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The metal-dielectric interface supports surface plasmons. But the metal-dielectric interface with defects has
not only surface plasmons but also residual waves. In this paper we calculate the fields along the metal-
dielectric interface with defects from Maxwell’s equations analytically using the surface impedance approxi-
mation and study the asymptotic behavior of the residual waves. These analytic results set up a solid founda-
tion to understand various phenomena such as beaming and extraordinary optical transmission.
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In 1998, Ebbesen et al.1 reported a phenomenon named as
extraordinary optical transmission �EOT�: the transmission
through a metal film perforated with two-dimensional sub-
wavelength hole arrays can be much larger than the standard
aperture theory prediction.2 Served as simpler models, trans-
mission through one-dimensional subwavelength metallic
slits is studied too, which include the cases of gratings,3–5

one-slit structures,6,7 double-slit structures,8 and one-slit
structures with grooves.9 It is commonly accepted that the
surface plasmons excited along the input and the output sur-
faces play an important role in the transmission.

Surface plasmons10 are electromagnetic waves bounded
along a metal-dielectric interface through their interaction
with the free electrons in the metal. In the two-dimensional
x−y space, suppose x=0 is the metal-dielectric interface.
Then the surface plasmon has H polarization �Ex, Ey, and Hz
are the nonzero components of the electromagnetic fields�
and the field along the interface is Hz�y��exp�ikspy�.

The surface-plasmon explanation was criticized in some
aspects. First, it was found that perfect electric conductors
�PECs� also support EOT �Refs. 11 and 12� and a flat PEC
surface does not support surface plasmons. Second, surface
plasmon describes the fields along a flat metal-dielectric in-
terface precisely but not the fields along the interface with
indentations �slits or grooves�. To get better fitting results in
the area close to an indentation, Gay et al.13 gave up the
surface-plasmon explanation and assumed that the surface
wave excited by an indentation has the form Hz�y�� �� /y
+��cos�ksurfy+�� �the indentation locates at y=0�. Other
groups also realized the surface plasmon alone is not
enough.14–17 They decomposed the surface wave into two
parts: Hz=Hsp+Hc. Hsp is the surface plasmon and Hc is the
residual quasicylindrical wave. It was verified numerically
that �Hc��1 /y1/2 when y is small.14,15

In this paper, we calculate the surface wave along the
metal-dielectric interface with indentations from Maxwell’s
equations analytically. We support the decomposition
Hz=Hsp+Hc and study the asymptotic behavior of the quasi-
cylindrical wave. We explain the connection between the sur-
face waves along the metal surface and PEC surface.

Figure 1 shows the structure we are studying: a dielectric-

metal interface with grooves and slits. The left half-plane is
metal and the right half-plane is dielectric. Surface imped-
ance boundary condition �SIBC� �Ref. 18� is used to describe
the interface here. SIBC is commonly used to replace the
metal when ��m�m�� ��d�d�. Here �m and �m are relative per-
mittivity and permeability of the metal; �d and �d are of the
dielectric. Silver has relative permittivity �m=−8.5+0.76i at
�=500 nm �� is the wavelength in free space�.19 So the
silver-air interface can be described by SIBC up to 500 nm.
When � becomes smaller, ��m� becomes smaller and we have
to give up the approximation. When ��m� goes to infinity, the
fields calculated from SIBC converge to the real fields.

SIBC says the fields along the metal-dielectric interface
satisfy

E� = Zmn̂ � H� .

Here n̂ is a unit vector normal to the interface pointing into
the dielectric; Zm=��m�0 /�m�0. Along the metal-dielectric
interface x=0 in Fig. 1, the boundary condition is
Ey +ZmHz=0.

Suppose no incident waves coming from the dielectric
side in Fig. 1, using the mode expansion method,20 we can
prove the surface fields along x=0 satisfy

x = 0

Ex

Ey

Hz

Metal Dielectric

FIG. 1. �Color online� Schematic representation of a dielectric-
metal interface with indentations in a two-dimensional space.
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Hz�y� =
1

Zd�d
�

−	

	

dy��Ey�y�� + ZmHz�y���G�y,y�� . �1�

The Green’s function is

G�y,y�� = G�y − y�� = �
−	

	

dk
eik�y−y��

kx + Zskd
. �2�

Here Zs=Zm /Zd and Zd=��d�0 /�d�0, arg�Zs�� �−
 /2,
−
 /4�. Zs=0 when the metal is PEC. kd and �d is the wave
vector and the wavelength in the dielectric. kx is the x com-
ponent of the wave vector of the plane waves in the x�0
half-plane. The plane waves propagate or decay along +x
direction, so

kx = � �kd
2 − k2 if kd � k

i�k2 − kd
2 if kd 
 k

� �3�

Since Ey�y��+ZmHz�y��=0 at the metal surface, Eq. �1� is
equivalent to the expression

Hz�y� =
1

Zd�d
�

Indentation

dy��Ey�y�� + ZmHz�y���G�y,y�� .

�4�

So the surface wave is decided by the fields in the indenta-
tions. When the width of an indentation is much smaller than
the wavelength, the fields at the exit of the indentation are
close to a delta function. Then the Green’s function describes
the surface wave excited by the indentation. If the indenta-
tion is wide, we have to know the fields inside the indenta-
tion to calculate the surface wave. Though the surface wave
around the indentation is complex, the Green’s function still
describes the surface wave in the region more than several
widths away from the indentation.

Above we have shown the surface wave along the output
surface of slits. It is easy to prove the fields along the input
surface have the similar form. They are the summation of the
surface wave excited by indentations plus some terms related
to the incident and reflected waves. The surface wave excited
by indentations can also be calculated by other methods,21

but the Green’s function method uses less assumptions and
gets precise results. We have no need to assume the existence
of surface plasmons beforehand. They will emerge from the
Green’s function automatically.

Define y=s�d, k=hkd, then

G�y� = g�y/�� = g�s� = �
−	

	

dh
ei2
hs

�1 − h2 + Zs

.

Now let’s focus on the nondimensional Green’s
function g�s�. The square-root function is defined as
arg��1−h2�� �−
 /2,
 /2	 because of Eq. �3�. g�s� is an
even function. We choose s�0 here.

When s→0, g�s� diverges but

�
−	

	

dh
 ei2
hs

�1 − h2 + Zs

−
ei2
hs

�1 − h2�
does not. So

g�s� → 
H0
�1��2
s� when s → 0. �5�

We moves to the complex space of h to do the integral in
g�s�. The integration path is shown in Fig. 2 as the red curves
with arrows. The blue lines are the branch cut to make
�1−h2 single valued. The function �1−h2 is not continuous
along the path Im�h�=0 at the point h=1 under this branch
cut. So the integration path has two loops.

Using Cauchy’s integral formula to the left and right
loops, we get

�
−	

1

dh
ei2
hs

�1 − h2 + Zs

+ �
0

	

dq
iei2
se−2
qs

�q2 − 2qi + Zs

= 0,

�
	

0

dq
iei2
se−2
qs

− �q2 − 2qi + Zs

+ �
1

	

dh
ei2
hs

�1 − h2 + Zs

= 2
i
Zs

hp
ei2
hps.

Here hp is a pole: �1−hp
2 +Zs=0. The integral variable is

changed from h to q along the vertical parts of the path,
h=1+qi and q� �0,	�. Again arg��1−h2�� �−
 /2,
 /2	,
arg��q2−2qi�� �−
 /2,
 /2	.

Then

g�s� = 2
i
Zs

hp
ei2
hps + 2iei2
s�

0

	

dqe−2
qs
�q2 − 2qi

Zs
2 − q2 + 2qi

.

In the second term, the integrand contributes significantly
only when q� �0,1 /s�. So we neglect q2 when s�1. Then

g�s� 
 2
i
Zs

hp
ei2
hps + 2iei2
s�

0

	

dqe−2
qs
�− 2qi

Zs
2 + 2qi

. �6�

All the calculations below base on the approximation ex-
pression of Eq. �6�, which is good when s�1. But our nu-
meric simulation results show the approximation works very
well even when s is smaller than 1. We will also prove that
Eq. �6� gives the same asymptotic result as Eq. �5� when s is
very small. So the approximation in Eq. �6� is precise for
almost any s.

The first term in Eq. �6� is the well-understood surface
plasmon gSP�s�. The second is the residual quasicylindrical
wave gC�s�,17 which need further study. Define

Re(h)

Im(h)

−1 1

hp

FIG. 2. �Color online� Integration path of the nondimensional
Green’s function in the complex space of h. The red curves are the
integration path and the blue lines are the branch cut.
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I�s� = �
0

	

dqe−2
qs
�q/Y
Y + q

; Y = Zs
2/�2i� . �7�

Then

I�s� =� 1

2Ys
− 
e2
YsErfc��2
Ys�; �8�

gC�s� = �Y�1 − i�ei2
sI�s� . �9�

Here arg��Y�� �
 /4,
 /2�; Erfc is the complementary error
function; �I�s�� describes the envelope of the quasicylindrical
wave.

The integrand of I�s� in Eq. �7� contributes significantly
only when 0
q�1 /s. When �Y�s�1, q in the interval
�0,1 /s� satisfies

1

Y + q



1

Y

1 −

q

Y
�

⇒ I�s� 

1

4�2


1

�Ys�3/2 −
1

16�2
2

1

�Ys�5/2 .

When �Y�s is small, I�s� can be simplified by the Taylor ex-
pansion of eu2

Erfc�u�,

eu2
Erfc�u� = 1 −

2
�


u + u2 + ¯ .

We can call �Y�s as the surface distance because it describes
how the envelope of the quasicylindrical wave evolves dur-
ing the propagation. The piecewise function below gives
good estimation about I�s�.

I�s� 
 �
�1/2Ys if �Y�s 
 0.002

�1/2Ys − 
 if �Y�s 
 0.02

1/�4�2
�Ys�3/2	 if �Y�s � 1
� .

When 0.02
 �Y�s
1, we have to include more terms of the
Taylor expansion or we can calculate Erfc function directly.

We now compare the amplitude of gSP and gC. Since gSP
decays exponentially, gC will be stronger for sure when s is
very big. But in practice, hp is close to 1 with a very small
imaginary part for good noble metals. So �gSP�s� /gC�s��

�I�s� /2
�. Figure 3 shows �gSP�s� /gC�s�� along a metal-air
interface when �m=−31.39+2.22i, which is the relative per-
mittivity of silver at �=852 nm.19 If the metal is lossless,
I�s� is a function of �Y�s, which is the horizontal axis in Fig.
3. We can find the quasicylindrical wave is negligible when
�Y�s�0.1.

Put the results together, we have

gSP�s� = 2
i
Zs

hp
ei2
hps,

gC0�s� = �1 − i�ei2
s 1
�2s

,

gC1�s� = − i
Zse
i2
s,

gCB�s� = Zs
i

4�2


ei2
s

�Ys�3/2 .

The piecewise function below gives good approximation
about the Green’s function,

g�s� 
 �gSP�s� + gC0�s� if �Y�s 
 0.002

gSP�s� + gC0�s� + gC1�s� if �Y�s 
 0.02

gSP�s� + gCB�s� if �Y�s � 0.1
� .

The metal-dielectric interface is divided into three regions
based on the surface distance: the near region ��Y�s
0.02�,
the intermediate region �0.02
 �Y�s
0.1� and the far region
��Y�s�0.1�.

If the metal is nearly lossless, gSP dominates in the far
region. If the metal is a PEC, Zs=0 and Y =0. The whole
surface belongs to the near region and

g�s� 
 gC0 = �1 − i�ei2
s 1
�2s

.

It agrees with the PEC’s Green’s function with Hankel func-
tion form.11 When s is very small, �gC0�� �gSP�, we can ne-
glect gSP and return to the result in Eq. �5�.

The fields along a metal-air interface are calculated nu-
merically using the commercial finite element method soft-
ware COMSOL Multiphysics. The simulation area is similar to
Fig. 1 but without the groove. The incident wave comes
through the slit in +x direction. The fields along the output
surface are recorded and compared with analytic results in
Figs. 4 and 5. The slit width is 0.05�. The relative error of
the simulations is around 2%. The analytic results in the
figures are calculated by Eq. �4� by replacing G�y ,y�� with
the different simplified forms of the Green’s function shown
in the legends. We assume that Ey�y��+ZHz�y�� is constant at
the exit of the slit and the value is taken from the numerical
simulations. There are no fitting parameters in the analytic
calculations.

In Figs. 4 and 5, the real and imaginary parts of Hz are
plotted in the range y� �0.1� ,40�� at two incident wave-
lengths. We always plot the simulation results along with the
analytic results from gSP+gC and the two curves always
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FIG. 3. �Color online� �gC�s� /gSP�s�� along a metal-air interface
when the metal permittivity is �m=−31.39+2.22i.
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overlap. It shows the approximation in Eq. �6� is good in the
region y�0.1�.

Figure 4 shows the fields when �=3000 nm and
�m=−329+47.5i. The near region is the area y�12�. The
analytic results from gSP+gC0+gC1 agree with the simulation

results very well in this region and gC1 component do im-
prove the analytic results. When s enters the intermediate
region, results from gSP+gC0 and gSP+gC0+gC1 have visible
difference from the simulation results. The difference looks
small here because gSP is strong. In Fig. 5, the incident
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FIG. 4. �Color online� Real
and imaginary parts of Hz

along a silver-air interface in
the regions y� �0.1� ,10�� and y
� �20� ,30�� when �=3000 nm
and �m=−329+47.5i. The simula-
tion results are calculated by
COMSOL Multiphysics, a com-
mercial finite element method
software. The other curves are cal-
culated analytically using differ-
ent simplified forms of the
Green’s function shown in the
legends.
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along a metal-air interface in
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and �m=−8.50+6.00i. The simula-
tion results are calculated by
COMSOL Multiphysics. The
other curves are calculated ana-
lytically using different simplified
forms of the Green’s function
shown in the legends.
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wavelength is �=500 nm. The permittivity of the metal is
set as �m=−8.50+6.00i with a big imaginary part to suppress
the surface plasmon in the far region. Since �Y� is big here,
the near and intermediate regions are short. gSP+gCB gives
good analytic results when y�2�. Figure 5 shows clearly
that the quasicylindrical wave decays as y−3/2 in the far re-
gion.

Our analytic calculation also proves gSP�s�+gC0�s� is a
very good approximation of g�s� for a good noble metal at
visible wavelengths.15–17 It is the approximation we used in
the near region. In the far region, we have proven gC�s� is
negligible; so is gC0�s�. In the intermediate region, this ap-
proximation is poor. But the intermediate region is short and
it is difficult to notice the fitting error.

In EOT research, the interesting surface area is normally
between � /2 and 100�. For a good noble metal at visible
wavelengths, the area belongs to the far region and surface
plasmon dominates. When wavelength increases and �m is
more negative, the metal surface converges to the PEC sur-
face in two ways: �i� the near region becomes longer and
�ii�gC0 becomes stronger comparing with gSP in the near re-

gion. The whole surface works like a mixture of PEC and
metal surfaces and �Y� servers as a good index to describe the
mixture state. Reference 14 shows the converging process
graphically. Both metal and PEC surfaces support the strong
slow-decaying surface waves; so they have similar phenom-
ena such as EOT.

In this paper, we have analyzed the surface wave along a
metal-dielectric interface excited by an indentation. We get
the asymptotic forms of the wave far away from and close to
the indentation. Based on the surface distance �Y�s, the inter-
face is divided into several regions and the surface wave
behaves differently in every region. The complete descrip-
tion of the surface wave would give us deeper understanding
about light transmission mechanics through metallic aper-
tures.
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