal chosen action.
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Roth-Erev Algorithm: Outline

1. Initialize propensities q for choosing actions.

2. Generate action choice probabilities Prob from  

current action propensities q.

3. Choose an action a in accordance with current 

action choice probabilities Prob. 

4. Update action propensity values q using the reward 

r received after the last chosen action a. 

5. Repeat from step 2.
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Roth-Erev Algorithm Structure

 Action choice a leads to a reward r, followed by updating of all 
action choice propensities q based on this reward, followed by a 
transformation of these propensities into action choice 
probabilities “Prob”.

Action Choice a1

Action Choice a2

Action Choice a3

Choice Propensity q1 Choice Probability Prob1

Choice Propensity q2

Choice Propensity q3

Choice Probability Prob2

Choice Probability Prob3

r

updatechoose transform



28

Updating of Action Propensities

Parameters:
• qj(1) Initial propensity
• Experimentation

• φ Recency (forgetting) 

Variables:
• aj Current action choice
• qj Propensity for action aj

• ak Last action chosen
• rk Reward for action ak

• t Current time step
• N Number of actions  

Xxxx

xxxx

Xxx

xxx

Xxx
xxx

Ej(ε,N,k,t)

Ej(ε,N,k,t)  =

ε
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From Propensities to Probabilities

 Example A: Probability of choosing action j  at time t 
= Relative propensity for action j

q
j
(t)

Prob
j
(t) =     

∑[q
m
(t)]

nn=1

N
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Example B: Gibbs-Boltzmann Probability

 Handles negative propensity values qj(t)

 T = Temperature (“cooling”) parameter 

 T affects dynamic shaping of Prob distributions

N

n=1

e q
n

(t)/T

Xxx

xxxx
Probj(t)
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More on the Updating 
of Action Propensities - 1

 Specification of the initial propensity levels qj(0) for an agent’s 
feasible action choices aj, j =1,…,N

◼ Initial propensity levels act as “aspiration levels” 

◼ High initial propensity levels ➔ Agent is disappointed with 

the rewards resulting from his early chosen actions, which 

encourages continued experimentation.

◼ Low initial propensity levels ➔ Agent is happy with the 
rewards resulting from his early chosen actions, which 
encourages premature fixation on one of these actions
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More on the Updating 
of Action Propensities - 2

 Might want to “forget” rewards r received in the distant 
past in time-changing environments:

◼ Controlled by recency (forgetting) parameter φ lying between 
0 and 1

◼ As φ approaches 1, heaviest weight placed on most recently 
received rewards r

◼ As φ approaches 0, approximately equal weight placed on all
rewards r received to date 

(exactly equal weight when φ = 0 and ε = 0 )
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More on the Updating 
of Action Propensities - 3

 Need for “spillover” of reward attributions across 
actions in early game play to encourage 
experimentation and to avoid premature fixation on 
a suboptimal chosen action ak.

◼ Controlled by experimentation parameter ε lying between    
0 and 1

◼ As ε increases, more “spillover” of reward resulting from 
chosen action ak to other actions aj, resulting in smaller 
divergence among propensities qk and qj

◼ As ε approaches 0, reward resulting from chosen action ak

is attributed only to ak, implying only ak’s propensity qk is 
updated
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Modified Roth-Erev RL

 Nicolaisen, Petrov and Tesfatsion (IEEE TEC, 2001) modified the 
response function Ej so propensity updating occurs even with 
zero-valued rewards r, as follows:  Letting aj = any feasible 
action choice and ak = currently chosen action,

Xxx

xxx

Ej(ε, N, k, t)

 The NPT electricity traders typically achieved 90% or higher market efficiency 
using Modified Roth-Erev RL.
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Modified Roth-Erev RL

 NPT* electricity traders typically achieved market efficiency 
levels  ≥ 90%  using Modified Roth-Erev RL and much lower market 
efficiency levels (e.g. 20%) using Original Roth-Erev RL.

*Nicolaisen, J., Petrov, V., and Tesfatsion, L., “Market Power and Efficiency in a 

Computational Electricity Market with Discriminatory Double-Auction Pricing”. IEEE
Transactions on Evolutionary Computing 5, 5 (October 2001), 504–523.

 See also Mridul Pentapalli, "A Comparative Study of Roth-Erev and Modified 
Roth-Erev Reinforcement Learning Algorithms for Uniform-Price Double 
Auctions,” M.S. Thesis Talk, March 2008

https://www2.econ.iastate.edu/tesfatsi/MridulPentapalli.MSThesisTalk2008.pdf

http://www2.econ.iastate.edu/tesfatsi/MridulPentapalli.MSThesisTalk2008.pdf
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Illustration: A Bean Firm in a 
Computational Market Economy

 Strategic learning agent

 Gains profit by producing and selling beans b, a 

perishable (nonstorable) good measured in lbs

 Adjusts bean production and price level in each 

trading period t using Modified Roth-Erev RL

— Period t Action  =  Choice of supply offer of form

(Production Level b, Unit Price p)

 Marginal cost of production = $2 per lb

 Production limit in each period t:  100 lbs



37

Bean Firm: Structural Conditions

 Action Domain AD:  Set of N=10 feasible action choices    

{ (b1,p1), …, (bN,pN) }  =  {a1,…,a10}

Bean Price p

Beans b
O

MC

 

 









p1

b1

$2

a1

100

Production
capacity
limit
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Bean Firm Learning Method:
Modified Roth-Erev RL – Step 1

 Initial propensity levels for actions a1,…,a10:

qj(0) =  20,   j = 1,….,10

 Initial probability distribution for choosing  among the 

feasible actions a1,…,a10:

Probj(0)  =  exp(qj(0)/T)/ ∑ exp(qn(0)/T)

=   1/10  ,  j = 1, 2, …, 10

n=1

10
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Bean Firm Learning Method:
Modified Roth-Erev RL – Step 2

 Recency (forgetting) parameter: φ =  0.04

 Experimental (spillover) parameter: ε =  0.96 

 Reward rk(t) in trade period t ≥ 0 consists of profits       

(+ or -) resulting from chosen action ak(t) = (bk(t) , pk(t)) 

and actual bean sales b(t):

rk(t) = [ pk(t) ° b(t)]  - [$2 ° bk(t)]        

Actual revenues
from sale of b(t)

Actual costs of
producing bk(t)
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Bean Firm Learning Method:
Modified Roth-Erev RL – Step 3

Xxx

xxx

Ej(ε, N, k, t)

Xxx

xxxx
Ej(ε, N, k, t)

Updating of propensities after receipt of reward rk(t) in period t ≥ 0:
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From Propensities to Probabilities 
for the Bean Firm – Step 4

The probability of choosing an action j is an increasing function 
of its current propensity value, all else equal:

10

Probability of choosing action j at time t, for j = 1,…,10

Probj(t)
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Illustrative Pseudo-Code Implementation of Action Choice in 
Accordance with Action Probabilities

for j = 1,…,10:

pj = probability of choosing action j (previous formula);

p = Random.nextDouble();  //uniformly distributed double value between 

0.0 and 1.0 (Java).  For NetLogo: “let p random-float 1.0”

sum = 0.0;

for j = 1,…,9:

sum = sum + pj ; // form cdf assessment sum=[p1+…+pj]

If p ≤ sum, return j; // returned j is index of action choice

return 10; //returns action choice 10 if no previous return activated

NOTE: Then pj≅ probability that “return j” is activated, j = 1,…,10
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JReLM: Java Reinforcement Learning Module
(Includes MRE Reinforcement Learning) 

(Charles J. Gieseler, S05 Econ 308 Student, CS M.S. Thesis, 2005)

Market Simulation

Learning Agent
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3. Belief-Based Learning

Asks…

What different rewards might I have received

in the past if I had acted differently?

And how can I use these “opportunity cost” 

assessments to help choose a better action now?
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Belief-Based Learning …

❑ In belief-based learning, the presence of other decision-making 
agents in the learning environment is explicitly considered.

❑ Variants of belief-based learning currently in use by economists 
include:
 Cournot (naïve) belief learning – the belief that rivals will act  today in the 

same way they acted in the immediate past

 Fictitious play – the belief that rivals will act today in accordance with the 
historical frequencies of all their past action choices.

 Experience-weighted attraction learning (Camerer/Ho 1999) – hybrid of 
reactive RL and fictitious play learning
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Belief-Based Learning: Example 1 
Fictitious Play Learning (FPL) 

❑ An agent A assumes each other agent in its choice 
environment chooses its actions in accordance with an 
unknown but time-invariant “probability distribution 
function (PDF)”. 

❑ Agent A estimates these PDFs based on the historical 
frequencies with which other agents have been observed 
to choose different actions.

❑ At each time t, Agent A chooses a “best response” action 
conditional on its current PDF estimates for other agents. 
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Concrete FPL Illustration:
Matching Pennies Game

Heads

Tails

Heads Tails

Player 2

Player 1

(1,-1) (-1,1)

(-1,1) (1,-1)
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Concrete FPL Illustration: 
Matching Pennies…Continued (1)

 The one-shot matching pennies game has NO Nash equilibrium 
in “pure strategies”.  

 That is, none of the four feasible action pairs (H,H), (H,T), (T,H), 
or (T,T) is a Nash equilibrium.

 However, suppose Player 1 is choosing its actions H and T in 
accordance with a mixed strategy, i.e., a probability distribution 
function (PDF) over the action domain {H,T} of the form 
[Prob1(H), Prob1(T)].

 Then Player 2 can calculate a “best response” mixed strategy 
[Prob2(H),Prob2(T)] to Player 1’s mixed strategy that maximizes 
Player 2’s expected payoff.
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Concrete FPL Illustration: 
Matching Pennies…Continued (2)

 Player 2 is said to engage in Fictitious Play Learning (FLP) in the 
matching pennies game if the following conditions hold:

 The game is played in successive periods t=1,2,…, and Player 2 in each 
period t > 1 knows the actions that have been chosen   by Player 1 in all 
past periods. 

 In each period t > 1, Player 2 forms an estimate of the mixed strategy 
(PDF) it thinks is being used by Player 1 based on the frequencies with 
which Player 1 has been observed to choose H and T in past game plays. 

 In each period t > 1, Player 2 chooses a “best response” mixed strategy 
for its own action choice conditional on its current estimate for the 
mixed strategy being used by Player 1.
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Concrete FPL Illustration: 
Matching Pennies…Continued (3)

 EXAMPLE: Suppose Player 1 has selected H and T with the following 
frequencies over the PAST ten periods t= 1,…,10
- Action H:  5 times

- Action T:  5 times

 Then Player 2’s CURRENT (t=11) estimate for the mixed strategy (PDF) 
being used by Player 1 to choose an action is
- Prob1(H) = 5/10  =  1/2

- Prob1(T) = 5/10  =  1/2 

 Player 2’s best response to the estimated PDF (1/2,1/2) for Player 1 is the 
mixed strategy Prob2(H) = 1/2, Prob2(T) = 1/2. 

 NOTE: It can be shown that this pair of mixed strategies is the unique 
Nash equilibrium for the one-shot matching pennies game.
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Open Issues for FPL

 Calculation of estimated PDFs (frequencies) for the 
action choices of other players is straightforward if 
all past action choices are observed.

 But how, practically, to calculate a “best response” 
PDF (mixed strategy) in each time period, given 
realistic time and cost constraints?

 And what happens if other players are NOT using 
time-invariant PDFs to choose their action choices?
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Example 2: Experience-Weighted  Attraction (EWA) Algorithm
(Camerer and Ho, Econometrica, 1999)

❑ Reactive RL assumes agents only consider actual past 
rewards, ignoring foregone rewards that might have 
been obtained had  different actions been taken 
(opportunity costs)

❑ FPL assumes agents form opportunity cost estimates to 
select best-response mixed strategies.

❑ EWA is a hybrid form that combines Reactive RL and FPL.
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EWA Algorithm…

❑ The EWA Algorithm assumes propensities  (“attractions”) and 
probabilities (“logit responses”) for (mixed) strategy choices are
sequentially generated as follows:
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4. Anticipatory Learning

Asks…

If I take this action now, what

might happen in the future?
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Key AL Concept: Value Function

Let the optimum total future reward obtainable by 
a decision-making agent, starting at time t in some 
state s’, be denoted by

Vt(s’)
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Value Function Illustration

Time-t state s’

Value function Vt gives Vt(s’) = 20
if the decision tree ends at [t+3] 

(Total reward  =  Sum of all intermediate rewards r)

20

Optimal path,
starting in s’
at time t

4

7

9

8 1

5

6

4 3 5 26 1

13101816151318Total reward 
at time t+3

7

Intermediate
rewards r
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Key Idea: Derive a Recursive Relationship 
Among Successive Value Functions

❑ Suppose I am currently in state s’ at time t.  

❑ Suppose I take an action a’, get a reward r’ = R(s’,a’),   
and transit to a new state s’’ = T(s’,a’).

❑ Then, the best I can do starting from time t+1 is 

Vt+1( s’’)

❑ Consequently, the best I can do starting from time t is 

Vt(s’) = maxa [ R(s’,a) + Vt+1(T(s’,a)) ]
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More Formally Stated:
Richard Bellman’s Famous Principle of Optimality

(Dynamic Programming, 1950s)

 Let t denote the “current time” and let S = {s,s’,…} denote the 
collection of all possible states of the world at time t.

 For each state s in S, let A(s) = {a,a’,…} denote the collection of 
all feasible actions that an agent can take in state s at time t.

 For each state s in S, let W denote the collection of all possible 
total rewards w an agent can attain over current and future 
times t,…,TMax.

 Let the value function Vt:S→W be defined as follows:  For each s 
in S, Vt(s) gives the optimum total reward w in W that can be 
attained by the agent over current and future times t,…,TMax
starting in state s at time t.
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Principle of Optimality…Continued

 Let π* denote the optimal policy function giving the optimal action a’ as 

a function a’=π*(t,s’) of the current time t and state s’.

 Let T denote the transition function that determines the next state s’’ as 

a function s’’=T(s’,a’) of the current state s’ and the current action choice a’.

 Let R denote the intermediate return function that determines the 
immediate reward r’’ as a function r’’=R(s’,a’) of   the current state s’ and 
current action choice a’’.

 Then for each state s’ in S:

Vt(s’)  =   R(s’,π*(t,s’))   +   Vt+1( T(s’,π*(t,s’) ) 

=   Max a [ R(s’,a)  +  Vt+1(T(s’,a)) ]
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Practical Difficulties

❑ How practically to compute the optimal policy 
function π* ?

❑ What if the transition function T is not known?  And

what if state transitions depend on actions chosen by 

MANY agents, not just by me?

❑ What if the return function R is not known?

❑ How practically to compute the value function V?
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One Approach: 
Replace V-values by Q-values

▪ Suppose the final time TMax is infinite and suppose that π*, T, R, 

and V are independent of time t (Note: These are strong assumptions)

▪ For each s in S and each a in A(s), define

Q*(s,a)  =  [ R(s,a)  +  V(T(s,a)) ]

▪ If these Q*-values can be learned, the optimal policy function π* 
can be found without knowing the T, R, and V functions, as follows:
For any s’ in S,

π*(s’) = action a’ that maximizes Q*(s’,a) over a in A(s’)

▪ But will π* result in good action choices if state/reward outcomes 

in fact depend on actions of multiple agents?
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expected return for taking 
action a in state s and 
following an optimal policy 
thereafter

Let current estimate of

For any state s, any action a* that maximizes Q*(s,a) is 
called an optimal action:

a* = [optimal action in state s] 

Q valuess

a
Q


),( asQ

Q(s,a) = Q

(s,a)

= argmax
a

Q

(s, a)

Q-Learning in More Detail:  Watkins, 1989; 
Criterion Filtering ( https://www2.econ.iastate.edu/tesfatsi/cfhome.htm )

https://www2.econ.iastate.edu/tesfatsi/cfhome.htm
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Q-Learning …

Q-learning in its simplest form iteratively determines 
estimates Q(s,a) for Q*(s,a) conditional on a user-specified 
learning rate a , 0 ≤ a ≤ 1 .

◼ Q-learning avoids direct calculation of T, R, V

◼ The Q-value estimates Q(s,a) are stored in a table

◼ The Q-value estimates are updated after each new observation is 
obtained.

◼ The Q-value estimates depend on observation history but not 
directly on the particular method used to generate action choices.
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Basic Q-Learning Algorithm

1. Initialize Q(s,a) to a random value for each state s in S 
and each action a in A(s).

2. Observe actual state s’.

3. Pick an action a’ in A(s’) and implement it.  

4. Observe next state s’’ and next reward r’’.

5. Update Q(s’,a’) value as follows:  

Q(s’,a’) ← [1 – a]Q(s’,a’) + a[ r’’ + maxaQ(s’’,a) ]

6. Loop back to step 2.
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Does not need a
probability  model
for either learning or
performance 
evaluation
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Picking Actions for Q-Learning

 Just as in reactive RL, an agent might want to pick “optimal” 
actions most of the time but also do some exploration.

◼ An agent can exploit its current information state s to choose a “greedy” 
action a in A(s) that currently appears to be optimal.

◼ But the agent might also choose an action for exploratory purposes, to 
learn more about its choice environment.

◼ Exploring might permit the agent to learn a better policy π:s→a(s) for 
determining future action choices.

◼ This is called the exploration/exploitation problem
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Picking Actions for Q-Learning …

 e-Greedy Approach

◼ Given state s, choose an action a in A(s) with the highest value 
Q(s,a) with probability 1-e  and explore (pick a random action) 
with probability e

 Gibbs-Boltzmann (soft-max) approach
◼ Given state s, pick action a in A(s) with probability

where τ = “temperature”
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5. Evolutionary Learning

Asks…

Given all the actions that have been taken to date by 
myself (and possibly by others), together with 
observations on the rewards that have resulted, 
what NEW actions might I devise to try to do better?
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Evolutionary Learning Algorithms

EXAMPLES:

 Genetic Algorithm (GA) – John Holland 1970s

 Genetic Programming (GP) – John Koza 1990s

 Evolutionary Strategy (ES) – Rechenberg 1970s

 Evolutionary Program (EP) … Etc.

Basic Idea: Devise learning algorithms for complex 
environments that mimic effective adaptive and evolutionary 
processes found in nature.
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Evolutionary Processes in Nature:
Mitosis vs. Meiosis

❑ Mitosis: one cell 

becomes two cells

with the same DNA 

(cloning)

❑ Meiosis: one cell

becomes four cells

with one strand 

each (basis for 

sexual reproduction)

Replication as in Axelrod Evolutionary Tournament

Permits “Genetic Evolution”!
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Crossover (Recombination)

 Meiosis -> production of germ cells

 Parts of two 

chromosomes

get swapped.

 Also called recombination
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Mutation

 Occasional misfiring of the replication process.

 Almost always harmful.

 However, on occasion, it results in a “fitter” entity.
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Differential Survival

 Once there is variability (through sexual reproduction, 
crossover, & mutation) in a population, the environment 
culls some members of the population while others 
survive.

 This process is termed Natural Selection.



74

Evolutionary Learning Algorithm Example:

Genetic Algorithms (GAs)

 Directed search algorithm based on the mechanics 
of biological evolution

 Developed by John Holland, University of Michigan 
(1970’s) 

 Original Goal:

To use adaptive and evolutionary processes found in 
natural systems as a metaphor for the design of effective 
search algorithms suitable for complex environments
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Basic Steps of a Simple GA

Step 0: Construct/configure an initial population of members 
(agents, strategies, candidate solutions to a problem, …). 

Step 1: Evaluate the “fitness” of each member of the current 
population, and discard least fit members.

Step 2: Apply “genetic operations”(e.g., mutation, recombination,…) 
to  the remaining (parent)  population to generate a new (child) 
population to replace discarded least-fit population members.

Step 3: Loop back to Step 1 and repeat.
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The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted 
members

parents

children

modified
children

evaluated children
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What Might “Fitness” Mean?

EXAMPLES…. 

❖ The ability to solve a particular type of problem 

(e.g. a particular form of math problem)

❖ The ability to repeatedly perform some task

(e.g., facial recognition)

❖ The ability to survive and prosper in some 

real or computational environment
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Representation of
Population Members

EXAMPLE: Bit-String Representation (String of 0’s & 1’s)

 Population Members = PD Game Strategies

 One Possible Strategy S
◼ State = (My last play, Rival’s last play)
◼ Two Possible Actions: Cooperate=1, Defect=0
◼ Four Possible States: 1=(1,1), 2=(1,0), 3=(0,1), 4=(0,0)
◼ Strategy S = TFT:  

Start by choosing Action 1
If State 1, then choose Action 1
If State 2, then choose Action 0
IF State 3, then choose Action 1
IF State 4, then choose Action 0

 Bit-string representation of Strategy S:  (1 | 1 | 0 | 1 | 0)
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Crossover (Recombination)

Parent 1 (0 1 1 0 1)             (0 1 0 1 1)       Child 1

Parent 2 (1 1 0 1 1)             (1 1 1 0 1 )       Child 2

Crossover is a potentially critical feature of GAs:

◼ It can greatly accelerate search early in the  evolution of a 
population

◼ It can lead to discovery and retention of effective 
combinations (blocks, schemas,…) of S → A associations

0 1 1) 1 0 1) 
1 0 1) 0 1 1)
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Mutation of Population Members
Example: String Mutations

Before: (1  0  1  1  0  )

After: (1  0  1  0  0 )

Before: (1.38   -69.4   326.44   0.1)

After: (1.38   -67.5   326.44   0.1)

 Causes local or global movement in search space

 Can restore lost information to the population



81

Issues for GA Practitioners

 Basic implementation issues
◼ Representation of population members

◼ Population size, mutation rate, ...

◼ Selection, deletion policies

◼ Crossover, mutation operators

 Termination criteria
◼ When is a solution good enough?

 Fitness Function Specification
◼ “Solution” depends heavily on the fitness function   (specification of 

“fitness” often the hardest part)
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Types of GA Applications

Domain Application Types

Control gas pipeline, pole balancing, missile evasion, pursuit

Design semiconductor layout, aircraft design, keyboard
configuration, communication networks

Scheduling manufacturing, facility scheduling, resource allocation

Robotics trajectory planning

Machine Learning designing neural networks, improving classification
algorithms, classifier systems

Signal Processing filter design

Game Playing poker, checkers, prisoner’s dilemma

Combinatorial

Optimization

set covering, travelling salesman, routing, bin packing,
graph colouring and partitioning
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6. Connectionist Learning 

Asks…

Does the learning of state-act associations s → a   (“if s, then 
a”) require a centralized information processor, or can it 
proceed through some form of decentralized information 
processor?

And can the appropriate specification of the conditioning 
states s be learned along with the appropriate specification 

of the associations s → a ?
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Connectionist Learning Example

Artificial Neural Networks (ANNs):

Decentralized information processing paradigm 
inspired by biological nervous systems, such as the 
human brain
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Inspiration from Neurobiology

 Neuron : A many-inputs/one-output 
unit forming basis of human central 
nervous system

 Output can be excited or not excited

 Incoming signals from other neurons 
determine if the neuron shall excite 
("fire") 

 Output subject to attenuation in the 
synapses (small gaps) that separate a 
neuron from other neurons at the 
juncture of its axon with their dendrites



86

Connections Among Neurons
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Structure of ANNs

 Collection of interconnected processing units working 
together

 Structure =  (1) Unit configuration (numbers  of input 

units, hidden units, and output units); (2) Unit connections; 
& (3) Connection weights

 Structure can be updated via unsupervised learning, 
RL, or supervised learning
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Example: Feedforward ANN 
(No recurrent loops)

Weights

Weights

NOTE:  Here only one hidden layer is depicted.  In general, a feedforward ANN can include 
multiple hidden layers, thus permitting deep(er) learning. 
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Hidden Unit Representation 

Example: The hidden unit depicted below calculates a weighted sum x of 
inputs Ij and compares it to a threshold T.  If x is higher than the threshold T, 
the output S is set to 1, otherwise to -1. 

Non-linearity
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ANN Supervised Learning
(Learn from a set of examples via error-correction)

Inputs Outputs

Training Examples  =  Desired Input-Output Associations

Error =  [Desired Output  – Actual Output]

Supervised Learning 

System
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ANN Supervised Learning 
via “Back Propagation”

 Desired input-output associations provided by 
supervisor through training examples

 Error =  Difference between desired and actual 
output for any given input

 Weights updated relative to error size

 Start by calculating output layer error and weight 
correction,  then “propagate back” through previous 
layers
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Example: “Adaline” Learning Rule

input pattern 

desired
output

Widrow and Hoff, 1960

z  =+
adjust weights 

actual output

+

–

x2

xn

x1

wn

w1

w
2

Dwi =  z − y xi

yt = wt

T
xt

y = wTx
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Illustrative ANN Applications

 Prediction: Learning from past experience

◼ pick the best stocks in the market

◼ predict weather

◼ identify people with cancer risk

 Classification

◼ Image processing

◼ Predict bankruptcy for credit card companies

◼ Risk assessment
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ANN Applications…Continued

 Recognition

◼ Pattern recognition: SNOOPE (bomb detector in U.S. 
airports)

◼ Character recognition

◼ Handwriting recognition (processing checks)

 Data Association

◼ Identify scanned characters AND detect if scanner is 
working properly
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ANN Applications…Continued

 Data Conceptualization
◼ infer grouping relationships

e.g., extract from a database the names of those most likely to buy a 
particular product. 

 Data Filtering
e.g., take the noise out of a telephone signal

 Planning
◼ Evolve “best” decisions for unknown environments

◼ Evolve “best” decisions for highly complex environments

◼ Evolve “best” decisions given highly noisy input data


