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Abstract

An overview of the theoretical and experimental efforts in obtaining a pho-
tonic band gap, a frequency band in three-dimensional dielectric structures
in which electromagnetic waves are forbidden, is presented.

1. Introduction and history

Electron waves traveling in the periodic potential of a
crystal are arranged into energy bands separated by gaps in
which propagating states are prohibited [1]. It is interesting
to see if analogous band gaps exist when electromagnetic
(EM) waves propagate in a periodic dielectric structure (e.g.,
a periodic lattice of dielectric spheres of dielectric constant
€, embedded in a uniform dielectric background ¢,). If such
a band gap or frequency gap exists, EM waves with fre-
quencies inside the gap cannot propagate in any direction
inside the material. These frequency gaps are referred to as
“photonic band gaps”.

Photonic band gaps can have a profound impact on
many areas in pure and applied physics [2, 3]. Due to the
absence of optical modes in the gap, spontaneous emission
is suppressed for photons with frequencies in the forbidden
region [4, 5]. It has been suggested that, by tuning the pho-
tonic band gap to overlap with the electronic band edge, the
electron-hole recombination process can be controlled in a
photonic band gap material, leading to enhanced efficiency
and reduced noise in the operation of semiconductor lasers
and other solid state devices [3, 5]. The suppression of
spontaneous emission can also be used to prolong the life-
time of selected chemical species in catalytic processes [6].
Photonic band gap materials can also find applications in
frequency-selective mirrors, band-pass filters, and reson-
ators. Besides technical applications in various areas, scien-
tists are interested in the possibility of observing the
localization of EM waves by the introduction of defects and
disorder in a photonic band gap material [7-9]. This will be
an ideal realization of the phenomenon of localization
uncomplicated by many-body effects present in the case of
electron localization. Another interesting effect is that, zero-
point fluctuations, which are present even in vacuum, are
absent for frequencies inside a photonic gap. Electromag-
netic interaction governs many properties of atoms, mol-
ecules, and solids. The absence of EM modes and zero point
fluctuations inside the photonic gap can lead to unusual
physical phenomena [7-12]. For example, atoms or mol-
ecules embedded in such a material can be locked in excited
states if the photons emitted to release the excess energy
have frequency within the forbidden gap. All the aforemen-
tioned ideas [3] about new physics and new technology
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hinge upon the assumption of the existence of material with
photonic gaps.

To search for the appropriate structures, scientists at Bell-
core employed a “cut-and-try” approach in which various
periodic dielectric structures were fabricated in the micro-
wave regime and the dispersion of EM waves were mea-
sured to see if a frequency gap existed [13]. The process was
time consuming and not very successful. After attempting
dozens of structures over a period of two years, Yablono-
vitch and Gmitter identified [13] only one structure with a
photonic band gap. This structure consists of a periodic
array of overlapping spherical holes inside a dielectric block.
The centers of the holes are arranged in a face-centered-
cubic (fcc) lattice and the holes occupy 86% of the volume of
the block.

Stimulated by the experimental work, theorists became
interested in the solution of the photonic band problem and
in the search for structures with photonic band gaps. Early
work in this area employed the “scalar wave approx-
imation” which assumed the two polarizations of the EM
waves can be treated separately, thus decoupling the
problem into the solution of two scalar wave equations.
When we first became involved with the photon band
problem, calculations had already been completed for the
experimental structure in the scalar wave approximation
[14, 15]. The results showed the existence of a gap but the
position and size of the gap were not in quantitative agree-
ment with the experiment, indicating the need for a full
vector wave treatment. It turned out from subsequent calcu-
lations that the errors made in neglecting the vector nature
of the EM wave were more serious than initially anticipated,
and the scalar wave calculations actually gave qualitatively
wrong results.

The vector wave solution of Maxwell’s equations for a
periodic dielectric system was carried out independently by
several groups shortly after the appearance of the scalar
wave results [16-18]. All of the methods employ a plane
wave expansion of the electromagnetic fields and use Bloch’s
theorem to reduce the problem to the solution of a set of
linear equations.

When the photon band structure for the experimental fcc
structure [13] of 86% air spheres in a dielectric matrix, was
calculated [18], it showed that the experimental fcc struc-
ture does not have a complete photonic band gap for the
lowest-lying bands. A very large depletion of DOS is found,
called a “pseudo-gap”. Actually, this result was also
obtained earlier by two other groups [16, 17], although at
that time we were not aware of their results. At this point,
the existence of photonic gap materials was seriously
doubted [19]. However, since we found that the plane wave
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expansion method [16-18] can solve the photon band
problem efficiently and much faster than the experimental
“cut-and-try” method, we used it to investigate whether
other structures could succeed where the fcc air sphere
structure failed.

1.1. Photonic band gap structures with the diamond lattice
symmetry

Ho, Chan, and Soukoulis were the first to give a prescrip-
tion for a periodic dielectric structure [18] that possesses a
full photonic band gap rather than a pseudogap. This pro-
posed structure is a periodic arrangement of dielectric
spheres in a diamond-like structure. A systematic exami-
nation [18] of the photonic band structures for dielectric
spheres and air spheres on a diamond lattice, as a function
of the refractive index contrasts and filling ratios, was made.
It was found that photonic band gaps exist over a wide
region of filling ratios for both dielectric spheres and air
spheres for refractive-index contracts as low as 2. However,
this diamond dielectric structure is not easy to fabricate,
especially in the micron and submicron length scales for
infrared or optical devices. However, after we communi-
cated our findings about the diamond structure, Yablono-
vitch very quickly devised [20] an ingenious way of
constructing a diamond lattice. He noted that the diamond
lattice is a very open structure characterized by open chan-
nels along the [110] directions. Thus, by drilling cylindrical
holes through a dielectric block, a structure with the sym-
metry of the diamond structure can be created. Since there
are 6 sets of equivalent [110] directions in the lattice, there
are 6 sets of holes drilled. If the crystal is oriented such that
the [111] surface is exposed, then three sets of these holes
will be slanted at angles of 35.26° with respect to the normal
[111] direction. The remaining three sets of holes have their
axes parallel to the [111] surface and are harder to make on
a thin film oriented in the [111] direction. Thus, in the end,
the experimentalists decided to abandon the second three
sets of holes and construct a structure with only the first
three sets of holes (see Fig. 15, in the article by Yablonovitch
in Ref. [3]) which became the first experimental structure
that demonstrates the existence of a photonic band gap, in
agreement with the predictions [21] of the theoretical calcu-
lations. This is a successful example where the theory was
used to design dielectric structures with desired properties.

We repeated our calculations for several variations on the
diamond lattice [21]. One calculation uses the diamond
lattice generated by 6 sets of air cylinders or dielectric cylin-
ders in the six [110] directions. The other calculation uses a
diamond rod lattice in which, instead of putting spheres at
the lattice sites, we joined them together by nearest-
neighbor rods. We also tested the effects on the photon
band gap when 3 sets of cylinders are omitted in the 6-
cylinder diamond structure. All of these structures exhibit
photonic band gaps, with the best performance coming from
a diamond rod lattice, which achieves a maximum gap of
30% for a refractive index contrast of 3.6.

Very narrow photonic band gaps (PBG) have also been
found [22] in a simple cubic geometry. For 2D systems
[23-25], theoretical studies have shown [23, 24] that a
triangular lattice of air columns in a dielectric background
is the best overall 2D structure, which gives the largest
photonic gap with the smallest refractive index contrast.
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In addition, it was demonstrated [26—29] that lattice imper-
fections in a 2D and/or 3D periodic arrays of a dielectric
material can give rise to fully localized EM wave functions.
Experimental investigations of the photonic band gaps in
either 2D or 3D have been mostly done [20, 26, 28, 29] at
microwave frequencies because of the difficulty in fabricat-
ing ordered dielectric structures at optical length scales. In
fact, the main challenge in the photonic band gap field is the
discovery of a 3D dielectric structure that exhibits a photon-
ic gap but, in addition, can be built by microfabrication
techniques on the scale of optical wavelengths.

2. Layer-by-layer photonic band gap structures

The search for simplifying the structure and reducing the
dimensionality of the structural building blocks continued.
The Iowa State group has designed [30] a novel three-
dimensional layer-by-layer structure that has a full three-
dimensional photonic band gap over a wide range of
structural parameters. The new structure (Fig. 1) consists of
layers of one-dimensional rods with a stacking sequence
that repeats every fourth layer with a repeat distance of c.
Within each layer the rods are arranged in a simple one-
dimensional pattern and are separated by a distance a, a
significant simplification from the two-dimensional grid
found earlier. The rods in the next layer are rotated by an
angle 6 which has the value of 90° but in general could vary
from 90° to 60° but still have a full three-dimensional pho-
tonic band gap. The rods in the second neighbor plane are
shifted by half the spacing, a, relative to rods in the first
plane in a direction perpendicular to the rods. The rods in
every alternate layer are parallel (Fig. 1). This structure has
the symmetry of a face centered tetragonal (fct) lattice. For
the special case of ¢/a = ﬁ, the lattice can be derived from
a fcc unit cell with a basis of two rods. This layered struc-
ture can be derived from diamond by replacing the 110
chains of atoms with the rods.

This structure was first fabricated [31] in the microwave
regime by stacking alumina cylinders and demonstrated to
have a full three-dimensional photonic band gap at micro-
wave frequencies (12-14 GHz). A similar structure was also
fabricated with alumina rods that had a band gap between
18 and 24 GHz. We have also fabricated [32-34] the layer-
by-layer structure with rectangular rods of silicon by micro-

Fig. 1. The new layer-by-layer structure producing full three-dimensional
photonic band gaps. The structure is constructed by an orderly stacking of
dielectric rods, with a simple one-dimensional pattern of rods in each layer.
Although rods of rectangular cross-section are shown here, the rods may
also have cylindrical or elliptical cross sections.
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machining silicon [110] wafers, using anisotropic etching
properties of silicons and an orderly stacking procedure.
The structure with rectangular Si-rods have been fabricated
for three different length scales producing midgap fre-
quencies of 95 GHz, 140 GHz, and 450 GHz using progres-
sively thinner silicon wafers. In all three cases the band edge
frequencies are in excellent agreement with the calculated
values. The structure with midgap at 94 GHz has also been
fabricated by laser machining alumina wafers, illustrating
the usefulness of our layer-by-layer structure. This per-
formance puts the new structure in the frequency range
where a number of millimeter and submillimeter wave appli-
cations have been proposed, including efficient mm wave
antennas, filters, sources, and waveguides. However, most of
these applications are based on the presence of defect or
cavity modes, which are obtained by locally disturbing the
periodicity of the photonic crystal. The frequency of these
modes lie within the forbidden band gap of the pure crystal,
and the associated fields are localized around the defect. We
have demonstrated [35, 36], the existence of such cavity
structures built around the layer-by-layer PBG crystal. The
defects are formed by either adding or removing dielectric
material to or from the crystal. We have observed [35, 36]
localized defect modes with peak and high Q values. The
measurements are in good agreement with theoretical calcu-
lations.

An interesting class of photonic crystals is the A7-family
of structures [37]. These structures have rhombohedral
symmetry and can be generated by connecting lattice points
of the A7 structure by cylinders. The A7 class of structures
can be described a two structural parameters — an internal
displacement u and a shear angle a- that can be varied to
optimize the gap. For special values of the parameters the
structure reduces to simple cubic, diamond, and the Yablon-
ovitch 3-cylinder structure. Gaps as large as 50% are found
[37] in the A7 class of structures for well optimized values
of the structural parameters and fabrication of these struc-
tures would be most interesting. It is worth noting that the
fec structure does have [38, 39] a true photonic band gap
between the eight and the ninth bands (see Fig. 2). The fcc
lattice does not have [16-18] a PBG between the lowest
bands (bands 2 and 3).
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Fig. 2. Density of states for the fcc system of low dielectric spheres (filling
ratio 0.74) in a high dielectric background, with a refractive index contrast
of 3.1, displaying the full gap between the 8 and 9 bands and the weaker
pseudogap between bands 2 and 3. Frequencies are in dimensionless units
where c is the speed of light (in the dielectric background) and a the lattice
constant.
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An alternative layer-by-layer structure has been recently
proposed by Fan et al. [40] to fabricate PBGs at optical
frequencies. This consists of a layered structure of two
dielectric materials in which a series of air columns is drilled
into the top surface. The structural parameters have been
optimized to yield 3D photonic gap to midgap ratios of
14% using Si, SiO, and air, to 23% using Si and air (i.e., the
SiO, layers are replaced by air). Both the design introduced
by Fan et al. [40], and the “three-cylinder” PBG intro-
duced by Yablonovitch and Scherer [41], as well [30-36] as
our layer-by-layer structure have difficulties in creating
PBGs at optical frequencies.

3. Theoretical techniques and transfer matrix results

All of the theoretical results discussed above were obtained
with the plane-wave expansion technique [16—18], which is
now very well developed. However, most of the theoretical
techniques concentrate on the calculation of the dispersion
of the photon bands in the infinite periodic structure, while
experimental investigations focus mainly on the transmis-
sion of EM waves through a finite slab of the photonic band
gap patterned in the required periodic structure. Even with
the knowledge of the photon band structure, it is still a non-
trivial task to obtain the transmission coefficient for com-
parison with experiment. Another important quantity for
the photonic band gap experiments and devices is the
attenuation length for incident EM waves inside the pho-
tonic band gap. Another topic of interest is the behavior of
impurity modes associated with the introduction of defects
into the photonic band gap structure. While this problem
can be tackled within a plane wave approach using the
supercell method [26, 27] in which a simple defect is placed
within each supercell of an artificially periodic system, the
calculations require a lot of computer time and memory.
Recently, Pendry and MacKinnon [42] introduced a com-
plimentary technique for studying photonic band gap struc-
tures which is called the transfer-matrix method. In the
transfer matrix method (TMM), the total volume of the
system is divided into small cells and the fields in each cell
are coupled to those in the neighboring cells. Then the
transfer matrix is defined by relating the incident fields on
one side of the PBG structure with the outgoing fields on
the other side. Using the TMM, the band structure of an
infinite periodic system can be calculated. The main advan-
tage of this method is the calculation of the transmission
and reflection coefficients for EM waves of various fre-
quencies incident on a finite thickness slab of the PBG
material. In this case, the material is assumed to be periodic
in the directions parallel to the interfaces.

We want to stress that this technique can also be applied
to cases where the plane-wave method fails or becomes too
time consuming. For example, when the dielectric constant
is frequency dependent, or has a non-zero imaginary part,
and when defects are present in an otherwise periodic
system, this technique works well. The TMM has previously
been applied in studies of defects in 2D PBG structures
[43], of PBG materials in which the dielectric constants are
complex and frequency dependent [44], of 3D layer-by-layer
PBG materials [32], of 2D metallic PBG structures [45, 46]
and 3D metallic structures [46]. In all these examples, the
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agreement between theoretical predictions and experimental
measurements is very good, as can be seen in Fig. 3.

In particular, for 2D systems consisting of metallic cylin-
ders [46], there is considerable difference between the two
polarizations. For p-polarized waves, the results are qualit-
atively similar to the dielectric PBG systems. Propagating
modes are interrupted by band gaps appearing close to the
edges of the Brillouin zone. On the other hand, for s-
polarized waves, there is a cut-off frequency v,. There are no
propagating modes for frequencies between zero and v, so
the transmission has a very sharp drop in this frequency
range. Above v, there is the usual behavior of bands inter-
rupted by gaps.

For 3D metallic PBG structures [46], the results are very
sensitive on the topology of the structure. Systems with iso-
lated metallic scatterers (cermet topology) exhibit similar
behavior to the dielectric PBG materials. But, for metallic
scatterers forming a continuous network (network
topology), there are no propagating modes for frequencies
smaller than a cut-off frequency for both polarizations and
for any incident angle. Note that for dielectric PBG
materials, there is no cut-off frequency for both types of the
topology. We have shown this behavior, in both 2D and 3D
cases, can be explained using a simple waveguide model
where the v, is predicted with good accuracy. This cut-off
frequency is well below the plasma frequency and is related
to the structure of the system.

In all the periodic cases studied, the absorption can be
largely neglected for metallic PBG structures with lattice
constants, a, less than about 100 pm which correspond to
frequencies below about 1THz. Therefore, for frequencies
less than about 1THz, wide stop-band filters constructed
from periodic metallic PBG materials can be used as alter-
natives to similar filters constructed from dielectric PBG.

By breaking the connections in the 3D metallic networks,
defect states appear below the cut-off frequency, resulting in
a peak in the transmission. The smaller the volume of the
removed metal, the smaller the frequency where the defect
peak appears. This is a very interesting feature of the metal-
lic PBG which, in connection with the fact that the filling
ratio of the metal can be less than 0.01, can be used in the
construction of narrow band-pass filters smaller in size than
those constructed from dielectric PBG. By increasing the
lattice constant, the Q factor and the transmission at the
defect peak increase by order of magnitudes, while the
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Fig. 3. Theoretical (dashed line) and experimental (solid line) transmission
characteristics of a defect structure.
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dimensionless defect frequency remains almost constant.
The absorption at the frequency where the defect peak
appears increases as the lattice constant increases, an effect
which may create problems in some of the possible applica-
tions. An important advantage of metallic PBG structures is
they could be smaller in size and lighter than the corre-
sponding dielectric PBG materials.

4. Conclusions

In summary, we have reviewed the theoretical and experi-
mental efforts in obtaining 2D and 3D dielectric structures
that possess a full photonic band gap. The plane-wave
method results of Ho, Chan, and Soukoulis suggested the
first structure to exhibit a true photonic band gap, and the
Yablonovitch “3-cylinder” structure of diamond symmetry
was the first experimental structure with a photonic band
gap. We have demonstrated that a systematic search for the
structures that possess optimal photonic gaps can be con-
ducted via theoretical calculations. We find that the photon-
ic band gap depends crucially on (i) the local connectivity or
geometry, (ii) the refractive index contrast and (iii) the filling
ratio of a structure. Multiply-connected geometries produce
larger gaps than simply connected structures.

We have designed a new layer-by-layer structure that has
a full three-dimensional photonic band gap. Each layer con-
sists of a set of one-dimensional pattern of parallel dielectric
rods. The rods were rotated by 90° between neighboring
layers and shifted by half the distance a between second
neighbor layers. This stacking procedure led to a unit cell of
four layers. This structure has been fabricated by stacking
alumina rods producing full 3-dimensional photonic band
gaps between 12 and 14 GHz. The structure has been fabri-
cated by micromachining silicon wafers and stacking the
wafers in an orderly fashion producing millimeter wave pho-
tonic band gap structures at progressively smaller length
scales. We have achieved these photonic band gap struc-
tures with midgap frequencies of 100 and 500GHz. A
number of applications of the microwave and millimeter
wave PBG crystals may be realized with the structures we
have already fabricated. This layer-by-layer structure is very
promising for the extension of photonic band crystals into
the infrared and optical regimes an area that will surely lead
to new areas in basic physics together with novel applica-
tions. We are excited about the future applications of pho-
tonic band gaps and the prospects of using our calculational
techniques to design and help the fabrication of these pho-
tonic band gap materials.
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