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Retarded long-range interaction in split-ring-resonator square arrays
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We systematically investigate the optical extinction spectra of planar gold split-ring-resonator square arrays
operating at ∼200-THz frequency versus the lattice constant and versus angle of incidence. We find a strong
dependence of the resonance damping on the in-plane wave vector, namely, the resonance damping increases
(decreases) versus the in-plane wave vector for small lattice constants (large lattice constants). By comparison
with two simple one-dimensional models as well as with more complete numerical calculations, this behavior
is interpreted in terms of a long-range retarded interaction among the split-ring resonators. In contrast, the
assumptions of only nearest-neighbor interaction and/or of an instantaneous interaction lead to a striking
disagreement with the overall experimental facts.
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I. INTRODUCTION

Split-ring resonators1–5 are tiny subwavelength electromag-
nets into which an incident electromagnetic light field can
induce a circulating and oscillating electric current, leading to
a local magnetic-dipole moment normal to the plane of the ring.
Split-ring resonators (SRRs) are the paradigm building block
(or “meta-atom”) of metallic metamaterials3 and can be viewed
as the classical counterpart of quantum-mechanical magnetic
moments due to spin or atomic-orbital angular moments.6

For many applications, it is desirable to achieve a small
damping (or linewidth) of the SRR resonance. Thus, a detailed
understanding of the mechanisms determining this linewidth is
highly desirable. It is well known by now that both near-field
as well as far-field coupling effects significantly modify the
resonance position and line shape of the response of coupled
metal nanoparticles.7–10 Likewise, for SRR arrays the damping
is not only determined by the properties of the individual
SRRs but also by the mutual interaction of SRRs in a two-
dimensional array5,6,11 or in a three-dimensional crystal.12–15

This fact was already reported in our early SRR experiments3

at 100-THz frequency in 2004, where we observed that the
magnetic-resonance damping varies significantly with lattice
constant. In 2009, this behavior was interpreted in terms of
superradiance for usual SRR square arrays investigated for
several lattice constants but only under normal incidence of
light.11 We have rather interpreted our own angle-resolved
experiments on particular asymmetric SRR arrays in terms of
far-field retardation effects6 which basically yield the analog
of usual quantum-mechanical magnon waves in solids, with
the subtle and important difference that the back action from
one classical SRR to its neighbors happens with a certain
time delay due to the finite SRR spacing as compared to
the wavelength of light—the quantum-mechanical spin-spin
interaction, on the other hand, is an example of a practically
instantaneous process. As a result, the effective damping of
a SRR array depends on both the lattice constant of the

SRR array and the relative phase with which the individual
SRRs oscillate, hence, the excitation angle. The latter point is
equivalent to saying that the damping depends on the in-plane
wave vector of the excitation as the parallel (or in-plane)
component of the incident wave vector of light with respect
to the SRR-array plane is conserved. This dependence of the
SRR damping on in-plane wave vector is precisely what we
observed in our experiments.6 However, these experiments
were performed on highly unusual asymmetric SRR arrays
with two nonequivalent SRRs in the primitive unit cell. Hence
it remained unclear whether our interpretation would also
apply for usual SRR square arrays that are much more relevant
in the context of metamaterials.

In this paper we present the corresponding experimental
results for the usual square arrays of SRRs for different lattice
constants and excitation angles. The quality and completeness
of these data go far beyond previous angle-resolved work on
SRR arrays by us at optical frequencies16 and by others at
microwave frequencies17,18 that would not have allowed for
any of the conclusions of the present paper.

II. EXPERIMENTAL RESULTS

The SRR arrays in our experiments have been fabricated
by standard electron-beam lithography on glass substrates
coated with a 5-nm thin film of indium-tin oxide followed
by standard high-vacuum electron-beam evaporation and a
lift-off procedure.3 The gold-film thickness is 40 nm and the
footprint of all arrays is 160 μm × 160 μm. The normal-
incidence fundamental SRR resonance is located at ∼200-THz
frequency (or 1500-nm free-space wavelength). The square
lattice constant a of the SRR arrays is systematically varied
from 280 to 700 nm. Selected typical electron micrographs
are depicted in Fig. 1. Transferring these lattice constants to
corresponding free-space phase delays ϕ we obtain values
ranging from 67◦ to 168◦ between two lattice sites. In bulk
glass with a refractive index of 1.4 (hence ∼1071-nm material
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FIG. 1. (Color online) (a) Overview electron micrograph of the
split-ring-resonator (SRR) square array with a = 280 nm lattice
constant used in this paper. The total footprint of this array and
all others is 160 μm × 160 μm. The SRR dimensions used for
the numerical calculations are indicated in the inset. (b) Electron
micrographs of all other SRR arrays in this work with lattice constants
a as indicated. All arrays are shown on the same scale—the scale bar
is 500 nm.

wavelength), they would correspond to phase delays ranging
from 94◦ to 235◦. Since the SRR arrays are processed on a
glass half-space in air, the actual phase delays are expected to
lie somewhere in between these values. Notably, we expect
that we pass a phase delay of ϕ = 180◦ at some lattice
constant between 280 and 700 nm. For measurement of the
intensity transmittance of the SRR arrays we use a homebuilt
spectroscopy setup and an optical spectrum analyzer. Under
normal-incidence conditions, the opening angle of the incident
light is 5◦ and the imaged sample area is a square with
50 μm × 50 μm. The size increases to 100 μm along the y

direction at β = 60◦ (see the geometry depicted in Fig. 2).
This value is still sufficiently smaller than the sample size
of 160 μm (see above), avoiding artifacts from insufficient
sample-spot overlap. However, at yet larger angles, the absence
of artifacts can no longer be guaranteed. Thus, we limit the
experiments to a maximum angle of β = 60◦. The incident
electric-field vector is chosen to be parallel to the SRR gap
and the transmittance spectra are measured as a function
of the angle of incidence for s polarization of light. The
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FIG. 2. (Color online) Illustration of the geometry used in our
oblique-incidence optical transmittance experiments.

transmitted spectrum is normalized to the transmission of
the bare glass substrate right next to the SRR arrays at the
same angle of incidence in order to allow for reproducible
and reliably calibrated results. We calculate the extinction
spectrum defined as the negative logarithm of the measured
transmittance [−log10(T )].

All measured extinction spectra could very nicely be fitted
by Lorentzian line shapes as illustrated in Fig. 3. These high-
quality fits to high-quality raw data are the key to determining
the dispersion of the SRR-resonance center position as well as
of its damping with an error as low as 0.1 THz, which is only
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FIG. 3. (Color online) Selected extinction spectra (dots) together
with Lorentzian fits (solid curves) (a) for different lattice constants at
normal incidence and (b) for a selected lattice constant of a = 500 nm
but for different angles of incidence β, as indicated. These fits provide
us with the center frequency and the damping vs lattice constant and
vs angle of incidence. The latter can be converted into an in-plane
wave vector k|| using the experimental geometry shown in Fig. 2. For
clarity, the curves in (b) are vertically displaced by 0.1 starting with
a 20◦ angle.
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∼0.05% of the resonance center frequency of 200 THz. This
error has been determined by repeating the experiment and
the fitting procedure. We do the experiment for SRR square
arrays with lattice constants of 280, 300, 325, 350, 400, 450,
500, 550, 600, and 700 nm. The angle of incidence β with
respect to the surface normal is varied from 0◦ to 60◦ in steps
of 5◦ (i.e., 10 × 13 = 130 spectra altogether). Finer steps do
not make sense as the opening angle of the incident light is
∼5◦ as well. For each parameter combination we perform the
Lorentzian fit and obtain the resonance center frequency and
its damping (half the linewidth of the SRR resonance). The
angle of incidence β is converted into an in-plane wave vector
via the formula

k|| = k0 sin(β), (1)

with the free-space wave number k0 = 2π/λ, where λ is the
free-space resonance wavelength. Negative and positive angles
of incidence have delivered consistent results, as verified for
selected examples. Thus, in what follows, we only show results
for positive angles. The corresponding experimental data are
summarized in Fig. 4.

For the combination of large lattice constants with large
angles of incidence, caution has to be exerted because
under these conditions light can be diffracted into the glass
substrate, corresponding to well-known Wood anomalies. In
this case the spectra deviate from Lorentzian line shapes,
leading to inaccurate results from the fitting procedure for
the SRR resonance positions and linewidths. The crosses in
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FIG. 4. (Color) Center frequency (top) and damping (bottom) vs
in-plane wave vector k|| for different lattice constants a, as indicated
(in units of nm). These data are derived from Lorentzian fits to the
experimental data as illustrated in Fig. 3. The crosses illustrate the data
points for which the influence of diffraction into the glass substrate
(Wood anomaly) may become important. These data points should
be taken with some caution. All curves end at a maximum angle of
incidence with respect to the surface normal of 60◦ (see Fig. 2).

Fig. 4 indicate the data points for which the Wood-anomaly
frequency is expected to be separated from the fundamental
SRR resonance frequency by less than two SRR resonance
full linewidths—a very conservative estimate. In fact, only
for these data points, the behavior of the damping changes
qualitatively, indicating a substantial influence of the Wood
anomaly onto our results. For the remaining data points in
Fig. 4 we can safely conclude that the observed change in sign
of the SRR resonance damping versus in-plane wave vector is
not an artifact of the Wood anomaly.

In the experiments we observe a dispersion of the resonance
center frequency versus the in-plane wave vector as expected
for any type of interaction effect. Specifically, the resonance
center frequency decreases with increasing in-plane wave
vector and with increasing lattice constant. This dispersion
corresponds to negative group velocites of light, i.e., to
backward waves. More importantly, we find that the SRR
resonance linewidth or damping increases with increasing in-
plane wave vector k|| for small lattice constants. This increase
becomes less pronounced for larger lattice constants and may
in itself be partly due to decreased magnitude of the SRR
interaction strength. However, if the lattice constant exceeds a
value of approximately a = 600 nm, the measured resonance
damping starts decreasing (!) with increasing in-plane wave
vector k||.

This finding cannot be explained by reduced coupling
strength alone and is a fingerprint for retarded interaction
among the SRRs, as investigated previously in the context of
asymmetric SRR arrays.6 However, in the case investigated
here, the overall qualitative behavior of the dispersion of
both the resonance frequency and the damping can only be
described if we account for long-range interaction effects, as
we shall argue in what follows.

III. HEURISTIC COUPLED-OSCILLATOR MODEL

Let us start by comparing the experimental findings to a
very simple but intuitive one-dimensional toy model that we
have previously introduced for the case of nearest-neighbor
interactions only.6 The model considers an infinite one-
dimensional chain of harmonic oscillators with individual
center frequency � and individual damping γ that are coupled
to their nearest neighbors by the interaction frequency W . The
latter clearly depends on the lattice constant a. The finite lattice
constant a between the oscillators also leads to a time delay
in their interaction, which can be translated into a phase delay
ϕ, which is expected to be proportional to the lattice constant
a. The resulting model dispersion relation for the system’s
complex-valued eigenfrequency ω versus real-valued in-plane
wave vector k|| is given by6

Re(ω) = +� − W cos(k||a) cos(ϕ), (2)

Im(ω) = −γ − W cos(k||a) sin(ϕ). (3)

The real part of the eigenfrequency exhibits the usual tight-
binding type dispersion, albeit modified by the cosine of the
phase delay ϕ. More importantly, the imaginary part of the
eigenfrequency, i.e., the negative resonance damping, also
depends on the in-plane wave vector for nonzero values of
ϕ. For example, for W > 0, the damping decreases with
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increasing in-plane wave vector k|| for phase delays 0◦ <

ϕ < 180◦ because sin(ϕ) > 0, whereas the damping increases
with increasing in-plane wave vector k|| for phase delays
180◦ < ϕ < 360◦, where sin(ϕ) < 0. As discussed above, the
phase delay is expected to be proportional to the lattice constant
a. To account for the glass half-space geometry, we assume
an effective refractive index of n = 1.2 that is intermediate to
that of air and glass, in which case we obtain

ϕ (a) = a

λ/n
360◦, (4)

with the free-space resonance wavelength λ obtained from the
normal incidence spectra for each lattice constant.

However, we will see below that the assumption of
only nearest-neighbor interaction is unable to reproduce the
experimental data (Fig. 4). Following along the lines of our
Ref. 6, i.e., approximating the resulting expressions in the limit
of small relative frequency variations (which is well justified
here—see Fig. 4), we obtain the generalized dispersion relation
for interaction with all neighbors in the chain

Re(ω) = +� −
∞∑

N=1

WN cos(Nk||a) cos(Nϕ), (5)

Im(ω) = −γ −
∞∑

N=1

WN cos(Nk||a) sin(Nϕ). (6)

Here we have used the phase delay over a distance of N

lattice sites Nϕ. WN is the interaction frequency with the N th
neighbor. Generally, the interaction among the SRRs is fairly
complex and includes the possibility of magnetoinductive
coupling5 and magnetoelectric cross-coupling effects. The
former is analogous to the coupling between the two coils
of a transformer and can formally be described by magnetic
dipole-dipole interaction. However, under the conditions of
the above experiments, the coefficients WN are rather expected
to be dominated by electric dipole-dipole interaction.11 This
means that the interaction is governed by the decay of the
electric field of an oscillating electric dipole along a direction
normal to its oscillation axis. It is well known that this decay
has components falling off inversely with the distance, the
square of the distance, and the cube of the distance (also
see the following section). In a two-dimensional array, the
situation is more complex because the number of neighbors
in a certain distance increases proportionally to distance. For
a hypothetical isotropic interaction and an asymptotic decay
of the field of one dipole with the inverse of the distance, this
would lead to an effectively constant interaction, i.e., to no
dependence on Na at all. However, the radiation field of an
electric dipole is far from being isotropic. Hence, we expect a
decay of the interaction WN versus distance Na intermediate
to a constant ∝(Na)0 and ∝(Na)−1. For simplicity, we here
heuristically assume

WN (a) = W0

√
a0

Na
, (7)

which has a rapid initial decay, followed by a long tail.
Let us start the discussion by presenting results for

nearest-neighbor interaction only, i.e., we only account for
the N = 1 contribution. Furthermore, we use the parameter
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FIG. 5. (Color) Dispersion of eigenfrequency and damping as
derived from a simple model of coupled harmonic oscillators subject
to retarded only nearest-neighbor interaction represented as the
experimental data in Fig. 4. Parameters are �/(2π ) = 200 THz,
γ /(2π ) = 10 THz, and W0

√
a0 = 66.5 THz

√
280 nm. Note the dis-

agreement with experiment in Fig. 4. If one artificially neglects
retardation (not depicted), the damping becomes strictly independent
on lattice constant and strictly independent on the in-plane wave
vector, i.e., the disagreement with experiment becomes even worse.
Also, upon neglecting retardation, the curvature of the dispersion
of the resonance frequency reverses sign, further increasing the
disagreement with experiment.

W0
√

a0 = 66.5 THz
√

280 nm. The remaining individual-
oscillator parameters are �/(2π ) = 200 THz and γ /(2π ) =
10 THz. This immediately allows for calculating the resonance
center frequency Re(ω)/(2π ) and the damping [−Im(ω)/(2π )]
versus in-plane wave vector k|| for the various lattice constants
a, just as in the experiment (Fig. 4). Results are shown in
Fig. 5. Comparing the qualitative behavior of the dispersion
curves, we observe that, while the behavior of the damping
can be reproduced, the center-frequency dispersion is just
opposite to that of the experiment. For other parameter
choices, the center-frequency dispersion can be matched,
however, at the price of obtaining the opposite behavior
for the damping dispersion between experiment and model.
What remains is a striking overall disagreement. We will see
below that this disagreement also exists for more sophisticated
descriptions involving only the interaction between nearest
neighbors.

Next, we go beyond nearest-neighbor interaction. Results
for 10 000 neighbors in each direction are depicted in Fig. 6
in the same format as the experiments in Fig. 4. Using the
same set of parameters as above, we observe an improved
agreement with experiment combined with a strong difference
compared to the same model accounting for nearest neighbors
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FIG. 6. (Color) As Fig. 5, but for long-range interaction between
the oscillators. Parameters are chosen to be the same as for nearest-
neighbor interactions only. The behavior is very much different from
that of the corresponding case of nearest neighbors only in Fig. 5 and
approaches that of the experiment in Fig. 4. Especially the damping
is reproduced very well.

only (Fig. 5). This leads us to conclude that a retarded
long-range interaction is crucial to qualitatively understand
the behavior of the simple split-ring-resonator square arrays
under investigation.

We note in passing that for the purely mathematical
(but unphysical) case of no retardation at all (i.e., ϕ = 0)
and zero in-plane momentum (i.e., k|| = 0), the real part of
the eigenfrequency Re(ω) according to (5) diverges. With
retardation, no such divergence occurs, as the retardation leads
to an oscillating sign of the addends in the sum via the cos(Nϕ)
term.

The simple one-dimensional model of coupled harmonic
oscillators applied here qualitatively explains the experi-
mentally observed behavior. However, the model is purely
heuristic. In order to back up our conclusion, we will now
consider a simple but microscopic one-dimensional chain of
interacting electric point dipoles (Sec. IV) in a first step. In a
second step, we perform complete numerical calculations for
actual two-dimensional split-ring-resonator arrays on a glass
substrate (Sec. V).

IV. INTERACTING ELECTRIC POINT DIPOLES

From the geometry in Fig. 2 and from Refs. 11 and 19 it is
clear that—for the in-plane wave propagation direction under
consideration—the interaction among the magnetic split-
ring resonators is mainly mediated via their electric-dipole
moments (rather than via their magnetic-dipole moments).
Thus, we will first describe this problem by a microscopic
one-dimensional chain of interacting electric point dipoles—

the interaction of a set of electric dipoles has been treated many
times in the literature.20,21 For the polarizability of each iso-
lated electric dipole αs, we assume a Lorentzian response with
center frequency �/(2π ) = 200 THz and damping γ /(2π ) =
10 THz. Each dipole sees a total electric field composed of
the monochromatic external driving field E0 and the sum of
the fields from all of the other electric dipoles Ed . Hence the
effective dipole moment for this linear chain of interacting
point dipoles is

p = αs

(
E0 +

∞∑
d=−∞

Ed

)
. (8)

Due to symmetry considerations, the sum over all dipoles∑∞
d=−∞ Ed can be reduced to a sum over the num-

ber of neighbors (one in each direction)
∑∞

N=1 ẼN . Us-
ing the expression for the radiation field of transversely
coupled electric dipoles for the N’s (two) neighbors, we
obtain

ẼN = k3
0

4πε0
eik0Na

[
1

k0Na
+ i

(
1

k0Na

)2

−
(

1

k0Na

)3]
× 2 cos(k||Na) · p

=: GN · p. (9)

The cosine term in Eq. (9) accounts for oblique incidence of
the incident light. Finally, the effective polarizability is given
by

αeff = αs

1 − αs
∑∞

N=1 GN

. (10)

The extinction is then calculated by evaluating the imaginary
part of the effective polarizability αeff of the linear chain
of interacting dipoles. Such treatment automatically includes
retardation effects, i.e., retardation does not have to be added
by hand as in the above toy model. To investigate the aspect
of long-range interaction, we proceed as follows. We start
with one dipole and two neighbors separated by distance
a in a one-dimensional setting. The resulting spectra of the
imaginary part of the total system’s polarizability are fitted by
Lorentzians for various values of a and for various angles β just
as we have proceeded with the processing of the experimental
data in Sec. II.

Next, we successively increase the number of dipoles by
adding more and more neighbors to the chain. Figure 7 shows
the limiting case of just one neighbor in each direction and
Fig. 8 that of an infinite periodic chain (actually 2001 dipoles).
All other parameters have been fixed between Figs. 7 and
8. The results presented in Fig. 8 very closely qualitatively
reproduce those of the simple oscillator model for long-range
interaction shown in Fig. 6. This agreement provides us with
further confidence that our conclusion of having observed
long-range interaction effects in the experiments (Fig. 4) is
indeed valid. Undoubtedly, retardation is evident by the mere
fact that the damping reveals a dependence on the in-plane
wave vector k||.
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FIG. 7. (Color) Dispersion of center frequency and damping as
derived from a chain of three electromagnetically interacting electric
point dipoles in vacuum evenly separated by distance a, represented as
the experimental data in Fig. 5. This treatment automatically accounts
for retardation. The chain of three dipoles mimics short-range
interaction only. Parameters are �/(2π ) = 200 THz and γ /(2π ) =
10 THz. Note the disagreement with experiment in Fig. 4.
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FIG. 8. (Color) As Fig. 7, but for 2001 rather than for three electric
point dipoles. All other parameters are as in Fig. 7. Note the much
better qualitative agreement with the experiment in Fig. 4 and the
striking difference to the corresponding case of nearest neighbors
only in Fig. 7.

V. COMPLETE NUMERICAL CALCULATIONS

This more advanced dipole-dipole modeling has empha-
sized the general nature of the physics under discussion.
Yet it has still not treated the particular situation of metal-
lic split-ring resonators on a glass substrate. To this end,
we have performed numerical calculations of the transmit-
tance spectra of gold SRR arrays under oblique incidence
using the commercially available program package COMSOL
Multiphysics with a frequency-domain finite-elements solver
and periodic boundary conditions in the SRR plane. The
gold is described by a free-electron Drude dielectric function
with plasma frequency ωpl = 2π × 2155 THz and collision
frequency ωcoll = 2π × 28.3 THz. The SRR array is located
on a glass substrate with a refractive index of 1.41, the lattice
constants are as in the experiments, the SRR thickness is 40 nm,
and the lateral SRR dimensions are illustrated in Fig. 1(a). The
calculated transmittance spectra are then processed just as in
the experiment (Sec. II).

The results shown in Fig. 9 qualitatively agree with the
experiment (Fig. 4) as well as with the simple oscillator model
with long-range interaction (Fig. 6) and with the microscopic
dipole-dipole description (Fig. 8). In particular, the slopes
of both the eigenfrequency dispersion and the damping
dispersion and their dependence on the lattice constant a are
reproduced.

Caution has to be exerted when comparing the behavior
of the dispersion branches of the resonance frequency for
different lattice constants a. In the experiment, even variations
of the SRR size of just a few percent (almost unavoidable
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FIG. 9. (Color) As the experiment in Fig. 4, but derived from
complete numerical calculations for actual infinite gold split-ring-
resonator square arrays with lattice constants a, as indicated. Note
the good qualitative agreement with the experiment in Fig. 4. The
lateral geometry of the split-ring resonators is indicated in Fig. 1. The
gold film thickness is 40 nm, and the glass substrate is accounted for.
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due to the proximity effect in electron-beam lithography) can
strongly disturb the ordering of the different branches. After
all, for example, a 5% SRR size variation translates into an
absolute frequency variation of 10 THz at 200-THz center
frequency. Hence a systematic increase of the lattice constant
a leads to a systematic redshift of the center frequency
� due to a decrease of the proximity effect. In contrast,
the dispersion for a given branch and the entire behavior
of the damping are not expected to sensitively depend on
this aspect. In order to specifically identify the influence of
long-range retarded interaction in SRR arrays, we performed
the numerical calculations using fixed SRR dimensions for
all lattice constants [see the inset in Fig. 1(a)].

Finally, it is interesting to ask why our6 and other
groups,11,22 previous results on split-ring-resonator arrays
could be described reasonably well by accounting for nearest-
neighbor6,11 or short-range22 interactions only, whereas we
conclude in the present paper that accounting for long-range
interaction is mandatory. Broadly speaking, one simply must
not conclude from the mere agreement between whatever
model and experiment that the model is correct. One can only
conclude consistency. Agreement is a necessary but not a suf-
ficient condition. More specifically, if we had not investigated
the angle dependence (as, e.g., Refs. 7,8,10, and 11), i.e., if we
would have had only data points at k|| = 0 for our discussion,
our data were also compatible with the assumption of nearest-
neighbor interaction only. In other words, the fact that we have
measured simultaneously the dependence of the resonance
frequency and of the damping on lattice constant as well as
the dependence on angle of incidence (equivalent to in-plane
wave vector) has provided a much more stringent test ground
for a detailed understanding of split-ring-resonator arrays.

VI. CONCLUSION

In conclusion, we have provided a detailed experimental
study of the resonance damping of split-ring-resonator square
arrays. We find a characteristic dependence of the damping on
lattice constant and on in-plane wave vector that is interpreted
in terms of a retarded and long-range interaction among the
split-ring resonators. This interpretation is backed up by three
different levels of theoretical modeling.

These overall results imply that the damping in optical
metamaterials can be fine tuned by suitably arranging the
individual meta-atoms with respect to each other. The long-
range interaction is also quite relevant in the context of
the lasing spaser.23–25 Without interaction, a large array of
split-ring resonators would very likely break up into incoherent
domains, whereas sufficiently strong long-range interaction
could force the entire array into a collective coherent lasing-
spasing mode.
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