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On the Road to Know-Ware

 “The heart has its reasons

 that reason does not know.”

PASCAL

{A}What is Knowledge?{/A}

In a novel study of the American economy, Fritz Machlup claimed that the “knowledge

industry” accounted for about 29 percent of the U.S. Gross National Product by 1958.1

He also found that the growth rate of "knowledge-producing" occupations had exceeded

all other job classes since the turn of the century.  Studies elsewhere have confirmed that

knowledge-producing occupations are growing rapidly.  After subdividing the workforce

force into four occupations – knowledge-handling jobs, administration and information

jobs, personal services, and goods-handling jobs – a Swedish study found that the share

of knowledge-handling jobs grew from about 10 percent in 1960 to 18 percent in 1980,

and was expected to reach about 30 percent by the turn of the millenium.2

Who are these knowledge producers?  Machlup combined people who create new

knowledge (e.g. research scientists) with those who communicate existing knowledge to

others (e.g. teachers, managers, air traffic controllers). On reflection, this seems too

generous.  Why?  Because the creation of new knowledge is a more complicated and

demanding undertaking than routine tasks like passing on existing knowledge or

information to others.  Although all of us possess some degree of creative talent, the most

creative knowledge-producers are well-known.  They include researchers, inventors,

entrepreneurs, authors, artists and composers.

                                                          
1 For a fuller account of the distribution of knowledge-handlers in the American economy, see Machlup
(1962).

2 The Swedish study and its results are discussed in Andersson (1986).
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Some intriguing questions then arise.  What kind of new knowledge do they

create?  How is this knowledge acquired and improved?  Does it differ from information?

One kind of new knowledge comes from scientific research.  Scientific knowledge is

produced by universities, research institutes and other science-oriented organizations,

where it often mixes with associated tasks (e.g. teaching, consulting).  Much of this

collective knowledge appears in books, scientific journals and other technical

publications.  Some of it gets applied by industry in the design and production of new

technology and products.  Occasionally, it finds its way into the popular press.

Traditionally, most scientists used to work alone or in small groups led by a senior

scientist.  Today, however, there’s a growing trend towards collaboration between

researchers in many different locations.3  Globalization, aided by the advent of the

Internet and rapid advances in communication technology, seem to have spawned greater

collaboration over longer distances.  Nevertheless, there’s also evidence that the

frequency of research collaboration between researchers who speak the same first

language decreases exponentially with the distance separating them.4  Distance still

matters, despite the information technology revolution.

The explanation for this frictional effect is that informal, face-to-face contact is

thought to be an essential ingredient for generating new ideas by collaborating partners,

but that factors such as geographical proximity become significant because of the

additional travel cost and time needed to bring the partners together.  Thus researchers

who are closer geographically can meet and exchange ideas more easily and more often

than distant partners.  The debatable point is that face-to-face meetings cannot be

replaced by the use of telecommunications, the Internet, or related technologies when it

                                                          
3 One way of monitoring research collaboration is to measure the number of internatonally co-authored
scientific articles.  Work of this kind has been reported recently by Swedish researchers.  For example,
Andersson and Persson claim that, in recent decades, such collaboration has been growing at an average of
14% per year; see Andersson and Persson (1993).

4 For an interesting analysis of the effect of distance on collaboration between the UK, Canada and
Australia, see Katz (1993).  He normalized the distance variable as a fraction of the largest distance beteen
pairs of universities in each country, and found that the frictional impedance effect was exponential.  A
similar result can be found in Beckmann (1994), whose theoretical analysis weighed the advantages of
collaboration against its cost.  His results suggest that we should expect an exponential distance effect.
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comes to the generation of new knowledge.5  One reason for this is that novel and

surprising ideas tend to emerge more spontaneously from face-to-face exchanges than

from other kinds of contacts.  We’ll return to the issue of face-to-face contacts later in

this chapter, when we come to distinguish knowledge from information.

An increasing number of scientists work on research and development (R&D) in

private sector corporations or public agencies.  This R&D leads to new products like

"high-tech" pharmaceuticals, chemicals, aeroplanes, space products, instruments,

electronics, computer-based hardware and software.  Because chance plays such a major

part in the process of scientific discovery through R&D, once again we find ourselves

plunged into the world of morphogenesis.  Although knowledge-producers can be found

in all sectors of the economy, successful R&D is a crucial ingredient in the "get ahead,

stay ahead" world of high technology.  The potential payoffs are enormous for the

winners.  As we learnt in the first chapter, high-tech scientists live in that very chancy

world of increasing returns.

How do scientists and others acquire new knowledge?  There’s no magic elixir

involved here.  Like all of us, scientists must acquire their knowledge from learning.  Yet

for most of the twentieth century, economists have treated knowledge and learning as

exogenous variables when it comes to explaining economic growth and development.

Ironically, the idea that increasing returns could arise from the accumulation of

knowledge is almost as old as economics itself.  In his Principles of Economics, Alfred

Marshall noted that an increase in "trade-knowledge" that cannot be kept secret is a form

of external economy.  Yet very few models of economic change adopted this suggestion.

Perhaps the foremost advocate of knowledge as the endogenous engine of growth

and technological change is Paul Romer, an economist at the University of Chicago.  For

several decades now, there’s been a frantic rush to absorb learning into the main corpus

of economic theory; ever since the appearance of Kenneth Arrow's pioneering paper on

"learning-by-doing."  Much of the discussion in this and later chapters will focus on

learning as an adaptive process, drawing partly on the domain of psychology.

                                                          
5 This highly contentious issue can be relied upon to raise a storm of debate among researchers claiming
expertise in the field.  But independent research has shown that the strongest proponents supporting each
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When we probe learning problems, we find that psychologists are no more in

agreement than economists.  But one empirical generalization seems to stand firm, having

been accepted by all schools of thought: Learning is a product of experience.  In other

words, learning can only occur when we’re attempting to do something - like reading a

book, talking to someone, playing a game or solving a problem.  We already know that

learning associated with repetition of much the same problem is subject to diminishing

returns.  We’re trapped in the world of stasis again.  According to Arrow, the stimulus

situations must themselves be steadily evolving rather than merely repeating, if we’re to

build on our experience and enjoy steadily increasing returns.  This is a vital distinction

because it means that learning belongs to the world of morphogenesis.  And that makes it

evolutionary.

Before we launch into a discussion of the evolutionary aspects of learning, let me

round off this discussion with a few words about knowledge and information.

Superficially, we tend to think of knowledge as data or facts which we can organize into

predefined categories - compartments in the brain, if you like.  For example, a financial

analyst might notice that the rate of exchange between the yen and the dollar is running at

125.  He stores this fact in the "yen-dollar" compartment in his memory bank; he now

knows this.  The next day he notices that the same exchange rate has dropped to 123.

Therefore he revises this entry in his memory bank.  Having updated his yen-dollar data

string, he has learnt something new.

Undoubtedly this is a kind of learning, but it’s a very simple learning model.  In

fact, it’s too simple.  Knowing means nothing more than being aware of data and

assigning them to the correct memory compartments.  Learning means nothing more than

revising these data in the light of fresh information from outside.  While this may be fine

for some purposes, to understand what learning is really about we need to go deeper than

this.  Certainly the world of economic decision-making is not that shallow.  Knowledge is

not always spoonfed to us in pre-packaged forms.  Rarely do we enjoy the luxury of

infallible conceptual models that we can use to forecast, analyze and act upon with

                                                                                                                                                                            
argument tend to have vested interests in their particular point of view.  For a hierarchical treatment of the
knowledge exchange issue, see Batten, Kobayashi and Andersson (1989).
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absolute confidence.  Our personal stock of knowledge is a very individual thing, being a

unique product of our own experiences, constructs and memories.

Like the empiricist philosophers before him, Immanuel Kant believed that our

knowledge of the world comes from our sensations.  But he also believed that how we see

the world depends on the particular "glasses" we’re wearing.  We can never have certain

knowledge of things "in themselves," just how things appear to us.  Kant believed that

there are clear limits to what we can know.  Each mind's glasses set these limits.  When

we ask questions about totality, such as whether the Universe is finite or infinite, we’re

asking about a totality of which we’re but a small part.  There’s simply too much for a

single person to handle, so we can never know this totality completely.  We’ll return to

the issue of what may be knowable and unknowable in Chapter 8.

Knowledge becomes a much fuzzier concept in Kant's world.  If there are clear

limits to what we can know, then our ability to reach identical conclusions under similar

conditions should not be taken for granted.  Erwin Schrödinger sums it up nicely in his

book Mind and Matter:

{EXT}The world is a construct of our sensations, perceptions, memories.  It is convenient to regard it as

existing objectively on its own.  But it certainly does not become manifest by its mere existence.  Its

becoming manifest is conditional on very special goings-on in very special parts of this very world, namely

on certain events that happen in a brain.{/EXT}6

Each of us is a unique product of our own brain and our uniquely individual experiences.

Our personal knowledge is honed by the concepts, notions and models which we choose

to use to represent it.  All of this has to be created, put together over time by us as well as

by others in society as a whole.  Learning is a cumulative process which can be

frustratingly slow, partly because some of us are stubbornly resistant to change.  Thus

some of our knowledge stocks turn out to be surprisingly durable.

An obvious distinction can be made between the simpler, more objective kinds of

knowledge, such as the yen-dollar exchange rate, and the more complex, subjective kinds

which result from our own mental "gymnastics" and contacts with others.  We can

                                                          
6 See Schrödinger (1956).
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usefully think of the simpler kinds as information and our use of them as information-

processing.  Basic information -- like an exchange rate or the maximum daily temperature

– is readily quantifiable.  It’s dispersed easily over geographical space and changes rather

quickly over time.  Most information has limited value, in the sense that its usefulness

erodes rather quickly.  Last Thursday's maximum temperature is of much less interest

than today's high.  Furthermore, this kind of information is not a product of our own

thinking and experience.  It’s external to us, bestowed upon us like "manna from heaven."

For this reason, information can be gathered and transferred in many different ways.

Moreover, it’s exchange doesn’t require face-to-face interactions.

[Table 2.1 near here]

Thus simpler tasks like information-processing should be distinguished from the

more complex processes that make up learning.  Whereas information-processing tends to

be routine and repetitive, learning is more intuitive and adaptive.  A key point is that

learning cannot take place in a vacuum, isolated from others.  It relies heavily on

interactions between individuals, or between individuals and their environment.  For

example, individuals learn to make a living by creating and selling goods and services

that only make economic sense in the niches afforded by other goods and services.  As

Stuart Kauffman suggests, an economy resembles an ecosystem because it consists of a

web of coevolving agents.  The learning effects of the interactions between agents can be

beneficial to some, detrimental to others; or mutually beneficial.  As we’ll see shortly, the

true story of technological evolution is actually one of adaptive coevolution.

{A}Finding the Road to Know-Ware{/A}

Biological evolution also teaches us that information is a relatively trivial concept in

comparison with knowledge.  For example, the divided cell or the fertilized egg possess a

basic kind of know-how.  Two fertilized eggs can have the same amount of information in

terms of bits, but one knows how to make a hippopotamus and the other knows how to
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make a giraffe.7  An ant or rat knows how to find its way to food in a maze.  A trained

racing pigeon knows how to find its way home from any distant origin.  This special

“sixth-sense” or know-how is part of any living creatures behavioural repertoire.

Furthermore, it gives the impression of being responsive, perhaps even purposive.

By giving the impression that it’s purposive, know-how stretches the dimensions

of knowledge beyond a simple information concept.  The problem is that it’s devilishly

difficult to quantify.  Because it’s a multi-dimensional part of a person’s knowledge

stock, for example, it’s more qualitative than quantitative.  We can only measure know-

how vaguely, using coarse measures like “little,” “basic” or “extensive.”

We run into a similar kind of problem in economics.  Two different countries can

have the same level of GNP, for example, but one knows how to make the world’s best

watches while the other knows only how to grow olives.  One may have a fairly equal

income distribution, the other a very unequal one.  Yet they’re given equal scores in

comparative studies of economic performance!  The problem doesn’t go away by

decomposing GNP into its constituent parts, such as firms and their employees.  Although

two watchmaking firms may have the same output or earnings, one can make highly

sophisticated watches using leading-edge technology, while the other knows only how to

make old-fashioned faces with leather bands.  Even at the microscopic level – say of

individual watchmakers -- the problem persists.  No two individuals possess identical

know-how.

Know-how is not the only component of human knowledge.  There is also know-

what and know-that.  Returning to the biological example, a fertilized egg definitely has

the know-how to make a hippotamus, but it’s unlikely to know what it’s doing, i.e. that

it’s making a hippopotamus rather than a giraffe.  Knowing how to reach food inside a

maze does not mean that a rat knows what food is there, or even that there’s food there.

Knowing how to fly home does not imply that a pigeon knows that a particular path will

get it home.

When it comes to economic agents, however, the nice thing is that we do have

know-what and know-that.  In fact, we use them to create know-how.  By concentrating

                                                          
7 This suggestion came from Kenneth Boulding.
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on know-what and know-that, for example, scientists have greatly increased our stocks of

know-how.  Until science discovered the chemical elements and the periodic table, there

could be never be a chemical industry.  Until they discovered the silicon chip, developing

the know-how to create integrated circuits was out of the question.  Perhaps all we need

to spawn some new know-how is a mixture of know-what and know-that, together with

the added “spice” of a little contact with some other clever thinkers.8

Regrettably, it’s not even that “simple”.  We must continue our little journey

along this road to know-ware, going beyond know-what and know-how to know-whether.

Human decision making involves a series of choices.  Know-whether involves evaluating

the implications of alternative decisions in order to find out if the chosen course of action

was the best decision. Before choosing from among several alternative courses of action,

we harbour expectations about the likely consequences of each different course.  Once

we’ve made our choice, however, we’re “locked-in” to it.  Only at some later stage do we

get additional feedback telling us about the wisdom of our choice. In other words, to

know-whether requires feedback from the decision environment in which the choices are

made.

This subjective ability is a more sophisticated part of the behavioural repertoire of

humans.  It’s one of those instincts that seems to set us apart from other living species.

Although rats and pigeons may act expectantly, they cannot explicitly state an

expectancy.  Nor do we believe that they can really think about it.  Different

environmental conditions lead us not just to act differently, but also to think differently.

For example, being caught up repeatedly in traffic jams not only encourages us to travel

off-peak or take the train instead.  It also makes us think about the future of the whole

traffic system, and whether our politicians are doing enough to improve it.

Our economy needs science to develop know-what and know-that, primarily as

ingredients for improving our know-how.  Production always begins with know-how.

                                                          
8 Both animal and human behaviour can be thoughtful, and learning depends on some kind of thinking.  It’s
easy to regard thinking as something we do and knowledge as something we have. But this may be an
oversimplification.  We don’t just store our knowledge, we also use and improve it.  Ryle (1949) points out
that we can also use it without necessarily being able to explain what it is that we know.  He introduced a
distinction between “knowing that” and “knowing how”, partly to reinforce his own idea that intelligence is
a characteristic of performance.  For a summary of Ryle’s thesis, and an interesting analysis of thinking as
an activity that “unfolds” in time, see Eiser (1994).
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There were no plastics one hundred years ago because we didn’t know how to make

them.  Most managers and economic agents, however, rely on know-whether to make

sound decisions.  We’ll reconfirm the need for careful distinctions between these

elements of our personal know-ware when we look at an example of adaptive learning on

networks; which we call learning-by-circulating.   For the moment, though, let's return to

some conventional wisdom: how knowledge and learning have been treated in traditional

economic theory.

{A}The Age of Deception{/A}

We’ve emphasized that the conventional world of economics is mostly confined to the

world of stasis.  What does this imply in terms of human reasoning and behaviour?

Nothing very sophisticated.  Among the most popular set of simplifying assumptions, a

particular one tends to proliferate.  Most theoretical reasoning in economics assumes that

economic agents behave in a perfectly rational manner, that is, they possess perfect,

logical, deductive rationality.

Deduction is reasoning from the general to the particular.9  A perfectly logical

deduction yields a conclusion that must be true provided that its premises are true.  Thus

deduction involves specifying a set of axioms and proving consequences that can be

derived from those premises.  Sounds straightforward enough, doesn’t it?  The catch is

that the premises must be complete, consistent and well-defined.  As such, it’s pretty easy

to run into problems.  While deduction is handy for solving a host of theoretical

problems, it’s much less helpful for tackling practical problems.  Why?  Because for

premises to be complete, consistent and well-defined, the problem must be relatively

simple.  In an economic setting, for example, the problem must be simple enough for

agents to know what’s in their self-interest, to act in their self-interest, and to perform the

                                                          

9 Reasoning from the general to the particular is a top-down approach.  It leads to the concept of a
representative agent like the “average citizen.”  General rules of behaviour are determined at the macrolevel
and then assigned unilaterally to all individual agents.  Thus the population of agents is regarded as being
homogeneous.
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calculations needed to know the implications of alternative decisions.  In other words,

they need to have the brainpower to figure out the optimal decision.

A case in point is education.  Far-sighted parents plan ahead and deduce the

amount of education that’s economically feasible, both for their children and for

themselves.  Another example is housing.  Potential buyers plan ahead and deduce the

location, type and amount of housing that they can afford.  This is the kind of reasoning,

deduction and analysis that is assumed in most areas of economics.  It certainly can help

in family planning and house purchases.  Also it’s well researched.  Psychologists have

accumulated almost a century's worth of experiments based on deductive reasoning.10

But is a deductive approach always sufficient to solve the full range of problems

confronted in economics?  To answer this question, let’s see what’s required in terms of

know-ware.

To reason deductively, economic agents need to have a complete set of know-

ware at their disposal.  First, they need to know-what serves their best interest.  Second,

they need the know-how to act in their best interest.  Third, they need know-whether in

order to evaluate the implications of alternative decisions and be sure that they have

chosen wisely.  In brief, they must have perfect know-what, perfect know-how and perfect

know-whether.  Their know-ware must be honed to perfection.  This, of course, is a rather

tough condition.

From the above, it’s hardly surprising to find that deduction only works well on

relatively simple problems.  As Brian Arthur puts it:  "If we were to imagine the vast collection

of decision problems economic agents might conceivably deal with as a bottomless sea or ocean, with the

easier ones on top and more complicated ones at increasing depth, then deductive rationality would describe

human behaviour only within a foot or two of the surface."11  Before we tackle economic problems,

let’s visualize where various games might be found as we dive to various depths.  Simple

games – like Tic-Tac-Toe – are readily solved by a deducible minimax solution.  In

everyday terms, this means that the human brain is quite capable of figuring out the

                                                          
10 For a summary of some of these experiments in deductive reasoning, see Johnson-Laird and Byrne
(1991).

11 See Arthur (1994a), page 406.
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“best” moves on a game board consisting of only nine squares.  The best moves are the

ones which leave your opponent in the worst possible situation.  Thus a way of testing for

goodness is to pretend you’ve made the move, then evaluate the board from your

opponent’s viewpoint.  Meanwhile, your opponent is doing the same.  He or she mentally

runs through all possible moves and evaluates them from what he thinks is your

viewpoint.

Note that we’ve defined our best move recursively, using the maxim that what’s

best for one side is worst for the other.  It’s recursive because it operates by trying a

move, and then calling on itself in the role of opponent.  Since recursion can go on

several moves ahead, it’s possible to figure out the best strategy to adopt and the likely

result in a game of Tic-Tac-Toe.  Each move generates its own “look-ahead tree”, with

the move itself as the trunk, your opponent’s responses as main branches, your counter-

responses as subsidiary branches, etc.  In Figure 2.1, I’ve shown the look-ahead tree

corresponding to the first few moves of a game.

[Figure 2.1 near here]

Let’s see how the minimax solution can be deduced.  If you move first, your best

move is to choose the central square, thus limiting your opponent’s opportunities of

scoring three noughts in a row to just four possibilities - two horizontally and two

vertically.  At the same time, you’ve secured four ways of winning in two additional

moves.  Choosing any other opening move offers your opponent more opportunities to

win and secures fewer ways for you to win.  Your opponent’s best response to your

opening move is to choose any one of the four corner squares.  Then the game will finish

in a draw.  However. if your opponent doesn’t choose a corner square, then you’ll win the

game.12

If each player always chooses their best move, the game’s outcome can be

deduced in advance.  This is a rather pleasing result.  In exchange for a well-defined

decision problem, we get back a well-defined solution.  The recursive solution invokes a

                                                          
12 These two outcomes assume that all remaining moves are the best possible ones.
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logic that is relentless and consistent.  It acts step by step on premises that are well-

defined.  It’s also self-consistent and self-enforcing, in the sense that if your opponent

behaves according to the deductive solution (i.e. chooses his/her best move), then it

would not be in your best interest to do otherwise.  If the best moves are implemented

properly, the drawn outcome confirms the deductions that went into it.  It’s a rational

expectations equilibrium.

Because we can deduce the likely outcome to a game of Tic-Tac-toe after the first

few moves, we can think of it’s logic as lurking just below the surface.  We’d need to dig

a little deeper, however, to catch a glimpse of games like Checkers or Quads.13  Owing to

larger board sizes (Quads = 36 squares, Checkers = 64 squares), it takes longer to figure

out the likely outcome.  In other words, we can’t deduce the perfectly rational solution.

Not only are the choices of moves more numerous, but our best moves depend more and

more on the moves of our opponent.  Neither our best strategy nor the likely outcome are

deducible in advance.  There are simply too many possible branches in the corresponding

look-ahead trees.

[Fig 2.2 near here]

Deduction has no chance whatsoever when we finally reach the game of Chess.

Something else is needed in even greater doses at these deeper levels.  It’s really an art to

figure out how to avoid exploring every branch of a look-ahead tree out to its very tip.

Good chess players seem to excel at this art.  Or do they?  The funny thing is that top-

level players look ahead relatively little, especially if compared to chess programs.  Until

Deep Blue’s success against Gary Kasparov, people were superior as chess strategists.

We’ll come back to the issue of the best Chess strategy shortly.

Why, then, does deductive rationality fail us when we’re faced with more

complicated decision problems?  Three reasons spring to mind..  The obvious one is that

                                                                                                                                                                            

13 Quads is a game between two players, each of whom attempt to place 18 different pieces on a game board
of 36 squares.  Players take turns, choosing and placing one of their pieces on the board in such a way that it
borders at least one other piece.  The sides facing each other must be identical. The game ends as soon as
one of the players cannot place another piece on the board.  The other player is the winner.
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beyond a certain degree of complicatedness, our logical apparatus ceases to cope.  In

other words, our rationality is bounded.  Social scientists have been aware of this problem

ever since Herbert Simon suggested “satisficing” as a way of describing less-than-logical

behaviour in some decision situations.  But Simon's notion of satisficing is too vague to

be adopted as a practical method for solving complicated problems.  Of late, economists

have joined the search for something to put in place of deductive rationality.  When we

look into the growing literature on bounded rationality, however, there seems to be little

agreement on a suitable successor.

The second reason for the deductive mode to break down is more ominous.  In

interactive decision situations, where the rationality of one agent's decision is dependent

on the strategy of other agents, there are no guarantees that each agent will toe the line,

i.e. behave with perfect rationality.  Instead agents may be forced to guess the behaviour

of other agents.  Suddenly they’re plunged into a world of subjective beliefs, and

subjective beliefs about subjective beliefs.  Complete, consistent, well-defined premises

are impossible under these conditions.  Deductive reasoning breaks down for one very

significant reason: the problem has become ill-defined.

A third reason is just as devastating.  Even if one agent guesses the behaviour of

others correctly at one point in time, there are no guarantees that this success will ever be

repeated.  In complex economic situations, agents learn and adapt differently.  Thus

future guesswork becomes more difficult.  The evolutionary paths traced out by each

agent are not familiar to other agents.  Nevertheless, agents still make decisions in

situations that are fuzzy or ill-defined.  What’s even more surprising is that we seem to

make them quite comfortably under such conditions.  Perhaps we don't realize that the

problem is ill-defined.  But it's clear that we no longer reason deductively.  A different

kind of decision making process comes to the rescue.  To find out what it is, we must

look into psychology.

Let's begin with some basics from modern psychology which touch upon our area

of interest.  Aside from suggesting that we’re creatures of habit, psychologists claim that

we make use of three varieties of reasoning: calculation, deduction, and induction.  As

we’ve just learnt, deductive logic is only useful in simple circumstances; like the family
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planning or residential choice examples we mentioned.  What we’re very good at,

however, is recognizing or matching patterns.

When things get too complicated for our deductive powers, we seem to undergo a

cognitive shift to the other side of our brain.  Psychologists tell us that the right hand side

handles pattern recognition, as well as intuition, synthesis, and creative insights.  By

putting a combination of these processes to work, we use the perceived patterns to

fashion temporary constructs in our mind.  We can call these constructs mental models or

hypotheses.  Once we have a set of such hypotheses firmly in our mind, they assist us to

carry out "localized" deductions and act upon them.

But the whole process doesn't finish there.  Our observations and experiences

provide us with feedback from the decision environment; feedback that may alter the

patterns we perceive, strengthening or weakening our confidence in our current set of

hypotheses.  What we’re doing, of course, is trying to improve our ability to make

prudent decisions; upgrading our know-whether, so to speak.  We discard hypotheses that

have proved to be unreliable, replacing them with new ones.  We retain others.  Wherever

we lack full definition of the problem, we devise simple hypotheses to paper over the

gaps in our understanding and we act on the best of these.  This kind of behaviour is not

deductive.  It’s inductive.14

If all of this sounds a little complicated, that's hardly surprising.  Inductive

reasoning is complicated.  Even the psychologists don't fully understand it.  Luckily, we

can picture the inductive mind at work in a setting we’ve mentioned already: a Chess

game.  In the 1940s, the Dutch psychologist, Adrian de Groot, studied how Chess novices

and Grand Masters perceive a Chess situation.  He found that Grand Masters don’t simply

look further ahead than novices.  Instead, they sharpen their intuition by studying the

board's configuration and trying to discern chunks or patterns.  In other words, they

develop their own mental model of the board.15  Then they use the perceived patterns  and

                                                          
14 For an extensive discussion of inductive reasoning, and its prominent role in the learning process, see
Holland, Holyoak, Nisbett and Thagard (1986).

15 A revealing finding was that Grand Masters’ mistakes involved placing whole groups of pieces in the
wrong place, which left the game almost the same to the Master but bewildering to the novice.  Even more
revealing was the fact that, when pieces were assigned randomly to the squares on the board, instead of
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their mental model to form hypotheses about their opponent’s likely motives and

strategies.

Chess openings are definitive patterns of play formed in the first dozen or so

moves.16  The leading players can even recall their opponent's favourite openings from

previous games. “He’s offering me the Queen’s Gambit again.”  “Isn’t this the Catalan

opening?”  “That looks like the modern Dragon Variation of the Sicilian defence.”  Good

players carry out local deductions based on these mental models, analyzing the

implications of alternative moves and their subsequent responses.  As play proceeds, they

hold onto the most plausible hypotheses and toss away the others, replacing them with

new ones as the state of the game dictates.

{Figure 2.3 near here]

Clearly then, Chess players engage in a sequence of reasoning that’s inductive.  This

includes pattern formation, pattern recognition, hypothesis formation, deduction using the

currently-held hypotheses, and hypothesis replacement as dictated by the patterns that

unfold (see Figure 2.3).  Seasoned players build on their experiences from earlier games.

Chess is a strongly-interactive game because players only learn during the game which of

their hypotheses work best.  It involves adaptive learning rather than information-

processing.  Each player's strategy evolves partly in response to the evolutionary path

chosen by his opponent.  Neither player can afford to adopt a fixed strategy.  They must

be flexible and “roll with the punches,” so to speak.  In a word, strategies need to be

coevolutionary..

It’s interesting to note that Hermann Haken, founder of the field of synergetics,

believes that the kinds of pattern recognition used in Chess are closely associated with

pattern formation.  Synergetics is a general theory of self-organization.  Although its

generality comes from timescale separation and a slaving principle, the formalism of

                                                                                                                                                                            
being copied from actual games, Grand Masters were found to be no better than novices in reconstructing
such random boards.

16 For a wide range of chess openings, see Horowitz (1964).
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synergetics allows us to calculate evolving patterns, provided the microscopic laws for

the formation of patterns are known.17  Take another look at Figure 1.1 (near the start of

the book).  Interestingly, neither birds nor antelopes can be perceived all the time.  After a

while, one image fades away, allowing the brain to perceive the other interpretation.

Some kind of oscillatory process sets in.

Haken believes that decision making can be regarded as pattern recognition.  Like

Grand Masters staring at a Chessboard, all of us search for a resemblance between a

situation that we now confront and one that we have met before.  To do this, we establish

a “similarity measure” in our minds, which allows us to choose a course of action that is

the best under the given information.  Haken and his colleagues have mimicked this

pattern formation process inside their “synergetic computer.”  Thus they’re also adopting

an inductive approach to decision making.

Because it’s closely connected with learning and adaptation, inductive behaviour

sits firmly in the world of morphogenesis.  In economics, the popular interpretation of

“rational” behaviour connotes behaviour that’s sensible or sound-minded.  Deductive

reasoning is only sensible or sound-minded in fairly simple, well-defined problems.  Once

a situation gets too complicated or ill-defined, like in a Chess game, an intelligent person

begins to reason inductively.  Induction enters the scene whenever someone has to derive

a whole solution from partial information.  In the social sciences, for example, induction

is widely used in the analysis of opinion surveys and macroeconomic data.

Surprisingly, there’s now a third way of doing social science.  It corresponds to

the third mode of reasoning cited by psychologists: calculation.  But the calculations are

done by machines instead of humans.  This growing focus on calculation goes by the

name of agent-based computer modeling or simulation.  Like deduction, agent-based

simulation starts off with a set of assumptions.  Unlike deduction, however, it doesn’t

prove theorems.  Instead, an agent-based model generates simulated data that can be

analyzed inductively.  But the simulated data come from a rigorously specified set of

rules rather than from direct measurements of the real world.

                                                          
17 For an introduction to synergetics, see Haken (1977).
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Whereas the purpose of deduction is to find consequences of assumptions, and

that of induction is to find patterns in data or real-world experiences, agent-based

modeling is a way of doing thought experiments that help to sharpen our intuition.18  The

examples to be discussed in this and later chapters have the same collective properties as

those we found in Schelling’s segregation model.  Locally interacting agents can produce

large-scale effects, most of which turn out to be far from obvious.

Economists have pushed the assumption of deductive reasoning beyond its limits.

In doing so, they’ve locked most of us into the world of stasis.  But this frozen world is

only a tiny part of the whole universe of economic behaviour.  From an intellectual

viewpoint, we’ve been trapped in an era of tomfoolery.  We might even call it the “Age of

Deception”.  Thankfully a new light is glowing in the distance.  The source of this light is

a group of social scientists who just happen to believe that human agents reason

inductively and adaptively.  Furthermore, they also believe that agent-based simulation

represents a promising new way of doing social science, one that can help us to unravel

some of the complexities of human behaviour.  The search for a new age of human

enlightenment is now underway.

{A}Seeing the Light at the El Farol{/A}

El Farol is a bar on Canyon Road in Sante Fe which offers Irish music every Thursday

evening.  Being born in Belfast, Brian Arthur was fond of going to hear the music and to

enjoy a few beers in a relaxed atmosphere once a week.  But soon he encountered a

thorny problem.  If the bar was too crowded, the chances of brushing up against a few too

many pushing-and-shoving bar louts were high.  This would spoil the night and cause him

to think twice about going the following Thursday.  Arthur realized that he needed a more

reliable method of deciding whether the bar was likely to be overcrowded each coming

Thursday night.

                                                          
18 The growing importance of computer simulations can be gauged from the improved performance of
silicon “agents” in high-level Chess games.  Since 1997, when IBM’s Deep Blue defeated Garry Kasparov
in their second round of games, this third way of reasoning in open-ended situations has been recognized as
full of promise.
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The reader might like to ponder this problem for a moment.  As we’ll see shortly,

it turns out to be an instructive example of a complex adaptive system.  To make it more

concrete, let's suppose that there are 100 people in Sante Fe who, like Arthur, are keen to

go to the El Farol on Thursdays.  Space is limited and everyone enjoys themselves if the

bar is not too crowded.  A crowd beyond sixty is thought to be excessive.  The tricky

thing is that there’s no way of telling how many will come beforehand.  A person simply

goes if he expects fewer than sixty to turn up or stays home if he expects more than sixty

to show.

Arthur has highlighted two interesting aspects of this problem.  First, if there was

an obvious model that all agents could use to forecast bar attendance, then a deductive

solution would be possible.  But there’s no such model.  Irrespective of past attendance

figures, a wide range of plausible hypotheses could be adopted to predict future

attendance.  This dastardly multiplicity of possibilities means that nobody can choose in a

well-defined manner.  The problem becomes ill-defined and all the potential bar attendees

are catapulted into a world of induction.

Second, any shared expectations will tend to be broken up.  If all music lovers

believe most will go, then nobody will go.  But by all staying home, that common belief

will be destroyed immediately.  On the other hand, if all of them believe few will go, then

all will go, thereby undermining that belief.  The net result of this diabolical state of

affairs is that expectations must differ.

Perplexed yet fascinated by this intractable problem, Arthur decided to turn his

computer loose on it.19  By creating a surrogate El Farol bar inside his machine to study

how electronic music lovers would act in this situation, he stepped into the exciting new

realm of agent-based computer simulation.  All of his music-loving “agents” were given

Thursdays' bar attendance over the past few months.  For example, typical attendance

figures might be:

  ... 44, 78, 56, 15, 23, 67, 84, 34, 45, 76, 40, 56, 22, 35

                                                          
19 For a full description of his computer experiments, see Arthur (1994a).
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With this information at hand, each electronic agent has to keep track of a different subset

of predictors (or hypotheses).  He opts to go or stay home each Thursday according to the

currently most accurate predictor in his set.  Typical predictors might include the

following:

- the same number as last week's (35)

- a mirror image around 50 of last week's (65)

- a rounded average of the last four weeks (38)

- the same as two weeks ago (22)

Once decisions have been taken, surrogates converge on the silicon bar and a new

attendance figure is recorded.  Each person reexamines the accuracy of his set of

predictors, replacing the poorer ones with more reliable predictors.  Then the whole

decision process is repeated.

Fondly enough, the set of predictors deemed most credible and acted upon by each

person - which Arthur calls the set of active predictors - determines the attendance.  But

the attendance history also determines the set of active predictors.  This process of

cumulative causation creates what John Holland has called an ecology of predictors.  One

of the aims of Arthur's computer experiments was to find out how this ecology evolves

over time.  So he created an "alphabetic soup" of several dozen predictors and randomly

"ladled" out various mixes of these to each of the 100 persons.

As long as the predictors are not too simplistic, the simulations show that the

weekly attendance will fluctuate, but mean attendance always converges to sixty.  The

predictors self-organize themselves into an equilibrium "ecology" in which 40% of the

active predictors forecast above sixty and 60% of them below sixty.  This happens despite

the fact that the population of active predictors keeps changing in membership forever.

Such an emergent ecology is more like a forest whose contours do not change, but whose

individual trees do.

[Fig. 2.4 near here]
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But there’s also another intriguing result.  The computer-generated attendance

results look more like the outcome of a random process rather than a deterministic one

(see Figure 2.4).  Yet there’s no inherently random factor governing how many people

show up.  Weekly attendance is a purely deterministic function of the individual

predictions, which themselves are deterministic functions of the past attendance figures.

Curiously, the existence of a statistical regularity might be attributed to the deterministic

nature of chaos.  In other words, the time-series of attendance figures might well be a

deterministically random (i.e. chaotic) process.  The irritating thing is that we have no

mathematical formalism with which to either prove or disprove this conjecture.

What does this kind of emergent simplicity tell us?  It confirms that a system of

interacting people (in this case, bar attendees) can "spontaneously" develop collective

properties that aren’t obvious from our knowledge of each of the individuals themselves.

These statistical regularities are large-scale features that emerge purely from the

microdynamics.  As Jack Cohen and Ian Stewart have stressed: "Emergent simplicities collapse

chaos; they bring order to a system that would otherwise appear to be wallowing hopelessly in a sea of

random fluctuations."20

The El Farol problem contains all the essential elements of a complex adaptive

system.  First, it involves a "largish" number of agents, where "largish" denotes a number

too large for hand-calculation or intuition but too small to call upon statistical methods

applicable to very large populations.  Second, it involves agents who are adaptive and

intelligent.  Such agents can take decisions on the basis of mental models (like the El

Farol predictors) and are willing to modify these mental models or come up with new

ones where necessary.  In other words, they can reason inductively.  Third, no single agent

knows what all the others are thinking of doing, having access to a limited amount of

information only.  The El Farol case is extremely tight as each agent only knows what he

or she is thinking of doing.

Conventional economic wisdom would tell us that these agents have only one

reasoning skill: the ability to process the information available to them in a purely logical,

deductive manner to arrive at the best decision in a given situation.  But this is useless



75

when the best thing to do - to go or not to go - depends on what everyone else is doing.

There’s no optimal predictor.  The best each agent can do is to apply the predictor that has

worked best so far, to be willing to revealuate the effectiveness of his set of predictors,

and to adopt better ones as new information about bar attendance becomes available.  The

latter is the inductive part of the decision process.  This is the way that Arthur's surrogate

music lovers behave in his silicon world, which is our world of morphogenesis.

Three results of the El Farol problem are significant.  First, the computer

experiments show that inductive reasoning can be modelled.  Second, they show that

agents' belief systems should be thought of as evolving and coevolving. Third, they

suggest that under the influence of a sufficiently strong "attractor", individual

expectations that are boundedly-rational can self-organize to produce collectively

“rational” behaviour.  But there’s also an even stronger message for economists.

Learning and adaptation should not be addenda to the central theory of economics.  They

should be at its core, especially in problems of high complexity.

What’s more daunting is the idea that those silicon agents in Arthur’s computer

experiments may have developed superior intuition (i.e. know-whether) to the real bar-

lovers on which they’re based.  Ever since Deep Blue defeated Kasparov in their second

round of chess games, the frightening idea that “calculative” reasoning might be able to

outperform human reasoning (based on deduction or induction) in open-ended situations

has been recognized.

One perplexing issue remains.  How and why do the predictors self-organize so

that sixty emerges as the mean attendance in the long run?  Was it simply because Arthur

picked sixty as the crowding threshold?  If the threshold had been seventy instead of

sixty, the simulations may have showed that the mean attendance would have converged

to seventy.  What would have happened if the assumption of a uniform crowding

threshold had been dropped completely?  After all, the heterogeneities of human thinking

and decision making suggest that music lovers could never agree on the same figure to

define a bar’s crowding threshold.  Would sixty still emerge under these more realistic

conditions?

                                                                                                                                                                            
20 See Cohen and Stewart (1994), page 232.
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Arthur’s explanation for his result is that sixty may be a natural "attractor" for the

microdynamics in this bar problem.  If we view the problem as a pure prediction game,

then a mixed strategy of forecasting above 60 with probability 0.4 and below it with

probability 0.6 corresponds to what game theorists call a  Nash equilibrium. Could this be

the reason the forecasts split into a 60/40 ratio?  Although this explanation illuminates the

end of the journey, it fails to explain the means of achieving that end.  Given each agent’s

subjective reasoning, it’s still impossible to explain the collective outcome.  In the next

section, therefore, we’ll look more closely at Nash equilibria in both a static and a

dynamic context.

{A}The Emergence of Cooperation{/A}

Life is literally teeming with perplexing problems, dilemmas and paradoxes - not all of

which are abstract and philosophical.  Rather than being a source of frustration, some

paradoxes are superbly enlightening.  We savour the moment when the truth dawns upon

us.  One paradox which hinges on the quirks of human nature is the game-theorist’s

favourite game, the Prisoner's Dilemma.  This tantalizing puzzle was discovered in the

1950s by Merrill Flood and Melvin Drescher of the RAND Corporation, two early game

theorists who were testing some bargaining theories with experimental games.21

Social scientists have become quite fond of the game, seeing Prisoner’s Dilemma

situations arising everywhere in socio-economic interactions.  It’s a surprisingly

ubiquitous metaphor.  As Russell Hardin notes, if the dilemma had been called

“exchange” originally, then everyone would’ve expected it to be ubiquitous.22  In

economics, we view exchange as a two-party affair.  But exchange situations can involve

                                                          

21 The Prisoner’s Dilemma game first appeared in 1952, in an unpublished memorandum from the Rand
Corporation discussing some experimental games.  It remained unnamed in those early days, until A.W.
Tucker called it the Prisoner’s Dilemma.  Tucker saw in it a perverse analog of the American criminal
justice system, where prosecutors extract confessions on the promise of reduced sentences (plea
bargaining).

22 For a comprehensive discussion of  the Prisoner’s Dilemma and the insights it can provide for various
problems of collective action in social and economic contexts, see Axelrod (1984) and Hardin (1982).
These two authors have recently updated their original work; see Axelrod (1997) and Hardin (1995).
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more than two parties.  Think of the bidding by competing parties at an auction, verbal

exhanges between participants at a public meeting, or the debate between political parties

leading up to an election.  In its many-person or collective guise, exchange is a very

interesting problem.  Although less tractable than the traditional two-party problem, it

captures the perversity of the logic of collective action.23  Under this logic, a group of

people with a common interest that requires a common action may share an interest

collectively but not individually.

Before we get immersed in a debate over collective versus individual behaviour,

it’s worthwhile getting more closely acquainted with the Prisoner’s Dilemma.  Let's

sidestep the original formulation about prisoners and gaol terms because it can baffle the

uninitiated.  Instead we'll look at this puzzling paradox in the form of an economic

metaphor: the “Trader's Dilemma.”  The scene for this metaphor is Medieval Europe.

Imagine yourself as an enterprising merchant from Venice in the early days of

Mediterranean trade.  Venetian salt is what you have in abundance.  Instead of trading it

for grain and linen, on your next voyage you opt for something different.  The latest rage

is precious silk from Thebes (near Athens), so you stop there on your way from Venice to

Constantinople.

You find a silk dealer whose terms are acceptable.  But disappointment follows

when you learn that he has a binding agreement with another Italian merchant.  He's

willing to trade, but only if the trade takes place secretly.  He can’t risk being seen dealing

with you.  So you agree to leave your salt consignment in bags at a well-concealed spot in

a nearby forest and to pick up the bags of silk at the silk dealer's designated place.  Of

course you'll have to leave more bags than him because salt has a much lower value than

silk.

Given that the silk dealer is nervous about jeopardizing his existing agreement, it's

pretty clear to both of you that this will be a "once-off" exchange.  You're unlikely to

meet again or have any further dealings with each other.  Suddenly you realize that there’s

something for each of you to fear: namely that the bags which you get could be empty.  Of

                                                          

23 See Olson (1965).
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course there's no risk if you both leave full bags.  But getting something for nothing

would be even more rewarding.  So you’re tempted to leave empty bags.

Here's how you might think this through:

  "If the silk dealer brings full bags, then I'll be better off leaving empty bags - because I'll get all the silk I

want and keep all my salt.  Even if the silk dealer brings empty bags, I'll still be better off leaving nothing -

because that way I can never be cheated.  No matter what the silk dealer does, my smartest move is to leave

empty bags.  So I'll leave empty bags."

By similar reasoning, however, the silk dealer reaches the same conclusion.  So you both

leave empty bags and come away empty-handed.

The result is obviously disappointing.  In the jargon of the Prisoner's Dilemma,

both of you chose defection over cooperation.  If you’d both cooperated, you could have

sailed away with precious silk and the silk dealer would own a cellar full of salt.  There

would have been smiles all round.  Instead of that you have no silk.  What went wrong?

Why did logical reasoning rule out cooperation?  This is the perplexing aspect of the

Prisoner's Dilemma.

A revealing theorem by John Nash, an early pioneer in game theory, threw some

light on this surprising outcome.  He showed that there’s always at least one "Nash"

strategy for each player, with the property that if each player chooses that strategy, he or

she will be better off than with any other strategy.  But this situation holds only if all the

other players opt for their Nash strategies.  A choice of Nash strategies among all the

players is called a Nash equilibrium.  No doubt you’ve  guessed the connection by now.

The decision of both traders to leave empty bags corresponds to a Nash equilibrium.

To pinpoint a Nash equilibrium precisely, we need to assign some numbers to our

problem.  But how do we quantify it?  According to game theory, we define a set of

payoffs to each of the players.  You and the silk dealer have a pair of strategies to choose

from: you can leave either full or empty bags.  The payoff for each of you depends on the

strategy chosen by the other.  To display these various alternatives, we define a payoff

matrix containing point values for the different pairs of strategies.  Some typical point

values are shown in Figure 2.5.
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[Fig. 2.5 near here]

How do we interpret the figures?  Payoff doesn’t mean money since the exchange

involves goods only.  The numbers indicate the degree of satisfaction associated with

each strategic outcome.  For example, mutual cooperation scores two points to both of

you.  In this problem, two points means "quite happy".  Both of you would be quite happy

if all bags were full and you both got what you wanted.  Mutual defection scores zero, and

zero means you’re “indifferent” to the idea of gaining and losing nothing.24  If your worst

fears were realized, and you got empty bags after leaving full ones, then you’d score -1

and be “feeling upset,” while the silk dealer would score 4 and be feeling “very happy”.

These scores would reverse if you found full bags after leaving empty ones.

The Nash equilibrium solution to this game lies at P = (0,0).  But this means zero

payoff to both of you.  Why should you choose zero reward?  Because defection risks at

worst indifference (0), whereas cooperation could leave you upset (-1).  No matter what

the silk dealer does, your safest individual strategy is to defect.  Note that the payoff for

mutual defection is lower than for mutual cooperation.  Thus your best joint strategy is to

cooperate.  Now you can see the dilemma.  Because you’re unlikely to meet again, the

best solution is to defect - despite the seemingly paradoxical outcome that it would be

collectively superior for you both to cooperate.

Stuart Kauffman sums up the Nash concept as a penetrating one: "The concept of

Nash equilibria was a remarkable insight, for it offers an account of how independent selfish agents might

coordinate their behaviour without a master choreographer."25 Despite its allure, however, a Nash

equilibrium "solution" to the Trader's Dilemma has some major weaknesses.  First, it sits

stubbornly in the world of stasis.  In the case where the Trader's Dilemma is played only

once, a Nash solution is stable, predictable and resistant to change.  No other strategy can

invade the strategy of pure defection.  Second, it relies on all traders thinking and acting

                                                          

24 If your perilous journey to reach Thebes was taken into account, however, you may feel that zero is far
too generous.

25 See Kauffman (1995), page 218.
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rationally and identically.  Like the deductively rational economic agent we discussed

earlier, traders are assumed to have the brainpower and enough information to figure out

their optimal strategy.  Third, it may not be the solution in which the payoff to traders is

particularly good.

Even if these weaknesses could be overlooked (which they can’t), there’s still

another problem.  What happens in a large game with many players?  How would you

approach a market boasting a dozen or more silk traders and just as many salt merchants

desperate to out-perform you?  There could be many more possible strategies and many

more Nash equilibria.  How would you find all these Nash strategies and then pick the

best Nash equilibrium?  Would this Nash payoff be worth pursuing in any case?  Like

Thurday nights at the El Farol bar, your problem quickly becomes complicated and ill-

defined.

Setting these problems aside for the moment, let’s return to the scene of our

Trader's Dilemma.  By now your ship has been reloaded with the untraded salt.  What

have you learnt from this abortive experience?  What might you do next?  You've

discovered that for a single exchange conducted in secret, the temptation for both parties

to cheat is irresistible.  Now you recall your normal recipe for success: long-term,

bilateral agreements.  You go in search of another silk dealer who shares your desire for

lifelong exchanges.  Eventually you find a young dealer who accepts your long-term

proposal.  You agree to exchange fixed amounts every quarter but are unlikely to meet

again face-to-face.

What do you do on the occasion of your first exchange?  Leaving empty bags

would hardly be a friendly way of fostering goodwill with a new trading partner.  So you

leave full bags.  So does your silk dealer.  What a relief!  Three months pass and then you

must go again.  Empty or full?  Every quarter you must take the decision whether to

cooperate or defect.  Two years later, the silk dealer defects unexpectedly.  What will you

do now?  Can he ever be trusted again or will you call a halt to all future exchanges with

him?

In the literature, the game you’re now playing is known as the Iterated Prisoner's

Dilemma.  Just as adding more players creates complications, so does allowing repeated
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exchanges.  But it also adds more realism.  The trading world has always featured long-

term agreements, cartels, price-fixing and other multilateral trading arrangements.

Furthermore, traders engaging in repeated exchanges have always shown some degree of

cooperation.  And they also tend to review their strategies regularly over time.  So it

makes alot of sense to study the iterated version of the Prisoner's Dilemma in order to

understand the exact conditions under which cooperation might emerge.

The million-dollar-question is: Can cooperation ever evolve out of

noncooperation?  Well, the answer turns out to be a resounding yes.  Emergent

cooperation has been demonstrated by a novel method: a computer tournament organized

by Robert Axelrod, a political scientist at the University of Michigan.  Cooperation won

out among a diverse population of computer programs playing repeated games of the

Prisoner's Dilemma with one another.  After the tournament was over, Axelrod spotted

the salient principles and proved theorems that could explain cooperation's rise from

nowhere.  His findings have been published in many papers and two thought-provoking

books.26

Axelrod sent out invitations to game theorists in economics, sociology, political

science, and mathematics.  The rules implied a similar payoff matrix to the one shown

earlier for the Trader's Dilemma.  Submitted programs were designed to respond to the

"cooperate" or "defect" decisions of other programs, taking into account the remembered

history of previous interactions with that particular program.  Fourteen entries duly

arrived.  Axelrod added another called RANDOM, which simply flipped a coin each time

it met another program.  Each program was made to engage each other program 200

times.

Although some of the entries were quite sophisticated, the winning program

turned out to be the simplest of all the strategies submitted.  Known as TIT FOR TAT, it

simply cooperates on the first move and then does whatever the other player did on the

preceding move.  That's all there is to it.  TIT FOR TAT was written by the psychologist

and philosopher, Anatol Rapoport, who turns out to be an old hand at the Prisoner's

                                                          

26 See Axelrod (1984, 1997).
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Dilemma game.27  Rapoport's program was also the shortest of all the programs

submitted.  Small is beautiful after all!

Given this surprising outcome, the full results were circulated and entries for a

second tournament were solicited.  Axelrod provided a few hints this time.  He pointed

out that many of the losing strategies suffered from self-punishment because such a

possibility was not perceived by their decision rules.  He also stressed that TIT FOR TAT

was a strategy of cooperation based on reciprocity and that many of the other strategies

were not forgiving enough.

This time Axelrod received 62 entries from 6 countries.  Most came from

computer hobbyists (including one ten year old).  Rapoport's TIT FOR TAT was there

again.  So was a variation on the same theme called TIT FOR TWO TATS, which

tolerates two defections before getting mad (but still only strikes back once).  Axelrod

already knew that TIT FOR TWO TATS would have won the first tournament if it had

been in the line-up.  So it was sure to be hard to beat, and was entered by one of the

world's experts on game theory and evolution, John Maynard Smith, professor of biology

at the University of Sussex.

Can you guess what happened?  Amazingly, TIT FOR TAT won again.  What a

remarkable result!  How on earth could such a simple decision strategy defeat so many

other strategems devised by all those whizzkids?  Axelrod attributes TIT FOR TAT's

success to its being:

nice (not the first to defect);

provokable (responding to the other player's defection);

forgiving (punishing and then cooperating after a defection);

clear (easy for other players to understand).

So, nice guys, or more precisely, nice, provokable, forgiving and clear guys, can

indeed finish first.  But success in two computer tournaments is hardly enough to prove

                                                          

27 For an overview of the Prisoner’s Dilemma Game, along with some of the background to TIT FOR TAT,
see Rapoport and Chammah (1965).
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that TIT FOR TAT would do well as an evolutionary strategy.  To test this possibility,

Axelrod conducted a series of ecological simulations, with various tournament entries

and other strategies as his starting population.  He found that TIT FOR TAT quickly

became the most common strategy.  Thus the conclusions seemed clear.  A small cluster

of players who opt for cooperation based upon reciprocity could establish themselves in a

population of noncooperative players.  Once established, they could become immune

from re-invasion by any other strategies and could thus take over such a population.

The Prisoner’s Dilemma game captures the tension between the advantages of

selfishness in the short term versus the need to elicit cooperation to be successful in the

long run.  But the jury’s still out on whether such voluntary cooperation is sustainable

over the long run.  Many analysts (like Axelrod) believe that TIT FOR TAT could be a

robust and stable mutant; even an evolutionarily stable strategy under certain conditions.

But others have challenged this idea.  One Nature article showed that no pure strategy can

be evolutionarily stable in the iterated Prisoner’s Dilemma.28  Another Nature article

reported that the most successful strategy was one that repeats its previous choice when it

gets one of the two highest payoffs.29  This ongoing debate suggests that there’s much

more to be learnt about the evolution of cooperation, especially under different socio-

economic conditions.

Nevertheless, it’s nice to know that benign cooperation among selfish agents can

emerge despite the constant temptation to defect.  In Axelrod’s words:30 “Mutual cooperation

can emerge among a world of egoists without central control, by starting with a cluster of individuals who

rely on reciprocity.” and also those of Hardin:31 “But coordination can come about without intent,

                                                          
28 Boyd and Lorberbaum’s (1987) claim that no pure strategy is evolutionarily stable was disputed recently
by Bendor and Swistak (1998), who found that strategies that are nice and retaliatory (like TIT FOR TAT)
are the most stable against possible invasions.

29 TIT FOR TAT is sensitive to the occurrence of mistakes or misunderstandings, commonly called noise.
Noise played a part in the simulation study reported in Nature by Nowak and Sigmund (1993).  Unlike TIT
FOR TAT, their WIN-STAY, LOSE-SHIFT strategy defects after the other player is exploited and
cooperates after a mutual defection.  Axelrod’s reaction to their study was to feel a little protective of TIT
FOR TAT.  With the help of a postdoctoral fellow, he found that adding either generosity or contrition to
TIT FOR TAT was an effective way of coping with noise.  Furthermore, the WIN-STAY, LOSE-SHIFT
strategy did not perform as well in this variegated environment.  For further details, see Axelrod (1997).

30 See Axelrod (1984).
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without overcoming contrary incentives.  It can just happen.” In other words, cooperation can self-

organize within a population, despite its members’ biologically determined egoism.  This

has ramifications for both the economic and political arenas.

Many of the challenging problems facing humanity relate to globalization and

international relations, where independent nations often refuse to cooperate, instead

exhibiting stark hostility.  Many of these problems closely resemble the iterated Prisoner's

Dilemma.  In addition to trade negotiations, arms races, crisis bargaining nuclear

proliferation and environmental pollution fall into this category.  By understanding the

process of mutual cooperation a little better, perhaps we could use our foresight to speed

up its evolution.

There's another interesting message for economics from the TIT FOR TAT story.

A strategy's success depends entirely on the environment in which it’s swimming.  At the

beginning of Axelrod's ecological tournaments, poor programs and good programs were

well represented.  But as they “swam” through generation after generation of interactions,

this environment changed.  The poorer strategies began to drop out and the better ones

flourished.  So it is with technologies.  Their rank order changes because their "goodness"

is remeasured alongside a different field of competitors.  Success breeds further success,

but only when that success comes from interaction with other reasonably successful

technologies.

Doesn't this ring a bell or two?  Remember those high-tech firms we discussed in

Chapter 1.  In the economic world of morphogenesis, firms that get ahead get even further

ahead.  Like good strategies in the Prisoner's Dilemma, they’re self-reinforcing.  TIT FOR

TAT didn’t win all those tournaments by beating the other players, but by eliciting

behaviour from the others which allowed both to do well.  This kind of mutual learning

process isn’t just evolutionary, it’s coevolutionary.

Coevolution has been found in evolutionary versions of the Prisoner’s Dilemma.

Instead of starting like Axelrod did, with random selection from a rich set of strategies,

Kristian Lindgren began with the simplest possible strategies.  Using an extension of the

genetic algorithm to evolve more and more complex possibilities, and allowing for the

                                                                                                                                                                            
31 See Hardin (1995, page 45)
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possibility of mistakes, he found that selection favors the evolution of cooperation and

unexploitable strategies.32  The result was long periods of stasis alternating with periods

of instability, as one dominant pattern of strategies was invaded by another.  Various

kinds of evolutionary phenomena, like coexistence, punctuated equilibria, exploitation,

the coevolution of mutualism, and evolutionarily stable strategies, were encountered in

the model simulations.

{A}Coevolutionary Learning{/A}

How stunning it was when biology revealed that organisms don’t just evolve, they

coevolve.  Their adaptation over time isn’t shaped merely by their encounters with other

organisms, it’s also honed by the environment in which they live; and this environment

isn’t fixed but is also adapting to the behaviour of its changing inhabitants.  What might

this imply for agents in an economy?  In behavioural terms, it suggests that what agents

believe affects what happens to the economy and, in turn, what happens to the economy

affects what agents believe.  This, in fact, is the hypothesis explored in this book.  The

agents, goods and services in the economy coevolve, because those that are present must

always make sense in the context of all the others that already exist.  Diversity breeds

more diversity, thereby fueling the growth of complexity.

There’s another way of recognizing the fundamental difference between evolution

and coevolution.  Stuart Kauffman couches it in terms of fitness landscapes.33  Evolution

occurs on a fixed landscape where the attractors are local optima in the form of single

points.  This kind of landscape is a familiar one to economists, who are taught that

optimization is a simple hill-climbing procedure.  All that we thought we needed to know

was the topography of the hill.

In a coevolutionary process, however, the landscape isn’t fixed.  Instead, it’s

adapting incessantly.  In an economic environment, for example, we can picture the

landscape of one agent heaving and deforming incessantly as other agents make their own

                                                          
32 For further details, see Lindgren (1992).

33 For a comprehensive discussion of fitness landscapes, see Kauffman (1993;1995, especially Chapter 8).
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adaptive moves.  The resulting environment has a very unstable surface.  In fact, it’s more

like a seascape than a landscape.  Have you ever tried to surf on an incessantly choppy

and undulating ocean surface?  That’s the kind of decision environment that exists when

agents must adapt incessantly.  Nobody quite knows where they’re going next.  It’s even

difficult to define the problem.  For example, technological evolution is a process

attempting to optimize a system riddled with conflicting constraints.  In such an uncertain

environment, the various behavioural regimes that may coevolve are mindboggling.  The

likelihood of reaching local optima in the form of point attractors is very remote.

Coevolving systems may not be optimizing anything.

What are they doing then?  One insight comes from Axelrod's results.  Sometimes

coevolution allows TIT FOR TAT-style cooperation to emerge and thrive in a world full

of treacherous defectors.  The iterated Prisoner’s Dilemma game simultaneously provides

an abstract model for the evolution of cooperation and the setting for a very complex

evolutionary landscape.34  Another insight comes from Arthur's inductive economic

models in which agents learn and adapt.  Inductive agents, who persistently alter their

mental models of other agents' behaviour, will decide and behave differently.  They’re

forever changing their mental images of others.  These mental images are often nothing

more than subjective expectations or half-hoped anticipations.  They can be mutually

cooperative or mutually competitive.  They can arise, get a solid footing, gain

prominence, fall back, and disappear.  Arthur regards them as the DNA of an economy.

Whenever beliefs form a complex ocean of interacting, competing and

cooperating, arising and decaying entities, it’s possible that they may simplify into an

ordered equilibrium now and then.  But most of the time they’ll be found in complex,

unsettled, ever-changing states.  Beliefs about beliefs are mostly volatile.  There’s no

evidence to suggest that such adaptive behaviour ever settles down into a steady,

predictable pattern.  This is a another signature of coevolutionary learning.

The light is beginning to shine at last!  When economic agents interact, when they

must think about what other agents might be thinking, their coevolving behaviour can

take a wide variety of forms.  Sometimes it might look chaotic, sometimes it might

                                                          



87

appear to be ordered, but more often than not it will lie somewhere in between.  At one

distant end of the spectrum, chaotic behaviour would correspond to rapidly changing

models of other agents' beliefs.  If beliefs change too quickly, however, there may be no

clear pattern at all.  Such a volatile state could simply appear to be random.  At the other

end of the spectrum, ordered behaviour could emerge, but only if the ocean of beliefs

happens to converge onto a mutually consistent set of models of one another.  One

familiar example is that classical pillar of the world of stasis, a state of equilibrium

among a set of deductively rational agents.

For most of the time, however, we’d expect that mental models of each other's

beliefs would be poised somewhere in between these two extremes, tending to change,

poised ready to unleash avalanches of small and large changes throughout the whole

system of interacting agents.  Why should we expect this?  Given more data, we would

expect each agent to improve his ability to generalize about the other agents' behaviour by

constructing more complex models of their behaviour.  These more complex models

would also be more sensitive to small alterations in the other agents' behaviour.  Thus as

agents develop more complex models to predict better, the coevolving system of agents

tends to be driven away from the ordered regime toward the chaotic regime.  Near the

chaotic regime, however, such complexity and changeability would leave each agent with

very little reliable data about the other agents' behaviour.  Thus they would be forced to

simplify, to build less complex models of the other agents' behaviour.  These less complex

models are less sensitive to the behaviour of others and live in calmer oceans.

Thus we can picture a constant struggle between the need to simplify and the need

to “complexify” our thinking.  This is tantamount to a struggle between the two halves of

our brain.  Being more objective, rational and analytical, the left hand side houses the

simpler confines of convergent thinking.  It’s also responsible for the deductive metaphor

among economic agents.  By way of contrast, the right hand side is more subjective,

intuitive and holistic.  This kind of divergent thinking produces multiple outcomes and

creative ideas.  Thus the right hand side is responsible for inductive reasoning among

economic agents.  We can picture these two modes of thought in constant interplay,

                                                                                                                                                                            
34 See Lindgren (1992).
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driving the whole ocean of beliefs back and forward, from chaos to order and back again.

In general, therefore, we might expect to find most economic agents hovering somewhere

in between.  Poised, if you like, near "the edge of chaos".

Believe it or not, such poised states proliferate in our everyday world.  Here’s one

example from my own backyard.  For several years, my ten-year-old daughter, Sofie, and

I have enjoyed the habit of cycling together on a bayside circuit near our Melbourne

home.  While pedalling around this predetermined circuit, we often play that simple

guessing game which kids everywhere seem to adore: "I spy with my little eye, something

beginning with......." For the first few months, we played the standard game: we tried to

guess each other's word given its first letter.  Then Sofie began to ask for a clue if the

word turned out to be elusive.  A few months later, we allowed two clues under certain

conditions.  Then came a major "mutation".  Our population of potentially guessable

"things" expanded dramatically when we allowed two-word descriptions to join single

words.  First, it was just nouns needing two words to define them (e.g. ice cream).  But

very soon the set of possibles was expanded again.  We included adjective-noun pairs

(e.g. red car).  Can you guess what was happening?  Our little game of "I spy" was

coevolving all the time.  It seemed to be forever poised on the verge of an avalanche of

smaller and larger changes.  A bit like those sandpiles we discussed in Chapter One.

Progress in science is a fertile example of coevolutionary learning.  Scientists

develop their own models or hypotheses about a particular phenomenon of interest.  Then

they test these ideas in a variety of ways: performing experiments in laboratories,

discussing their results with colleagues, lecturing about them at seminars and

conferences, and publishing them in journals and books.  From each of these critical

audiences, they get feedback.  Usually they’re obliged to revise their ideas in the light of

this feedback, to discard some of their old models and replace them with new ones.  Like

Chess players, scientists discern patterns, build temporary mental models, test them in a

competitive environment, revise them in the light of new information, and come up with

improved hypotheses.  They’re immersed in an ocean of ideas, where each one is

evolving and coevolving.  Scientists are experts at coevolutionary learning.
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As we noted earlier, researchers understand the importance of oral communication

when their own ideas are exposed for critical comment.  One of the great advantages of

face-to-face contact is that it fosters the unexpected!  Unsolicited comments from

thoughtful peers can be pearls of wisdom.  Interestingly, face-to-face contact is dependent

on the transportation system.  And the world of transport is another arena where

coevolutionary learning is hard at work.  A traffic system supports a large number of

interacting vehicles and drivers, and the behaviour of both can be complex and

unpredictable.  As we shall learn in a later chapter, busy traffic may be poised near the

edge of chaos.



TABLE 1.1:
Two Economic Worlds - The Simple and the Complex

_________________________________________________

NECESSITY CHANCE
_________________________________________________

Stasis Morphogenesis
Resource-Based Knowledge-Based
Unique Outcome Multiple Outcomes
Equilibrium Path-Dependent
Mechanistic Organic
Predictable Unpredictable
Diminishing Returns Increasing Returns
Convex Nonconvex
Easy to Model Difficult to Model

_________________________________________________

A SIMPLE WORLD A COMPLEX WORLD
_________________________________________________



TABLE 2.1:
Information and Knowledge

__________________________________________________________________

Characteristic Information Knowledge
__________________________________________________________________

Source External Internal
Nature Weakly-interactive  Strongly-interactive
Primary exchange mode Interface           Face-to-face
Learning rate Fast Slow
Usefulness Temporary Longlasting
Exchange process Simple Complex
Unit of measurement Quantitative        Qualitative

(e.g. bits) (e.g. deep)
__________________________________________________________________



TABLE 4.1
Population Growth in Europe

_________________________________________________________

Date       European    Margin of
     Population    Error (%)

_________________________________________________________

 200 48 35
 500 36 30
 800 32 30
1000 39 20
1300 75 20
1500 76 10
1700 102  8

_________________________________________________________



TABLE 4.2:
The Ten Largest Cities in Europe by Population, 1000-1400

_________________________________________________________

1000 1100 1200 1300 1400
_________________________________________________________

Cordova Constantinople Constantinople Paris Paris
Constantinople Fez Palermo Granada Bruges
Seville Seville Seville Constantinople Milan
Palermo Palermo Paris Venice Venice
Kiev Cordova Venice Genoa Genoa
Venice Granada Cordova Milan Granada
Thessalonika Venice Granada Sarai Prague
Ratisbon Kiev Milan Seville Constantinople
Amalfi Salerno Cologne Florence Rouen
Rome Milan London Cologne Seville
_________________________________________________________



Table 5.1: Changes in Rank of Selected American Cities, 1810-1910
______________________________________________________

----------------Rank in-----------------
City 1810 1860  1910
______________________________________________________

New York   1     1     1
Philadelphia   2    2    3
Baltimore   3     3    7
Boston   4     4    5
New Orleans   6     5   14
Cincinatti 42    6   13
St. Louis   -     7    4
Chicago   -     8    2
Buffalo   -     9   10
Louisville   -    10   22
Albany  17   11   44
Washington  12  12   16
San Francisco   -    13   11
Providence   8    14   21
Pittsburgh  28   15    8
Rochester   -  16   23
Detroit   -  17    9
Milwaukee   -  18    12
Cleveland   -  19    6
Charleston   4    20   77
________________________________________________



Table 5.2:  Similarities Between CAs and Socio-Economic Dynamics
________________________________________________________________

Cellular Automata Socio-Economic Dynamics
________________________________________________________________

Basic elements Cells are the basic units Individual agents are the
or “atoms” of a CA basic units of an economy

Possible states Cells assume one of a Agents form mental models
set of alternative states which enable them to make

choices from alternatives

Interdependence The state of a cell affects The choices made by agents
the state of its closest affect the choices made by
neighbors other agents

Applications Modeling the emergence Important tasks include:
and tasks of order, macro outcomes understanding the emergence

explained by micro rules, of order, macro to micro
and the path dependence relationships, and economic
of dynamic processes dynamics

________________________________________________________________
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