
Notes on Learning: Econ 308

Leigh Tesfatsion
Department of Economics

Iowa State University
Ames, Iowa 50011-1070

http://www.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

2 April 2009

“Shopbots, agents that automatically search the Internet for goods and/or ser-

vices on behalf of consumers, herald a future in which autonomous agents become

an essential component of nearly every facet of electronic commerce. . . . More-

over, we predict the emergence of pricebots - economically motivated agents that

set prices so as to maximize the profits of firms, just as shopbots seek prices that

minimize costs for consumers.” Greenwald and Kephart (1999, p. 506).

Required Supplemental Course Materials:

** Ref.[1] L. Tesfatsion, “Learning Algorithms: Illustrative Examples”, link at Syllabus

Section III.B, directly accessible at

https://www2.econ.iastate.edu/classes/econ308/tesfatsion/LearnAlgorithms.LT.pdf

** Ref.[2] L. Tesfatsion, “Constructing Computational Traders with Learning Capabilities”,

link at Syllabus Section III.B, directly accessible at

https://www2.econ.iastate.edu/classes/econ308/tesfatsion/ConstructLearningAgent.InClassDisc.pdf

1 Overview of Notes

These notes briefly review several types of learning methods currently being used by ACE

researchers to represent the learning capabilities of computationally modeled traders. A ppt

presentation outlining and in some cases expanding upon the key points made in these notes

is provided in Ref.[1] above.
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Section 2 provides a brief discussion of key learning issues. An overview of reinforcement

learning (RL) is presented in Section 3. Several illustrative types of reactive RL methods

are discussed in Section 4, and a well-known anticipatory RL method — Q learning — is

concretely illustrated in Section 5. Section 6 briefly reviews the main features of the standard

genetic algorithm (GA) and discusses the distinction between GA social learning and GA

individual learning. In each of these sections, the discussion concludes by asking how the

learning method might be applied by the quantity-setting and price-setting firms in the

Computational Market Economy set out in Ref.[2].

2 Introduction to Learning

Roughly defined, social learning involves learning from the experiences of other agents

whereas individual learning is learning on the basis of one’s own past and possibly unique

experiences. Intermediate between these two polar cases are situations in which agents en-

gage in aspects of each form of learning. For example, one might have type learning in which

agents of several distinct types interact with each other and hence influence each other’s

fitnesses through influences on payoffs, but the agents only learn from successful agents of

their own type.

A key aspect of learning, whether social, individual, or something in between, is the

amount of anticipation (look-ahead) that agents employ. At one extreme, an agent might

rely entirely on reactive (stimulus-response) learning for choosing its actions. A state-of-the-

world (stimulus) occurs, and the agent reacts to this state by choosing a particular action

(response). The agent then observes an outcome, and it uses this outcome to either weaken

or strengthen the association between the state and the action in the future. In this scenario,

then, the agent continuously adapts to its environment by asking the question: If this state

occurs, what action should I take? However, the agent does not deliberately attempt to

modify its environment to suit its own purposes.

At the other extreme, an agent in a particular state s might instead rely on anticipatory

learning for choosing a current action. For example, suppose the agent has a current estimate

for the probability P (ri|a, s) of each possible outcome ri, i = 1, . . . N, conditional on each

possible choice of its current action a as well as the current state s. Let u(ri|a, s) denote
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the utility that the agent would attain if the outcome ri were realized subsequent to action

a being taken, conditional on the current state s. The agent then chooses a current action

a∗ = a(s, P ) that maximizes its conditional expected utility

U(a|s, P ) =
N∑
i=1

u(ri|a, s)P (ri|a, s). (1)

The frequency distributions of the actual outcomes realized over time for each given action a

and state s are used to construct continually updated estimates for the outcome probability

assessments P (r|a, s), perhaps starting from initially given priors.

In the anticipatory learning case, the agent deliberately attempts to modify its environ-

ment to suit its own purposes by asking the following forward-looking question: If I take

this action now, what outcomes might occur in the future? The agent chooses its actions in

an attempt to increase the likelihood that the ensuing outcomes will be favorable to itself.

One complication in the design of anticipatory learning methods is the well-known dual

decision problem from adaptive control theory: namely, from a longer-run point of view, it

might be optimal for an agent to sacrifice short-term reward for information gain through

experimentation if this ultimately permits the agent to make more informed future decisions

because it has better estimates of the true outcome probability distributions. A second

complication arising in multi-agent decision contexts is potential infinite regress as each

agent tries to take into account what other agents are doing, including the understanding

that these other agents are trying to take into account what he is doing; see Tesauro and

Kephart (1998).

3 Overview of Reinforcement Learning

The basic intuition underlying reinforcement learning (RL) is that the tendency to implement

an action should be strengthened (reinforced) if it results in favorable outcomes and weakened

if it results in unfavorable outcomes [Sutton and Barto (2000)].

More precisely, in its most basic form, RL is a relatively straight-forward type of learning

method in which an agent constructs associations between states and actions in the form of

if-then behavioral rules: i.e., if this state occurs, then this is the action to be taken. When
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a particular if-then rule is implemented, the agent uses the ensuing outcome to update the

probability that the if-then rule will be implemented again in the future. If the outcome

is relatively good, the probability of future implementation is increased; if the outcome is

relatively bad, the probability of future implementation is decreased.

RL choice problems can be divided into two types: nonsequential and sequential . In

nonsequential choice problems, an agent must learn a mapping from states to actions that

maximizes expected immediate reward. In sequential choice problems, the agent must again

learn a mapping from states to actions, but now the actions selected by the agent may influ-

ence future situations and hence future rewards as well as immediate rewards. Consequently,

it might be advantageous for the agent to engage in anticipatory evaluation of the future

possible consequences of its current actions.

Sequential choice problems involve a credit assignment problem. A sequence of actions

takes place before the long-term consequences are known. Credit for these long-term con-

sequences must somehow be allocated among the individual actions in the action sequence.

This is difficult because the effects of the individual actions on the long-term consequences

might not be independent of each other; that is, there might be joint effects.

In the early RL literature, the focus was generally on a single agent playing a game

against nature. That is, a single agent was assumed to face a choice problem in which his

uncertainty regarding which action to choose arose from an exogenous source modelled as a

probability distribution that was independent of the agent’s action choices.

An example of a game against nature is the famous two-armed bandit (TAB) problem;

see Berry and Fristedt (1985) for a survey. The TAB problem appears to have originated

with Thompson (1933), but the study of the TAB problem only began in earnest following

a highly influential study by Robbins (1952). An agent must repeatedly decide whether to

pull a left lever or a right lever on a two-armed bandit machine. Each lever corresponds to a

different exogenously given probability of winning a specified reward, but the agent does not

know these reward probabilities at the beginning of the game. The agent uses the rewards

that actually ensue from his sequence of lever pulls to construct estimates of these reward

probabilities. Ideally, the agent would like to be able to determine the arm corresponding to

the “best” probability distribution for rewards (e.g. the arm offering the highest expected

utility of return) so that all further lever pulls can be concentrated on this one arm only.
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Recently, theoretical game theorists have begun to explore the use of RL in multi-agent

contexts as a “selection principle” for determining the selection of a particular Nash equilib-

rium when multiple Nash equilibria exist (Fudenberg and Levine, 1998). Also, RL methods

are being used to explain experimental data obtained from human subjects who are learning

to play repeated games; see Roth and Er’ev (1995) and Er’ev and Roth (1998). Learning

among multiple strategically interacting agents is far more difficult to study than learn-

ing in games against nature since the choice environment of each agent is now intrinsically

nonstationary.

The following section illustrates several different types of reactive RL methods that are

currently being used by agent-based computational modelers.

4 Reactive RL: Illustrative Examples

4.1 The Derivative-Follower Algorithm

The “Derivative-Follower” algorithm is perhaps more correctly termed an adaptive method

rather than a reactive RL method since its initially specified state-action associations (in

rate of change form) remain invariant over time.1

The derivative-follower (DF) algorithm developed by Greenwald and Kephart (1999)

for selecting a scalar action is a computationally simple and informationally undemanding

algorithm that focuses on reinforcement of action movement in desirable directions. The

DF decision maker experiments with incremental increases (or decreases) ∆a in some scalar

action a, continuing to move a in the same direction until the observed reward level falls, at

which point the direction of movement in a is reversed.

The selection of the step size ∆a can be adapted to the problem at hand. In each of their

reported experiments, Greenwald and Kephart (1999) randomly select ∆a from a uniform

probability distribution over the interval from 0.01 to 0.02 and then apparently maintain

1There is an essential ambiguity in the distinction between adaptation and learning on the basis of whether
or not structural changes are occurring over time in state-action associations. Suppose an agent begins with
a particular state-action association S → A in a given environment E. Suppose some change occurs in his
environment (E → E∗) that induces the agent to change this association to S → A∗. This appears to be a
structural change in a state-action association, i.e., learning. However, if the state is extended to (S,E), it
is seen there has been no change in the two associations (S,E)→ A and (S,E∗)→ A∗.
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this same step size throughout the course of the experiment. However, as with any gradient

ascent method, it might also be desirable to consider a step size that varies over the course

of the experiment to protect against entrapment in the neighborhood of a local optimum.

Findings from computational market experiments reported by Kephart et al. (2000) sug-

gest that homogenous populations of DF decision makers do relatively well in comparison

with other types of homogeneous learning populations, maintaining the highest prices and

the highest profits. However, when mixed together with other types of learners, DF deci-

sion makers do not necessarily fare the best. These preliminary findings are reminiscent of

the findings for the simple Tit-for-Tat strategy for playing the iterated prisoner’s dilemma

game [Axelrod (1984)]. By construction, Tit-for-Tat cannot beat any rival; but it tends to

do relatively well on average in games played against a wide variety of different strategy

populations.

DF-Algorithm Discussion Questions:

Consider a variation of the Computational Market Economy outlined in Ref.[2] in which

bean firms post unit bean prices at the beginning of each period and then “produce to

order” in response to received consumer demands for beans. How might bean firms apply

the DF algorithm in the absence of any a priori knowledge about consumer demand except

the knowledge that demand curves are generally downward sloping?

The DF algorithm can in principle be generalized to handle action vectors of arbitrary

finite dimension taking on arbitrarily many finite values. Note, however, that the specifi-

cation of the step sizes then becomes much more problematic. Search essentially proceeds

along a one-dimensional curve in a higher-dimensional action space, where the step sizes

jointly determine the direction of the search curve at each point in time. In many problem

contexts, some search curves will be more reasonable than others, hence it will generally not

be desirable to specify the step sizes for the components of the action vector independently

of one another.

For example, bean firms in Ref.[1] are actually assumed to determine their bean produc-

tion levels in advance of sale. Specifically, at the beginning of each trading period t, each

bean firm Bn produces a certain quantity of beans bn and then posts a unit bean price pBn

to attract consumers. Can a variant of the DF algorithm be constructed for the joint choice
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of (bn, pBn) in each trading period t that would reliably ensure the survival and even the

prosperity of bean firm Bn?

4.2 Gibbs/Boltzmann RL

Another type of reactive RL method maps past rewards into future actions through a Gibbs

(or Boltzmann) probability distribution. The description below of this reactive RL method

closely follows Bell (2001).

For a simple illustration, consider a situation in which an agent can take only one of two

possible actions in each time period. Given any time period t, the agent is characterized by:

(a) a vector of weights for the two actions: wt = (w1t, w2t); and (b) a vector that records the

number of times the agent has taken each action to date: nt = (n1t, n2t)

The probabilities that the agent takes actions 1 and 2 at time t are given by

p1t =
ew1t/Tt

ew1t/Tt + ew2t/Tt
; (2)

p2t =
ew2t/Tt

ew1t/Tt + ew2t/Tt
. (3)

Here Tt denotes a time-dependent “temperature” parameter that decreases as a function of t

starting from some positive initial value T0 and approaches some minimal nonnegative value

T̄ as t becomes arbitrarily large. For example, letting µ (the stepsize) denote any number

lying strictly between 0 and 1, a possible functional specification for the determination of Tt

is

Tt+1 = max{µTt, T̄} . (4)

Given (4), note that it becomes more likely that the action j with the largest weight wjt is

chosen as t increases (hence Tt decreases).

Finally, let rit denote the positive or negative reward at time t for taking action i, i = 1, 2,

and let Iit denote an indicator function that takes on the value 1 when action i is chosen

at time t and 0 otherwise. The weights for the actions are then updated according to the

following rules:

w1,t+1 =
[n1t − I1t]

n1t

· w1t +
[I1t · r1t]
n1t

; (5)

w2,t+1 =
[n2t − I2t]

n2t

· w2t +
[I2t · r2t]
n2t

. (6)
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Gibbs/Boltzmann Learning Discussion Questions:

The Gibbs/Boltzmann RL method can in principle be generalized to handle action vectors

of arbitrary finite dimension taking on arbitrarily many finite values. How might the bean

and hash firms in the Computational Market Economy described in Ref.[2] fare if they all

attempted to use such a learning method for determination of their quantity and price offers?

Would they tend to do better or worse in comparison with DF decision makers? What about

the case in which some firms use the DF algorithm and other firms use Gibbs/Boltzmann

learning?

4.3 Er’ev and Roth RL

This subsection briefly outlines two reactive RL methods developed by Roth and Er’ev (1995)

and Er’ev and Roth (1998). The form of these RL methods is based on the human-subject

experimental work of the psychologists Bush and Mosteller (1955). Camerer and Ho (1999)

have extended these RL methods to include anticipatory belief-based learning. See Feltovich

(2000) for a detailed comparison between reinforcement-based and belief-based learning.

Consider a situation in which N players are engaged in a repeated game. In each period

t, each player n can choose from among Mn pure strategies. In the initial period t=1, the

initial propensity of player n to choose his kth pure strategy is given by a nonnegative initial

propensity qnk(1), k = 1, . . . ,Mn. These initial propensities are assumed to be equal valued:

qnk(1) = qnj(1) for all pure strategies j, k . (7)

The probability that player n chooses any particular pure strategy k in the initial period 1

is then given by the relative propensity associated with k:

pnk(1) =
qnk(1)∑
j qnj(1)

= 1/Mn. (8)

Let rnk(t) denote the immediate reward (positive or negative) attained by player n in

period t if he chooses pure strategy k in period t, and let Ink(t) denote an indicator function

that takes on the value 1 if player n chooses pure strategy k in period t and 0 otherwise. At

the end of each period t, t ≥ 1, the propensity that player n associates with pure strategy k

is updated in accordance with the following rule:

qnk(t+ 1) = qnk(t) + Ink(t)rnk(t) . (9)

8



Consequently, the current propensity associated with any pure strategy k by any player n is

just the total sum of rewards received to date by player n from his past use of k, together

with the initial propensity that he associated with k.

The probability that player n chooses any particular pure strategy k in period t is then

given by the relative propensity currently associated with k:

pnk(t) =
qnk(t)∑
j qnj(t)

. (10)

Notice that players do not necessarily choose strategies with the highest accumulated rewards

to date. The latter strategies have the highest probability of being chosen, but there is always

a chance that other strategies with positive probability will be chosen instead. This ensures

that each player continually experiments, which in turn helps to avoid premature fixation

on suboptimal strategies that happen to generate relatively high rewards at the beginning

of the decision process.

The initial propensity values qnk(1) determine the scaling of the stepsize, i.e., the extent

to which the attained rewards change the choice probabilities (10) over time. Note, however,

that the magnitudes of the rewards also affect the rate of change of these probabilities over

time. Thus, this RL rule is not independent of the units of measurement.

Let qn(1) denote the common value for the initial propensities in (7) that player n as-

sociates in the initial period 1 with each of his Mn pure strategy choices. Er’ev and Roth

(1998) further restrict these initial propensity values by assuming that

qn(1) = s(1)Xn/Mn , n = 1, . . . , N, (11)

where s(1) is a positive strength parameter , Xn is the average absolute payoff for player n in

the game, and Mn is the number of pure strategies available to player n. Consequently, the

initial propensity values qn(1) are determined by observable features of the game together

with a single free parameter s(1).

Roth and Er’ev (1998) also consider a second alternative way of updating the propensities

in place of (9), as follows. Two cases are considered. First, suppose that player n’s pure

strategies can be linearly ordered by similarity from 1 to Mn, n = 1, . . . N . Then, if player

n chooses pure strategy k in period t, with resulting reward rnk(t), the propensity for any
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pure strategy j is updated in accordance with

qnj(t+ 1) = [1− φ]qnj(t) + Enj(ε, k, t) , (12)

where φ is set at some small value lying between 0 and 1, and Enj(ε, k, t) takes on the value

rnk(t)[1−ε] if j=k, the value rnk(t)ε/2 if j=k±1, and the value 0 otherwise. Second, suppose

that player n’s pure strategies have no apparent linear order by similarity. In this case (12)

is again the general form of the updating rule, but now Enj(ε, k, t) is set equal to rnk(t)[1− ε]
if j equals k and is set equal to rnk(t)ε/[Mn − 1] for all j not equal to k.

The introduction of the forgetting parameter φ acts as a damper on the growth of the

propensities over time. The experimentation parameter ε permits reinforcement to spill over

from a chosen pure strategy to “similar” pure strategies. Given this alternative rule for

updating the propensity values, it follows that the RL method is now characterized by three

free parameters rather than just one: namely, the strength parameter s(1), the forgetting

parameter φ, and the experimentation parameter ε.

The Roth-Erev updating schemes (9) and (12) turn out to have a serious problem when

applied in market contexts in which the immediate rewards rnk(t) can take on the value zero.

Specifically, zero rewards leave the choice probabilities (10) unchanged, hence no learning

takes place in response to zero-reward outcomes. As discussed in detail in Koesrindartoto

(2001), using the double-auction electricity framework developed in Nicolaisen et al. (2001)

for concrete illustration, this can cause inefficient mushing around in the early stages of a

market process in which buyers and sellers are first struggling to learn how to make profitable

price offers and failures to match (hence zero profit outcomes) are common. Indeed, in

Koesrindartoto’s experimental runs, the loss in market efficiency ranges from 0 to 80 percent

as the experimentation parameter ε is varied from 0 to 1.

Nicolaisen et al. (2001) avoid this zero-reward updating problem by replacing the original

Roth-Erev update function Enj in equation (12) with a modified update function MEnj

defined as follows: In each choice period t, MEnj coincides with Enj if j = k, where k

denotes the selected strategy for period t; otherwise, for all j 6= k,

MEnj = qnj(t)
ε

Mn − 1
. (13)

Using this “modified Roth-Erev method,” Nicolaisen et al. (2001) obtain market efficiency

outcomes close to 100 percent in all tested treatments for their double auction experiment.
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Roth-Erev Learning Discussion Questions:

The Roth-Erev RL methods can in principle be generalized to handle action vectors of

arbitrary finite dimension taking on arbitrarily many finite values. How might the firms in

the Computational Market Economy described in Ref.[2] fare if all firms attempted to use

such learning methods for determination of their quantity and price offers? Would they tend

to do better or worse in comparison with DF agents? with Gibbs/Boltzmann RL learning?

What about cases in which different firms use different types of learning methods?

5 Anticipatory RL Illustration: Q-Learning

Q-Learning is a RL method developed by Watkins (1989) as a successive approximation

technique for solving Bellman’s equation in dynamic programming.2 Q-learning does not

need a model of the environment and can be used on-line in contexts where multiple agents

are engaging in repeated non-zero sum games against unknown rivals and choosing their

actions in an anticipatory way.

The following discussion depends heavily on Sandholm and Crites (1996). Alternative

motivations and justifications for the technique can be found in Jaakkola et al. (1994),

Sutton and Barto (2000), and Tsitsiklis (1994).

Q-learning works by estimating the values of state-action pairs. The Q-value Q(s, a) is

defined to be the expected discounted sum of future returns obtained by taking action a

starting from state s and following an optimal action decision rule thereafter. Once these

values have been learned, the optimal action from any state is the one with the highest

Q-value.

The Q-values are estimated on the basis of experience, starting from arbitrary initial

values. The estimation process consists of three basic steps:

1. From the current state s, select an action a, receiving an immediate reward r, and

arrive at a next state s′;

2Q-learning has interesting connections with the Criterion Filtering (CF) method developed by this
author in a series of studies beginning in 1977. CF is a sequential decision-making method that involves the
direct updating of a dynamic programming value function via transitional return assessments in a manner
analogous to Bayes’ rule for updating a probability distribution via transitional probability assessments. For
a discussion of criterion filtering, see http://www.econ.iastate.edu/tesfatsi/cfhome.htm
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2. Based on this experience, update Q(s, a) to Q(s, a) + ∆Q(s, a) using the following

updating rule:

∆Q(s, a) = α[r + γmax
b
Q(s′, b)−Q(s, a)], (14)

where α is the learning rate and 0 ≤ γ ≤ 1 is the discount factor. Equivalently, letting

QN(s, a) = Q(s, a) + ∆Q(s, a) denote the new Q-value, a suitable manipulation of

(14) indicates that the new Q-value is formed as a weighted average of old and new

estimates as follows:

QN(s, a) = [1− α]Q(s, a) + α
[
r + γmax

b
Q(s′, b)

]
. (15)

3. Return to step 1.

This method is guaranteed to converge to the correct Q-values with probability one under

certain specified conditions. These conditions include: no action is neglected forever; the

learning rate is suitably decreased over time; the environment is stationary; and the state

transition probabilities are Markovian in the sense that the probability of transiting from

s to s′ depends only on s, s′, and the current action a, and not on previous history. Note

that the latter condition essentially rules out multi-agent contexts, since in such contexts

the probability of transiting from a state s to a new state s′ would typically depend on the

actions undertaken by all agents, not just on the action a undertaken by the agent who is

doing the Q-value estimation.

Q-learning does not specify which action should be chosen at each time step. In practice,

action choice rules are usually selected to ensure sufficient exploration while still favoring

actions with higher Q-value estimates. The Gibbs/Boltzmann probability distribution in-

troduced in Section 4.2 provides one such action choice rule, as follows: at each time step t,

if the current state is s, then the probability of selecting action a is given by

p(a|s, t) =
eQ(s,a)/Tt∑
i eQ(s,ai)/Tt

, (16)

where Tt is a “temperature” parameter that controls the amount of exploration and is usually

“annealed” (decreased) gradually over time. For example, Tt might be defined as in (4).

Q-Learning Discussion Questions:
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How might Q-learning be modified to handle the type of anticipatory learning problems

faced by firms in the Computational Market Economy presented in Ref.[2]? Would the

firms do better or worse using Q-learning in comparison with DF decision making? with

Gibbs/Boltzmann RL learning? with Roth-Erev RL learning? What about mixed cases in

which different firms use different types of learning methods?

6 Genetic Algorithms as Learning Methods

An excellent introduction to genetic algorithm (GA) learning can be found in Holland (1992)

and Mitchell (1995). Consequently, only a brief review is given here, based largely on Mitchell

(1995). The section ends with a discussion of the important distinction between use of GAs

as social learning methods and use of GAs as individual learning methods, as clarified by

Vriend (2000).

First developed by John Holland in the 1960s, the GA remains one of the most prominent

types of methods used in evolutionary computation. Evolutionary computation is the use of

computer programs that not only self-replicate but also evolve over time in an attempt to

increase their fitness for some purpose. Fitness might represent:

• the ability to solve some problem, such as a math problem, or an architectural design

problem;

• the ability to repeatedly perform some task , such as handwriting recognition, facial

recognition, or chess playing;

• the ability to survive and prosper in some computationally specified virtual world, such

as a computational city or a computational market.

A GA is an abstraction of biological evolution. It is a method for evolving a new popu-

lation of entities (e.g., candidate solutions for a math problem) from an existing population

of entities, with evolution biased in favor of more fit entities (“survival of the fittest”). The

evolution proceeds via genetic operations (recombination, mutation,...) that act directly

upon the structural characteristics of the population members.

GA Representation of Population Members:
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The standard GA represents population members as bit strings , i.e., as sequences of 0’s

and 1’s. A bit string can be used to represent a wide variety of entities.

For example, a bit string can be used to represent in binary (base 2) arithmetic any

arbitrary natural number n in {1, 2, . . .}. Recall that a string of natural numbers such as

[ 3 | 2 | 4 ] represents the following arithmetic operation in decimal (base 10) arithmetic:

324 ≡ [ 3 | 2 | 4 ] = 3 · 102 + 2 · 101 + 4 · 100 , (17)

where, by convention, any natural number n raised to the power 0 equals 1. Similarly, a

string of 0’s and 1’s such as [ 1 | 0 | 1 ] represents the following arithmetic operation in

binary (base 2) arithmetic:

101 ≡ [ 1 | 0 | 1 ] = 1 · 22 + 0 · 21 + 1 · 20 , (18)

which is equivalent to 5 in decimal arithmetic. Clearly any finite natural number n, however

large, can be represented as a bit string of suitably large (but finite) length.

As another example, bit strings can be used to represent possible strategies for playing

the iterated prisoner’s dilemma (IPD) game. Suppose the payoff matrix for each stage of the

IPD is as depicted in Table 1, where “C” denotes cooperation and “D” denotes defection.

Player 2

C D

C (3,3) (0,5)
Player 1

D (5,0) (1,1)

Table 1. One-Stage Payoff Matrix for the
Iterated Prisoner’s Dilemma Game

Suppose the memory of each player is one previous turn. In this case there are four possible

states (move configurations) that could result from this previous turn, as follows:

State 1 = CC: Player 1 chose C, Player 2 chose C ; (19)
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State 2 = CD: Player 1 chose C, Player 2 chose D ; (20)

State 3 = DC: Player 1 chose D, Player 2 chose C ; (21)

State 4 = DD: Player 1 chose D, Player 2 chose D . (22)

A strategy for Player 1 (or Player 2) is then a rule specifying what move (C or D) the player

should choose if he finds himself in each possible state 1, 2, 3, or 4. An example of such a

strategy would be:

If in state 1 (CC), then choose C ; (23)

If in state 2 (CD), then choose D ;

If in state 3 (DC), then choose C ;

If in state 4 (DD), then choose D .

Given s = 4 possible states, and m = 2 two possible actions in each possible state, note that

the total number of distinct IPD strategies for this game is ms = 24 = 16.

Suppose the four possible states are always ordered in the same manner, from 1 through

4. Then each possible IPD strategy can be represented as a bit string of length four. For

example, letting 1 denote cooperation (C) and 0 denote defection (D), the strategy depicted

above in (23) can be represented as the bit string [1 | 0 | 1 | 0], where the first position gives

the required move 1 in state 1, the second position gives the required move 0 in state 2, the

third position gives the required move 1 in state 3, and the fourth position gives the required

move 0 in state 4.

GA Population Evolution:

Recall that the GA is a method for evolving a new population of entities from an existing

population of entities, with evolution biased in favor of more fit entities. The standard GA

represents each entity in the population as a bit string and evolves a new entity population

from an existing entity population by applying the following four steps to these bit string

representations:

1. Evaluation Step: A fitness score is assigned to each entity in the existing population.

2. Replacement Step: Some percentage q of the most fit (“elite”) entities in the existing

population are retained for the new entity population.
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3. Recombination Step: The remaining [1 − q] percent of the existing population are re-

placed with offspring entities (new ideas) constructed by combining the genetic material

(structural characteristics) of pairs of parent entities chosen from among the entities

in the existing population, with selection biased in favor of more fit entities.

4. Mutation Step: Additional variations (new ideas) are introduced into the new pop-

ulation by mutating the structural characteristics of each offspring entity with some

small probability.

Each of the four steps can be implemented in a variety of ways. For example, consider

the previously discussed IPD illustration. Suppose the initial entity population consists of

10 IPD strategies, each represented as a bit string of length four, where the four positions

in each bit string correspond to the four possible states 1, 2, 3, and 4.

Regarding step one, set the fitness associated with each strategy in the initial population

at the beginning of period T = 1 equal to 0, and set the fitness associated with each strategy

in the population at the beginning of each period T > 1 equal to the total accumulated payoffs

currently associated with this strategy from previous IPD play. Also, at the beginning of

each period T > 1, set the total population fitness of the existing strategy population equal

to the sum of fitnesses of all 10 strategies in the existing population, and set the relative

fitness of each strategy in the existing population equal to its own fitness divided by total

population fitness.

Regarding step two, suppose the elite percentage rate q is fixed at 20%. Let the members

of the existing strategy population be ranked by fitness. Then the two strategies comprising

the top 20% in this fitness ranking are deemed to be the elite strategies , meaning they will

be transferred without modification to the new strategy population.

Regarding step three, one of the simplest recombination implementations is two-point

cross-over . Randomly select two distinct cross-over points COP1 and COP2 from among

the set of values {1, 2, 3, 4}. At the beginning of each period T > 1, let each strategy (length-

four bit string) in the existing strategy population be interpreted as a four-position loop with

its ends pasted together, and let the left boundary for state position j be labeled boundary

j, j = 1, 2, 3, 4. Select two parent strategies from the existing strategy population, where the

probability that any strategy is selected to be a parent is given by its relative fitness. Divide
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each parent strategy into two portions by splitting it at the boundaries COP1 and COP2.

Form two new offspring strategies from the two parents by taking the first portion of the

first parent bit string and pasting it to the second portion of the second parent bit string,

and taking the second portion of the first parent bit string and pasting it to the first portion

of the second parent bit string. Repeat this operation four times in total, so that a total of

8 new offspring strategies are formed. The fitness f of each offspring strategy is taken to

be some weighted average of the fitnesses f1 and f2 of its two parents, e.g., f = [L1 · f1 +

L2 · f2]/4, where Li is the bit string length (number of state positions) incorporated from

parent i.

To illustrate this two-point cross-over operation more concretely, suppose the cross-over

points are randomly determined to be boundaries 1 and 2. Suppose the following two parent

strategies have been selected from the existing population for cross-over:

Parent 1: [ 1 | 0 | 0 | 1 ] ; (24)

Parent 2: [ 0 | 1 | 0 | 0 ] . (25)

Each parent strategy is split into two portions by dividing its bit string at boundaries 1 and

2, as follows:

Divided Parent 1: [ 1 ] and [ 0 | 0 | 1 ] ; (26)

Divided Parent 2: [ 0 ] and [ 1 | 0 | 0 ] . (27)

Two offspring are then formed by recombining these portions as follows:

Offspring 1: [ 1 | 1 | 0 | 0 ] ; (28)

Offspring 2: [ 0 | 0 | 0 | 1 ] . (29)

A simple way to implement the final step four is to select a mutation probability pm

lying strictly between 0 and 1. Each strategy in the new population is then subjected to

bit mutation. That is, each bit in the strategy’s bit string representation is flipped to its

opposite value (from 0 to 1, or from 1 to 0) with probability pm and left unchanged with

probability 1− pm.

A new population of 10 strategies is then formed by combining the 2 elite strategies

from the existing strategy population with the 8 newly constructed and mutated offspring

strategies.
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Individual versus Social GA Learning:

There are two basic approaches to implementing a GA as a learning rule in multi-agent

contexts. The GA can either be applied as a social learning (mimicry) rule across agents, or it

can be applied as an individual RL rule for each agent separately. Vriend (2000) explores the

implications of these two different approaches for a simple oligopoly (multiple-firm) market.

Specifically, Vriend (2000) considers a collection of N firms producing a homogeneous

commodity q in a market with a fixed aggregate demand curve that is reconstituted at

the beginning of every trading period. Each firm i has a total cost function Ci(q) and a

maximum production capacity QMaxi. The only choice to be made by each firm i in each

trading period T is the particular quantity qi that it is willing to supply at each given market

price for q.

The first approach is to use the GA as a model of social learning. At any given time, each

firm i participating in the market is characterized by a single supply rule that determines its

supply quantity qi as a function qi(P ) of the market price P subject only to one restriction:

namely, qi cannot exceed firm i’s maximum capacity QMaxi. The supply rule for each firm

is represented as a bit string (i.e., a string of 1s and 0s) of fixed length. At the beginning of

each trading period T each firm submits its current supply rule to a central clearing house,

a uniform market price PT is determined by the clearinghouse by setting aggregate supply

equal to aggregate demand, and each firm’s profits are then determined as its revenues

PT qi(PT ) minus its costs Ci(qi(PT )).

At the end of the trading period, a new population of N supply rules is constructed

from the current population of N supply rules by the application of a GA involving elitism,

recombination, and mutation operations that are biased in favor of more fit (profitable) rules.

The basic idea is that the most successful supply rules are retained unchanged (elitism) while

the less successful supply rules are replaced by variants (recombinations and mutations) of

the more successful supply rules. Each firm is then assigned a supply rule from the new

population of rules, and a new trading period commences.

The second approach is to use the GA as a model of individual reinforcement learning.

One way to do this is to use the classifier system approach originally developed by Holland

(1992). Each firm i is now individually modelled as a collection of potential supply rules,

where each rule is again modelled as a bit string. Attached to each rule is a fitness or
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“strength” that reflects the degree to which the rule has been successful in generating profits

for firm i in past usage instances. At the beginning of each trading period, firm i selects one

supply rule from among its current collection of supply rules, where the probability that any

particular supply rule is selected is proportional to its current strength.

As in the social learning case, after receiving a supply rule from each firm at the beginning

of any trading period T , the clearinghouse determines the period-T market price PT which

in turn determines the period-T profit level for each firm in the market. Each firm then uses

its own attained profit level to update the strength of the supply rule it is currently using.

A GA is then separately applied to the collection of supply rules for each of the N firms in

the same way that a single GA was previously applied to the collection of supply rules for

the collection of traders as a whole. Thus, instead of comparing the profit performance of

its current supply rule against the supply rules currently in use by other firms, each firm

now compares the profit performance of its current supply rule only against the past profit

performance of all other supply rules in its own collection.

Vriend (2000) considers the special case in which each firm i at the beginning of each

period T must produce and offer for sale a quantity qi prior to the actual determination

of the period-T market price, so that qi(P ) = qi (no dependence of period-T supply on

the period-T market price). For this case, he demonstrates experimentally that the two

types of GA learning can result in essential differences in market outcomes. Specifically, for

the particular parameter values he studies, social learning tends to lead to a more socially

desirable outcome than individual learning.

Vriend attributes this difference to a structural feature of the underlying oligopoly model

which he calls the spite effect : namely, a firm can act in a way that decreases its own

profits but that decreases the profits of its rivals more. Note that this spite effect exists

independently of the particular learning processes of the firms.

When the firms are social learners, the spite effect can potentially influence the learning

processes of the firms. Specifically, it can lead to a relatively better profit (fitness) outcome

for a spiteful firm, which favors the reproduction (social mimicry) of the spiteful firm’s

particular quantity choice in the evolutionary step. Vriend demonstrates experimentally

that this influence tends to coordinate the quantity choices of the socially learning firms

on the “Walrasian” aggregate quantity outcome where total social surplus (consumer plus
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producer surplus) is maximized.

In contrast, when the firms are individual learners, the spite effect is still present, but the

exercise of spitefulness by any one firm does not give that firm any evolutionary advantage

relative to other firms. This is because each firm individually determines its current quantity

choice by comparing the past profitability of this quantity choice to the past profitability

of other past quantity choices by this same firm. However, the actual profitability of the

current quantity choice of any one firm is determined by the current set of quantity choices

across all firms and not by past quantity choices. Consequently, there is no reason for a firm

to act to decrease its own profits in order to decrease its rivals’ profits more since it does

not secure any evolutionary advantage from this spiteful behavior. Vriend’s experimental

findings demonstrate that the individual learning firms tend to coordinate on an aggregate

quantity outcome that yields higher firm profits (producer surplus) but lower total social

surplus in comparison with the social learning outcome.

GA Learning Discussion Questions:

How would the firms in the Computational Market Economy presented in Ref.[2] fare if

they use individual GA learning for determination of their quantity and price offers? Would

use of social GA learning make any sense? Does GA learning appear to be better suited for

the determination of the firms’ quantity and price decisions than the other types of learning

methods surveyed above? Why or why not?
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Appendix

Key Concepts from“Notes on Learning: Econ 308”

• Social learning

• Individual learning

• Type learning

• Reactive (stimulus-response) learning

• Anticipatory (look-ahead) learning

• Conditional expected utility

• Reinforcement learning

• Nonsequential choice problem

• Sequential choice problem

• Credit assignment problem

• Two-armed bandit (TAB) problem
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• Derivative-Follower Algorithm

• Gibbs/Boltzmann reinforcement learning algorithm

• Roth-Erev reinforcement learning algorithms

• Q-learning

• Genetic algorithm (GA) learning

• Classifier system
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