Notes on the Construction of Demand & Supply Schedules

Leigh Tesfatsion
Department of Economics
Iowa State University
Ames, IA 5001-1070

https://www2.econ.iastate.edu/tesfatsi/

Clarification of Terminology

- □ In market analyses:
 - Ordinary supply and demand schedules give quantity for each (per unit) price: Q = 5°(P); Q = D°(P)
 - Inverse supply and demand schedules give (per unit) price for each quantity: P = S(Q); P = D(Q).
- In this class we will stress price-setting agents who determine price for each quantity bought/sold, so we focus on inverse supply/demand functions.
- The exact relationship between ordinary/inverse supply and demand is illustrated at the end of these notes.

EXAMPLE 1: Seller 1 Supply Schedule Inverse Form $P = S_1(Q)$

Seller 2 Supply Schedule Inverse Form $P = S_2(Q)$

Given any Q, the function $P=S_2(Q)$ gives Seller 2's minimum per-unit sale price (\$/bushel) for the "last" unit supplied at this Q.

Bushel Unit Seller 2 Min Sale Pr

1	\$10
2	\$50
3	\$90
4	∞

Q

Total Supply Schedule (Sellers 1 & 2) Inverse Form P = S(Q)

Buyer 1 Demand Schedule Inverse Form $P = D_1(Q)$

Given any Q, the function $P=D_1(Q)$ gives Buyer 1's maximum per-unit purchase price (\$/bushel) for the "last" unit purchased at this Q.

Bushel Unit	Buyer 1's Max Per-Unit Price
1 2 3 4	\$84 \$76 \$70 \$ 0

Buyer 2 Demand Schedule Inverse Form $P = D_2(Q)$

Given any Q, the function $P=D_2(Q)$ gives Buyer 2's maximum per-unit purchase price (\$/bushel) for the "last" unit purchased at this Q.

shel Unit	Buyer 2's Max Per-Unit Price
1	\$50
2	\$30
3	\$20
4	\$ 0

Buyer 3 Demand Schedule Inverse Form $P = D_3(Q)$

Given any Q, the function P=D₃(Q) gives Buyer 3's maximum per-unit purchase price (\$/bushel) for the "last" unit purchased at this Q.

Buyer 3's Max Per-Unit Price
\$90
\$80
\$ 0

Total Demand Schedule (Buyers 1,2,& 3) Inverse Form P = D(Q)

CMC Points (S=D)

Remark: *Inframarginal* (traded) units versus extramarginal (non-traded) units at CMC Pts

Total Net Surplus at CMC Points (invariant to particular choice of CMC Point)

Total Net Surplus at CMC Points...

Net Buyer/Seller Surplus at CMC Points (surplus division DOES depend on CMC point)

Net Buyer/Seller Surplus at CMC Points...

Market Efficiency (ME)

ME < 100% under What Conditions?

- □ Some "inframarginal" quantity unit FAILS to trade
- Or some "extramarginal" quantity unit SUCCEEDS in being traded
 - NOTE: If the price received by the seller of some quantity unit is LESS than the price paid by the buyer of this quantity unit (so some net surplus is extracted by a "third party"), then Buyer Net Surplus + Seller Net Surplus < 100%
 - → ISO's in wholesale power markets!

Market Power: Ability to Extract More Actual Surplus Than at CMC Point

More on CMC Points: Illustrative Example 2

More on CMC Points: Illustrative Example 3

More on CMC Points: Illustrative Example 4

Relationship of "Inverse" to "Ordinary" Supply and Demand Schedules

- ◆ In all of the previous "inverse" supply and demand examples, the minimum per-unit sale prices (i.e., the "sale reservation prices") and the maximum per-unit purchase prices (i.e., the "purchase reservation prices") were given for each successive quantity unit 1, 2, 3,...
- Conversely, for "ordinary" supply and demand, the maximum sale and purchase quantities are given for each successive per-unit price \$1,\$2,\$3,...

Illustrative Comparison of Inverse and Ordinary Supply: Supply Schedule for Seller 1 Inverse Form $P = S_1(Q)$

Supply Schedule for Seller 1 Re-Expressed in Ordinary Form $Q_1 = S^{\circ}(P)$

Supply Schedule for Seller 2

Inverse Form $P = S_2(Q)$

Supply Schedule for Seller 2 Re-Expressed in Ordinary Form $Q = S_2(P)$

Total Supply Schedule (Sellers 1 & 2) Inverse Form P = S(Q)

Total Supply Schedule (Sellers 1 & 2) Re-Expressed in Ordinary Form $Q = S^{\circ}(P) = [S^{\circ}_{1}(P) + S^{\circ}_{2}(P)]$

