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The electronic localization properties of a three-dimensional (3D) cubic system under the influ-
ence of a random potential having a Gaussian probability distribution are studied by the potential-
well-analogy method. The results are compared with the localization-function method as well as
with numerical results using the strip method. The overall shape and size of the mobility-edge tra-
jectory is found to be significantly different than the one obtained using a rectangular distribution
for the random potential. In contrast to the case of the rectangular distribution for the random po-
tential, where the mobility edge at the band center was located at W =16.5 V, the corresponding ef-
fective W, for the Gaussian distribution is found at W,=21.5 V. We have confirmed this predic-
tion by performing numerical calculations using one-parameter scaling in 3D strips.

I. INTRODUCTION

Over the last two years, the concept of the potential-
well analogy (PWA) has been developed and applied very
successfully! = to the problem of electronic localization,
especially in connection with simple mean-field theories
such as the coherent-potential approximation (CPA).
Through the application of the PWA method, which ex-
ploits a mathematical equivalence between the localized
states in disordered systems and the bound states in local-
potential wells, very useful results and fruitful ideas have
emerged.>~> A good example of such an idea which also
explains the success of the PWA method is the concept of
universality in certain basic features of disordered systems
for low disorder and near the band edges.>~> This univer-
sality is brought up by introducing natural units of length
and energy and by forming proper dimensionless quanti-
ties using these natural units.

We have chosen to examine in more detail the applica-
tion of the PWA in a three-dimensional (3D) system using
a Gaussian distribution for the random potential. The in-
troduction of a Gaussian distribution is very interesting
on its own merit because of the exponential tails which
appear in the density of states as a result of the tails in the
random potential.*> It can also be used to check the ideas
of the universality as well as the sensitivity, if any, of the
trajectory of the mobility edge on the type of the probabil-
ity distribution.®

In Sec. II we briefly describe the formalism and the
method of calculation. In Sec. III we present and discuss
the results of this calculation, and in the final section, we
state the conclusions of this work.

II. THE THEORETICAL FRAMEWORK

The tight-binding Hamiltonian which describes the sys-
tem including only diagonal disorder is of the form

H=T |n)e,{n|+V3 |n){m]|, (2.1
n n,m
where the sites (r) form a regular cubic lattice, V is the
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hopping matrix element, and p(e,) is the common proba-
bility distribution of each site energy. We can distinguish
two main classes of p(g,): (i) the terminating ones, such
as the rectangular distribution, considered in our previous
work, of total width W and variance w?=W?2/12, for
which p(e,)=0 when |g, | >>w, and (ii) the ones with
tails, such as the Gaussian distribution which we will con-
sider here,

E2

n
—_—_, (2.2)
2w?

1
p(s,,)=7—2-7$exp

for which p(e, )0 even when | ¢, | > w.

The CPA calculates the average Green’s function G
corresponding to H from an effective periodic Hamiltoni-
an resulting from (2.1), by replacing £, by a common
self-energy X, which is determined by a self-consistent
equation."*” By this procedure, the self-energy, the
Green’s function, the mean-free-path length, /(E), the
conductivity"*? oy(E) and the constant-energy surface
S(E) in 3D, are calculated. The details of this procedure
can be found in Refs. 1, 4, and 7. However, the CPA, be-
ing a mean-field theory, omits certain fluctuations which
are responsible for important physical effects, such as the
localization of some eigenstates and the strong amplitude
fluctuations of some other extended states.

It has been pointed out recently that this omission can
be remedied, so far as the localized states are concerned,
by considering the most elementary problem in quantum
mechanics, that of a bound state in a shallow effective-
potential well. The depth ¥V, of the effective-potential
well is proportional to oo(E)~'1(E)~P, where D is the
dimensionality and the width a is proportional to /(E).
As we mentioned above, by employing the CPA one can
find at every energy E the mean free path /(E) and the
CPA conductivity o((E); then from /(E) and oy(E) one
can construct the effective-potential well characterized by
a(E) and Vy(E). If this potential well can sustain a
bound state with a decay length A(E) then the eigenstates
at E are localized with localization length A(E). If no
bound state exists at the effective-potential well, the eigen-
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states of E are extended. In three dimensions, the
mobility-edge energy E,., which separates extended-form
localized states is given by the relation’*

S(E)IXE,)=8.96 . (2.3)

It is important to stress that quantities obtained from the
approximate scheme outlined above (based on the CPA
and the potential-well analogy) are in satisfactory agree-
ment"*%° with results based on independent numerical
methods.

III. RESULTS AND DISCUSSION

We show in Fig. 1 the density of states (DOS) for three
different w. In the same figure for a comparison we also
plot the corresponding DOS for rectangular distributions
of the same variance, i.e., of total width W =wVv'12. The
long tails present in the DOS of the Gaussian probability
distributions, as mentioned earlier, are due to the fact that
contrary to the rectangular distributions there is always a
finite (but very small) probability for a very deep fluctua-
tion of some ¢,, while the neighboring €, have values in
the range (—w,w). Such an isolated potential well can
trap an electron around it. It should be mentioned that
the CPA,*7 which treats rigorously the scattering from a
single site, correctly describes the extreme tail in the DOS
resulting from these single-site bound states. In Fig. 1 we
have also marked the CPA band edges as defined by the
approximate equation*

2
w 1
ECPA/V——6+0.253-——V2 - [

+(0.253Va |,

2
(3.1

where a = % for the rectangular distribution, and —1 for
the Gaussian. This equation is obtained by combining the
asymptotic expansion of self-energy = valid for low disor-
der* (wG << 1),

3=w?G —Qu*—py)G*+0ws) (3.2)

with appropriate expansions of G near the band edges. In
the above relation (3.2), u4 is the fourth moment of the
distribution p(e,) and is equal to 9w*/5 for the rectangu-
lar and 3w* for the Gaussian distribution. This approxi-
mate CPA equation (3.2), contrary to the full CPA equa-
tion* cannot describe the deep-tail states, which are associ-
ated with the pole of the integrand* appearing in the CPA
for the self-energy =. Thus it is expected that Ecp, in
the Gaussian case simply separates the deep-tail states
from the band states. For the rectangular distribution, as
can be seen in Fig. 1, the meaning of Ecp, is quite obvi-
ous; it marks the CPA band edge beyond which the CPA
DOS drops to zero. Furthermore, for low disorder, the
approximate Eq. (3.1) is in very good agreement with the
results of the numerical solution of the CPA equation [see
Figs. 1(a) and (1b)]. For the Gaussian distribution, how-
ever, Ecps defines a crossover energy at which the
behavior of the DOS changes from algebraic “bandlike”
to an exponential tail [see, e.g., Fig. 2(b)]. For large disor-
der the bandlike DOS approaches that of the probability
distribution of €,. Note that Ecp, is a nonuniversal* and
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FIG. 1. CPA density of states for Gaussian (solid line) and
rectangular (dashed line) distributions of the same variance
w?=W2/12 for three different disorders: (a) for W =6V, (b)
for W =8V, and (c) for W =16V. The corresponding arrows,
solid and broken, indicate the CPA band edges as defined by the
approximate Eq. (3.1) for the Gaussian and rectangular distribu-
tion, respectively. In (c) the arrow corresponding to the Gauss-
ian band edge is located at 19 ¥ off the figure frame.

depends on the particular lattice structure and probability
distribution.* It serves, though, to define universal quan-
tities, once energies are measured from it and proper ener-
gy units are used.*> In Fig. 1(c) we can see that Ecpy as
obtained by Eq. (3.1) differs appreciably from the corre-
sponding numerical value for the rectangular case and it
has particular meaning for the Gaussian case. This was
expected for such a large disorder (w =4.62V or
W =16V). To further illustrate the nature of the tails in
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FIG. 2. (a) CPA tails of the DOS for Gaussian distribution
and for w =2V (ie, W=V12w=6.93V) and w=6V (ie.,
W =V'12w~20.78¥). The arrow indicates the CPA band edge
defined by Eq. (3.1). The logarithmic scale of (b) demonstrates
the approximate exponential nature of the trial. Notice that in
b)) w=1V (i.e., W=3.46V), w=4V (i.e, W=13.86V) and

W =6V (i.e., W =20.78V).

the DOS, we plot in Fig. 2(a) the DOS for w =2V,6¥ (or
W =6.93V,20.78 V, respectively) in the range E =6V to
E =15V. It can be verified here as was shown before that
these deep tails display exponential behavior of the form
exp(—E/E,), where E, depends approximately linearly
on the second power of the disorder

w2

E 0=¢C v .
This is clearly shown in Fig. 2(b) where the logarithm of
DOS versus E /V is plotted for different values of w. The
value of ¢ predicted analytically on the basis of an asymp-
totic equation“ and valid for medium disorder, is ¢~0.12.
We found c close to the analytic asymptotic value but
slightly w dependent as shown in Fig. 3 in agreement with
Abe-Toyozawa.!® The small differences about the correct
value of ¢ between this work and Abe and Toyozawa’s are
due to the different unperturbed Green’s functions that
were used. Abe and Toyozawa'® used the Hubbard densi-

(3.3)
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FIG. 3. Variation of the “constant” ¢ (Eq. 3.3) with disorder
w (w =W /V/12) for cubic lattice and Hubbard model. The size
of the error bar is due to uncertainties of fitting the logarithm of
DOS to E /E,, where E, is given by cw?/V.

ty of states,” while in this work the density of states for a
cubic lattice is used. The results for the Hubbard density
of states, shown in Fig. 3, were generated by us and agree
with that for Ref. 10.

The CPA band edge Ecpa, as was defined by Egs. (3.1)
and (2.1), can also be used for lower disorder to obtain
analytically the mobility edge E, which separates extend-
ed from localized states. The relation between the two is
given by*

4
w
E,—Ecpa~—2.852—2— | (3.42)
cTTeRA 4(4m)2V>
or
4
E,—Ecpa~—4.515x10"3 | ¥ | p. (3.4b)

From Eqgs. (3.4a) and (3.1), it is obvious that (i) for low
disorder E. is outside the unperturbed band edge which is
given by 6V, and (ii) E, is further out from the unper-
turbed band edge for the Gaussian than for the rectangu-
lar distribution, since, as is also shown in Figs. 1(a)—1(c),
the corresponding CPA band edge for the Gaussian distri-
bution is further away than the one for the rectangular
distribution. Both of these conclusions are in strong
disagreement with the recent work of Schreiber® who
finds E, inside the unperturbed band edges, for all w’s.

In a very recent publication,® using a rectangular proba-
bility distribution we have checked against numerical data
not only Egs. (3.4a) and (3.4b), but the complete
mobility-edge trajectory obtained by the numerical solu-
tion of Eq. (2.1) combined with the CPA. The agreement
between the numerical results and our approximation was
impressive. We have recalculated here, using the Gauss-
ian probability distribution, the complete mobility-edge
trajectory. The results are plotted in Fig. 4 together with
the trajectory for the rectangular based on the PWA and
the trajectory for Gaussian calculated by the localization-
function technique.!! The localization function we have
used here has the form!!"!

L(E)=KVt'/3 (3.5a)
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with K =4.6862,

t=D/Go, (3.5b)
and
D= {[Go+Go(1,1,0)1>—4G3(1,0,0)}
X[Go—Go(1,1,D)]*. (3.5¢)

The arguments of all diagonal and nondiagonal matrix
elements of the Green’s functions above are E —Z(E).
From Fig. 4 we have the following observations.

(a) The shape of the trajectory in Fig. 4, especially the
upper part corresponding to higher disorder, is quite dif-
ferent from the one obtained with the rectangular distribu-
tion"® whereas the lower parts, corresponding to lower
disorders, are almost the same. This is to be expected, be-
cause for small disorder the difference in Ecps and E,
[Egs. (3.1) and (3.4a)] between Gaussian and rectangular
distribution is very small.

(b) Our results are in disagreement with those of
Schreiber,® in that our trajectory, as was expected from
(3.4a), is outside the unperturbed band edges for low up to
moderate ( W ~ 11V) disorders and that the corresponding
critical disorder at the band center that we find here is
W./V=21.5£0.5 compared to 16.4+0.3 in Schreiber’s
work.® However, the general shape of our trajectory for
Gaussian distribution and large disorder starting at
W =6V, apart from a scale factor is similar to
Schreiber’s.

(c) The PWA and the localization-function techniques
give results in very good agreement for low and moderate
(up to W~15V) disorder. For disorder larger than
W =16V, the PWA and localization-function trajectories
are different in magnitude but similar in shape. Since the
PWA results agree well with the numerical data, as will be
explained below, it follows that the L (E) method underes-
timates the critical disorder for E =0 by about 23%,
while for the rectangular case the corresponding underes-
timation is about 13%. The reasons for this underestima-
tion are not clear.

For very large disorder the DOS takes the shape of one
probability distribution [see for example Fig. 1(c)]. There-
fore, near the band center one qualitatively expects that
the Gaussian probability distribution will give higher
DOS and higher mobility-edge trajectory than the rec-
tangular probability distribution. We can see this more
clearly by combining the approximate relation for large
disorder (w— ) for the self-energy = and Green’s func-
tion G at the center of the band E =0 with Eq. (2.3). For
the w— oo limit we have that!

1
—— .6
Im3(0)= 2(0) ’ (3.6a)
G(0)=—imp(0), (3.6b)

where p(0) is the random probability distribution for
E=0. [p(0)=1/W and 1/wV?2rw for the rectangular
and Gaussian probability, respectively.] In the w— oo
limit, Z(E)=1/G(E). Since [=vr, 7=%#/23,, 2,
=ImZ(E), and using Eq. (2.3) we obtain that the ratio of
the critical disorder W, (0) for the rectangular distribu-
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FIG. 4. Mobility-edge trajectory for Gaussian distribution
with the PWA method (solid line) and the localization function
method (dashed line) together with the mobility-edge trajectory,
for the rectangular distribution obtained with the PWA method
(broken line). W is the corresponding width of the rectangular
distribution with the same variance. The open circle indicates
the numerical result of the strip or wire method.!?~"

tion over the same quantity for the Gaussian distribution
Wcg(0) is equal to (27/12)/2=0.72. This is in good
agreement with our results which give W, (0)=16.5 and
Weg(0)=21.5V.

To further check these results beyond the CPA-PWA
regime, we have resorted to finite-size-scaling methods us-
ing the very reliable technique of strip or wire.®!2~1° In
this method, one considers coupled one-dimensional sys-
tems. Each one-dimensional system is described by tight-
binding Hamiltonian of the form (2.1). The coupling of
the chains, placed together to form a cylinder of square
cross section, is characterized by an interchain matrix ele-
ment. As the number of coupled chains approaches infin-
ity we recover the three-dimensional system. The com-
mon probability distribution p(e,) for each one-
dimensional system contrary to earlier work is taken as a
Gaussian of width w. For the M regularly placed chains
of length N, one determines the largest localization length
Ay as N— . Then from a plot of Ay, versus M one can
determine the localization properties of the system.'?—!®
In particular by studying A, /M versus M one obtains a
reasonable estimate of the mobility edge. At exactly the
mobility edge'>~'> A, /M =0.6 while for extended and
localized states we have A, /M versus M increases and
decreases, respectively. In Table I we have listed Ay,
versus M for M =2,3,4,5,6 for two representative values
of w/V=6,7. We have found, as is also indicated in
Table I, that the critical disorder at the band center is
w./V=6%0.25 with an effective width W of the corre-
sponding rectangular distribution W,/V =21+1, in very
good agreement with our PWA results.

IV. CONCLUSIONS

This paper demonstrates that the potential-well analogy
coupled with the CPA is capable of producing results not
only in qualitative but in quantitative agreement with in-
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TABLE 1. Selective numerical results at £ =0 strip and wire method.
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E =0 w=6.0 w=7.0

M Ay A /M Ay Am/M

2 1.2445 0.62 1.0639 0.53

3 1.8008 0.60 1.4803 0.49

4 2.3209 0.58 1.8437 0.46

b 2.9682 0.59 2.2536 0.44

6 3.5315 0.59 2.5914 0.42
dependent numerical data. For a 3D-tight-binding model ~ tions. He wused small sized systems, (7X5X5 and
with a Gaussian probability distribution we obtain the 12X 10X9).

dependence of the mobility edge on the strength of the di-
agonal disorder. For large disorder the shape of the
mobility-edge trajectory depends on the probability distri-
bution. For Gaussian probability distribution we find that
the critical disorder at the band center is 21.5 and the
shape of the mobility-edge trajectory reflects the Gaussian
nature of the probability distribution. On the other hand,
for the rectangular probability distribution,® we obtain
16.5 as the value of the critical disorder at the band center
and the shape of the mobility-edge trajectory is flat for
large W, reflecting the nature of the rectangular distribu-
tion. For values of disorder up to W =10 we have that
the mobility-edge trajectory is almost the same for the
rectangular and Gaussian probability distribution. Our
results have been verified independently by numerical data
based on the one-parameter scaling strip or wire
method.'>~!® The discrepancies, about the shape of the
mobility-edge trajectory and the critical value of disorder
at E =0 for the Gaussian probability distribution, be-
tween this work and the work of Schreiber® are most
probably due to the numerical uncertainties in his calcula-

Finally, we have verified that the Gaussian probability
distribution'® within the CPA produces long exponential
tails* of the form exp(—E/E,) with Ey=cw?/V with ¢
slightly w dependent (¢~0.11), but in qualitative agree-
ment with Abe-Toyozawa.!® The small differences are
due to the different unperturbed Green’s functions used.
Abe and Toyozawalo used the Hubbard density of states,
while in this work the density of states for a cubic lattice
is employed.
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