Notes on the Construction of Demand \& Supply Schedules

Leigh Tesfatsion

Department of Economics
Iowa State University
Ames, IA 5001-1070
https://www2.econ.iastate.edu/tesfatsi/

Clarification of Terminology

- In market analyses:
- Ordinary supply and demand schedules give quantity for each (per unit) price: $Q=S^{\circ}(P) ; Q=D^{\circ}(P)$
- Inverse supply and demand schedules give (per unit) price for each quantity: $P=S(Q)$; $P=D(Q)$.
- In this class we will stress price-setting agents who determine price for each quantity bought/sold, so we focus on inverse supply/demand functions.
- The exact relationship between ordinary/inverse supply and demand is illustrated at the end of these notes.

EXAMPLE 1:

Seller 1 Supply Schedule
Inverse Form $P=S_{1}(Q)$

Let $Q=$ Apple Amount (in bushels)
Let $P=$ Per-unit price of apples (i.e., dollars \$ per bushel)

Given any Q, the function $P=S_{1}(Q)$ gives Seller 1's minimum per-unit sale price (\$/bushel) for the "last" unit supplied at this \mathbf{Q}.

Bushel Unit Seller 1 Min Sale Price

1	$\$ 20$
2	$\$ 30$
3	$\$ 60$
4	$\$ 80$
5	$\$ 90$
6	∞

Seller 2 Supply Schedule Inverse Form $P=S_{2}(Q)$

Given any Q, the function $P=S_{2}(Q)$ gives Seller 2's minimum per-unit sale price (\$/bushel) for the "last" unit supplied at this Q.

Bushel Unit Seller 2 Min Sale Price

1	$\$ 10$
2	$\$ 50$
3	$\$ 90$
4	∞

Total Supply Schedule (Sellers 1 \& 2) Inverse Form $P=S(Q)$

Bushel Unit Min Seller Price

1	$\$ 10$	$(\mathrm{~S} 2)$
2	$\$ 20$	$(\mathrm{~S} 1)$
3	$\$ 30$	$(\mathrm{~S} 1)$
4	$\$ 50$	$(\mathrm{~S} 2)$
5	$\$ 60$	$(\mathrm{~S} 1)$
6	$\$ 80$	$(\mathrm{~S} 1)$
7	$\$ 90$	$(\mathrm{~S} 1 / \mathrm{S} 2)$
8	$\$ 90$	$(\mathrm{~S} 2 / \mathrm{S} 1)$
9	∞	

Buyer 1 Demand Schedule Inverse Form $P=D_{1}(Q)$

Given any Q, the function $P=D_{1}(Q)$ gives Buyer 1's maximum per-unit purchase price (\$/bushel) for the "last" unit purchased at this Q.

Bushel Unit Buyer 1's Max Per-Unit Price

1	$\$ 84$
2	$\$ 76$
3	$\$ 70$
4	$\$ 0$

Buyer 2 Demand Schedule Inverse Form $P=D_{2}(Q)$

Given any Q, the function $P=D_{2}(Q)$ gives Buyer 2's maximum per-unit purchase price ($\$ /$ bushel) for the "last" unit purchased at this Q.

Bushel Unit Buyer 2's Max Per-Unit Price

1	$\$ 50$
2	$\$ 30$
3	$\$ 20$
4	$\$ 0$

Buyer 3 Demand Schedule Inverse Form $P=D_{3}(Q)$

Given any Q, the function $P=D_{3}(Q)$ gives Buyer 3's maximum per-unit purchase price (\$/bushel) for the "last" unit purchased at this Q.

Bushel Unit Buyer 3's Max Per-Unit Price

1	$\$ 90$
2	$\$ 80$
3	$\$ 0$

Total Demand Schedule (Buyers 1,2, \& 3)
 Inverse Form $P=D(Q)$

CMC Points (S=D)

Remark: Inframarginal (traded) units versus extramarginal (non-traded) units at CMC Pts

Total Net Surplus at CMC Points

 (invariant to particular choice of CMC Point)

Total Net Surplus at CMC Points...

TOTAL NET SURPLUS: \$230

Net Buyer/Seller Surplus at CMC Points (surplus division DOES depend on CMC point)

Net Buyer/Seller Surplus at CMC Points...

Market Efficiency (ME)

ME < 100\% under What Conditions?

- Some "inframarginal" quantity unit FAILS to trade
- Or some "extramarginal" quantity unit SUCCEEDS in being traded

NOTE: If the price received by the seller of some quantity unit is LESS than the price paid by the buyer of this quantity unit (so some net surplus is extracted by a "third party"), then Buyer Net Surplus + Seller Net Surplus < 100\%
\rightarrow ISO's in wholesale power markets !

Market Power: Ability to Extract More Actual Surplus Than at CMC Point

Does any trader below have an incentive to offer or bid strategically?

Does any trader below have an incentive to offer or bid strategically ?

Does any trader below have an incentive to offer or bid strategically?

Does any trader below have an incentive to offer or bid strategically ?

More on CMC Points: Illustrative Example 2

More on CMC Points: Illustrative Example 3

More on CMC Points: Illustrative Example 4

Relationship of "Inverse" to "Ordinary" Supply and Demand Schedules

- In all of the previous "inverse" supply and demand examples, the minimum per-unit sale prices (i.e., the "sale reservation prices") and the maximum per-unit purchase prices (i.e., the "purchase reservation prices") were given for each successive quantity unit $1,2,3, \ldots$
- Conversely, for "ordinary" supply and demand, the maximum sale and purchase quantities are given for each successive per-unit price \$1, \$2, \$3,...

Illustrative Comparison of Inverse and Ordinary Supply: Supply Schedule for Seller 1 Inverse Form $P=S_{1}(Q)$

Supply Unit Seller 1 Min per-Unit Sale Price

0	$\$ 0$
1	$\$ 2$
2	$\$ 4$
3	$\$ 5$
4	∞
5	∞
6	∞

Supply Schedule for Seller 1 Re-Expressed in Ordinary Form $Q_{1}=S^{\circ}(P)$

Supply Schedule for Seller 2 Inverse Form $P=S_{2}(Q)$

Supply Unit
Seller 2 Min Per-Unit Sale Price
0
1
2
3
4
5
6
7
8
9

Supply Schedule for Seller 2 Re-Expressed in Ordinary Form Q $=\mathrm{S}_{2}{ }^{2}(\mathrm{P})$

Q
$Q=\mathrm{S}_{2}(\mathrm{P})=$ Maximum amount of Q that Seller 2 is willing to supply at per-unit sale price P

Seller 2 Max Supply

Per-Unit Sale Price

0	$\$ 0$
2	$\$ 1$
4	$\$ 2$
5	$\$ 3$
7	$\$ 4$
8	$\$ 5$
8	$\$ 6$
8	$\$ 7$
8	$\$ 8$
8	$\$ 9$

Total Supply Schedule (Sellers 1 \& 2)
 Inverse Form $P=S(Q)$

Total Supply Schedule (Sellers 1 \& 2) Re-Expressed in Ordinary Form $Q=S^{\circ}(P)=\left[S^{\circ}(P)+S^{\circ}{ }_{2}(P)\right]$

$Q=S^{\circ}(P)=$ Maximum total amount of Q that Sellers 1 and 2 are willing to supply at the per-unit sale price P

Max Supply
Unit Sale Price P $Q=Q_{1}+Q_{2}$

$0=0+0$	$\$ 0$
$2=0+2$	$\$ 1$
$5=1+4$	$\$ 2$
$6=1+5$	$\$ 3$
$9=2+7$	$\$ 4$
$11=3+8$	$\$ 5$
$11=3+8$	$\$ 6$
$11=3+8$	$\$ 7$
$11=3+8$	$\$ 8$
$11=3+8$	$\$ 9$

